Marine Enzymes from Microbial Symbionts of Sponges and Corals

  • Chapter
  • First Online:
Symbiotic Microbiomes of Coral Reefs Sponges and Corals
  • 1445 Accesses

Abstract

Sponges and corals are great pool of diverse microbes because they are closely associated with microorganisms that occur either extracellularly or intracellularly. The recent studies have revealed new microbial communities and novel compounds from sponges and corals. Many reports are found toward the availability of antibiotics from the sponge-/coral-associated microorganisms; very few reports are available for the enzymes, but there are no scientific research reports with the potentiality in medical and biotechnological applications. Therefore, there is an urgent need of exploration of marine enzymes from sponges and corals for human and environmental perspectives. This chapter will focus on current and future prospects of marine enzymes from microbial symbionts especially sponges/corals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wilkinson CR. Symbiotic interactions between marine sponges and algae. In: Reisser W, editor. Algae and symbioses: plants, animals, fungi, viruses, interactions explored. Bristol: Biopress Limited; 1992.

    Google Scholar 

  2. Steindler L, Huchon D, Avni A, Ilan M. 16S rRNA phylogeny of sponge-associated cyanobacteria. Appl Environ Microbiol. 2005;71:4127–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hentschel U, Hopke J, Horn M, Friedrich AB, Wagner M, Hacker J, et al. Molecular evidence for a uniform microbial community in sponges from different oceans. Appl Environ Microbiol. 2002;68:4431–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Radjasa O, Sabdono K, Junaidi A, Zocchi E. Richness of secondary metabolite producing marine bacteria associated with sponge Haliclona sp. Int J Pharm. 2007;3:275–9.

    Article  Google Scholar 

  5. Fusetani N, Matsunaga S. Bioactive sponge peptides. Chem Rev. 1993;93:1793–806.

    Article  CAS  Google Scholar 

  6. Fieseler L, Horn M, Wagner M, Hentschel U. Discovery of the novel candidate Phylum “Poribacteria” in marine sponges. Appl Environ Microbiol. 2004;70:3724–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wilkinson CR. Cyanobacteria symbiotic in marine sponges. In: Schwemmler W, Schneck HEA, editors. Endocytobiology, endosymbiosis and cell biology. Berlin: de Gruyter; 1980. p. 553–63.

    Google Scholar 

  8. Hentschel U, Usher KM, Taylor MW. Marine sponges as microbial fermenters. FEMS Microbiol Ecol. 2006;55:167–77.

    Article  CAS  PubMed  Google Scholar 

  9. Noyer C, Hamilton A, Sacristan-Soriano O, Becerro MA. Quantitative comparison of bacterial communities in two Mediterranean sponges. Symbiosis. 2010;51:239–43.

    Article  Google Scholar 

  10. Abdelmohsen UR, Bayer K, Hentschel U. Diversity, abundance and natural products of marine sponge-associated actinomycetes. Nat Prod Rep. 2014;31:381–99.

    Article  CAS  PubMed  Google Scholar 

  11. Moitinho-Silva L, Bayer K, Cannistraci CV, Giles EC, Ryu T, Seridi L, et al. Specificity and transcriptional activity of microbiota associated with low and high microbial abundance sponges from the Red Sea. Mol Ecol. 2014;23:1348–63.

    Article  CAS  PubMed  Google Scholar 

  12. Bayer K, Moitinho-Silva L, Brümmer F, Cannistraci CV, Ravasi T, Hentschel U. GeoChip-based insights into the microbial functional gene repertoire of marine sponges (high microbial abundance, low microbial abundance) and seawater. FEMS Microbiol Ecol. 2014;90:832–43.

    Article  CAS  PubMed  Google Scholar 

  13. Fan L, Reynolds D, Liu M, Stark M, Kjelleberg S, Webster NS, et al. Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. Proc Natl Acad Sci U S A. 2012;109:E1878–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bayer K, Kamke J, Hentschel U. Quantification of bacterial and archaeal symbionts in high and low microbial abundance sponges using real-time PCR. FEMS Microbiol Ecol. 2014;89:679–90.

    Article  CAS  PubMed  Google Scholar 

  15. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489:220–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Webster NS, Taylor MW, Behnam F, Lücker S, Rattei T, Whalan S, et al. Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ Microbiol. 2010;12:2070–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Schmitt S. Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J. 2012;6:564–76.

    Article  CAS  PubMed  Google Scholar 

  18. Reveillaud J, Maignien L, Eren AM, Huber JA, Apprill A, Sogin ML, et al. Host-specificity among abundant and rare taxa in the sponge microbiome. ISME J. 2014;8:1198–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee OO, Wang Y, Yang J, Lafi FF, Al-Suwailem A, Qian P-Y. Pyrosequencing reveals highly diverse and species-specific microbial communities in sponges from the Red Sea. ISME J. 2011;5:650–64.

    Article  CAS  PubMed  Google Scholar 

  20. Kamke J, Taylor MW, Schmitt S. Activity profiles for marine sponge-associated bacteria obtained by 16S rRNA vs 16S rRNA gene comparisons. ISME J. 2010;4:498–508.

    Article  CAS  PubMed  Google Scholar 

  21. Simister RL, Deines P, Botté ES, Webster NS, Taylor MW. Sponge-specific clusters revisited: a comprehensive phylogeny of sponge-associated microorganisms. Environ Microbiol. 2012;14:517–24.

    Article  CAS  PubMed  Google Scholar 

  22. Hentschel U, Piel J, Degnan SM, Taylor MW. Genomic insights into the marine sponge microbiome. Nat Rev Microbiol. 2012;10:641–54.

    Article  CAS  PubMed  Google Scholar 

  23. Namikoshi M. Distribution of marine Wlamentous fungi associated with marine sponges in coral reefs of Palau and Bunaken Island, Indonesia. J Tokyo Univ Fish. 2002;88:15–20.

    Google Scholar 

  24. Thakur NL, Muller WEG. Biotechnological potential of marine sponges. Curr Sci. 2004;86:1506–12.

    CAS  Google Scholar 

  25. Höller U, Wright AD, Matthee GF, Konig GM, Draeger S, Aust H-J, et al. Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol Res. 2000;104:1354–65.

    Article  Google Scholar 

  26. O'Brien HE, Parrent JL, Jackson JA, Moncalvo J-M, Vilgalys R. Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol. 2005;71:5544–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang G. Diversity and biotechnological potential of the sponge-associated microbial consortia. J Ind Microbiol Biotechnol. 2006;33:545–51.

    Article  CAS  PubMed  Google Scholar 

  28. Baker PW, Kennedy J, Dobson AD, Marchesi JR. Phylogenetic diversity and antimicrobial activities of fungi associated with Haliclona simulans isolated from Irish coastal waters. Mar Biotechnol. 2009;11:540–7.

    Article  CAS  Google Scholar 

  29. Li Q, Wang G. Diversity of fungal isolates from three Hawaiian marine sponges. Microbiol Res. 2009;164:233–41.

    Article  CAS  PubMed  Google Scholar 

  30. Liu W, Li C, Zhu P, Yang J, Cheng K. Phylogenetic diversity of culturable fungi associated with two marine sponges: Haliclona simulans and Gelliodes carnosa, collected from the Hainan Island coastal waters of the South China Sea. Fungal Divers. 2010;42:1–15.

    Article  Google Scholar 

  31. Paz Z, Komon-Zelazowska M, Druzhinina IS, Aveskamp MM, Shnaiderman A, Aluma Y, et al. Diversity and potential antifungal properties of fungi associated with a Mediterranean sponge. Fungal Divers. 2010;42:17–26.

    Article  Google Scholar 

  32. Ding B, Yin Y, Zhang F, Li Z. Recovery and phylogenetic diversity of culturable fungi associated with marine sponges Clathrina luteoculcitella and Holoxea sp. in the South China Sea. Mar Biotechnol. 2011;13:713–21.

    Article  CAS  Google Scholar 

  33. Rozas EE, Albano RM, Lôbo-Hajdu G, Müller WEG, Schröder HC, Custödio MR. Isolation and cultivation of fungal strains from in vitro cell cultures of two marine sponges (Porifera: Halichondrida and Haplosclerida). Braz J Microbiol. 2011;42:1560–8.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wiese J, Ohlendorf B, Blümel M, Schmaljohann R, Imhoff JF. Phylogenetic identification of fungi isolated from the marine sponge Tethya aurantium and identification of their secondary metabolites. Mar Drugs. 2011;9:561–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhou K, Zhang X, Zhang F, Li Z. Phylogenetically diverse cultivable fungal community and polyketide synthase (PKS), non-ribosomal peptide synthase (NRPS) genes associated with the South China Sea sponges. Microb Ecol. 2011;62:644–54.

    Article  PubMed  Google Scholar 

  36. Suryanarayanan TS. The diversity and importance of fungi associated with marine sponges. Bot Mar. 2012;55:553–64.

    Article  Google Scholar 

  37. Thirunavukkarasu N, Suryanarayanan TS, Girivasan KP, Venkatachalam A, Geetha V, Ravishankar JP, et al. Fungal symbionts of marine sponges from Rameswaram, southern India: species composition and bioactive metabolites. Fungal Divers. 2012;55:37–46.

    Article  Google Scholar 

  38. Yu Z, Zhang B, Sun W, Zhang F, Li Z. Phylogenetically diverse endozoic fungi in the South China Sea sponges and their potential in synthesizing bioactive natural products suggested by PKS gene and cytotoxic activity analysis. Fungal Divers. 2013;58:127–41.

    Article  Google Scholar 

  39. Imhoff JF, Stöhr R. Sponge-associated bacteria: general overview and special aspects of the diversity of bacteria associated with Halichondria panicea. In: Müller WEG, editor. Sponges (Porifera), Marine molecular biotechnology, vol. 1. New York: Springer; 2003. p. 35–57.

    Chapter  Google Scholar 

  40. Ahn YB, Rhee SK, Fennell DE, Kerkhof LJ, Hentschel U, Haggblom MM. Reductive dehalogenation of brominated phenolic compounds by microorganisms associated with the marine sponge Aplysina aerophoba. Appl Environ Microbiol. 2003;69:4159–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Karpushova A, Brummer F, Barth S, Lange S, Schmid RD. Cloning, recombinant expression and biochemical characterization of novel esterases from Bacillus sp associated with the marine sponge Aplysina aerophoba. Appl Microbiol Biotechnol. 2005;67:59–69.

    Article  CAS  PubMed  Google Scholar 

  42. Mohapatra BR, Bapuji M, Sree A. Production of industrial enzymes (amylase, carboxymethylcellulase and protease) by bacteria isolated from marine sedentary organisms. Acta Biotechnol. 2003;23:75–84.

    Article  CAS  Google Scholar 

  43. Mohapatra BR, Bapuji M. Characterization of acetylcholinesterase from Arthrobacter ilicis associated with the marine sponge (Spirastrella sp.). J Appl Microbiol. 1998;84:393–8.

    Article  CAS  Google Scholar 

  44. Mohapatra BR, Banerjee UC, Bapuji M. Characterization of a fungal amylase from Mucor sp. associated with the marine sponge Spirastrella sp. J Biotechnol. 1998;60:113–7.

    Article  CAS  Google Scholar 

  45. Mohapatra BR, Bapuji M. Characterization of urethanase from Micrococcus species associated with the marine sponge (Spirastrella species). Lett Appl Microbiol. 1997;25:393–6.

    Article  CAS  Google Scholar 

  46. Yung PY, Kjelleberg S, Thomas T. A polyphasic approach to the exploration of collagenolytic activity in the bacterial community associated with the marine sponge Cymbastela concentrica. FEMS Microbiol Lett. 2011;321:24–9.

    Article  CAS  PubMed  Google Scholar 

  47. Shanmughapriya S. Optimization of extracellular thermotolerant alkaline protease produced by marine Roseobacter sp (MMD040). Bioprocess Biosyst Eng. 2008;31:427–33.

    Article  CAS  PubMed  Google Scholar 

  48. Shanmughapriya S, Kiran GS, Selvin J, Gandhimathi R, Baskar TB, Manilal A, et al. Optimization, production and partial characterization of an alkalophilic amylase produced by sponge associated marine bacterium Halobacterium salinarum MMD047. Biotechnol Biproc E. 2009;14:67–75.

    Article  CAS  Google Scholar 

  49. Okamura Y, Kimura T, Yokouchi H, Meneses-Osorio M, Katoh M, Matsunaga T, et al. Isolation and characterization of a GDSL esterase from the metagenome of a marine sponge-associated Bacteria. Mar Biotechnol. 2010;2010(12):395–402.

    Article  CAS  Google Scholar 

  50. Kiran GS. Optimization of extracellular psychrophilic alkaline lipase produced by marine Pseudomonas sp. (MSI057). Bioprocess Biosyst Eng. 2008;31:483–92.

    Article  CAS  PubMed  Google Scholar 

  51. Shanmughapriya S, Kiran GS, Selvin J, Thomas TA, Rani C. Optimization, purification, and characterization of extracellular mesophilic alkaline cellulase from sponge-associated Marinobacter sp. MSI032. Appl Biochem Biotechnol. 2010;62:625–40.

    Article  CAS  Google Scholar 

  52. Selvin J, Kennedy J, Lejon DPH, Kiran GS, Dobson ADW. Isolation identification and biochemical characterization of a novel halo-tolerant lipase from the metagenome of the marine sponge Haliclona simulans. Microb Cell Factories. 2014;11:72.

    Article  CAS  Google Scholar 

  53. Feby A, Nair S. Sponge-associated bacteria of Lakshadweep coral reefs, India: resource for extracellular hydrolytic enzymes. Adv Biosci Biotechnol. 2010;1:330–7.

    Article  CAS  Google Scholar 

  54. Dupont S, Carre-Mlouka A, Domart-Coulon I, Vacelet J, Bourguet-Kondracki M-L. Exploring cultivable Bacteria from the prokaryotic community associated with the carnivorous sponge Asbestopluma hypogea. FEMS Microbiol Ecol. 2014;88:160–74.

    Article  CAS  PubMed  Google Scholar 

  55. Su J, Zhang F, Sun W, Karuppiah V, Zhang G, Li Z, et al. A new alkaline lipase obtained from the metagenome of marine sponge Ircinia sp. World J Microbiol Biotechnol. 2015;31:1093–102.

    Article  CAS  PubMed  Google Scholar 

  56. Han Y, Yang B, Zhang F, Miao X, Li Z. Characterization of antifungal chitinase from marine Streptomyces sp. DA11 associated with South China Sea sponge Craniella australiensis. Mar Biotechnol. 2009;11:132–40.

    Article  CAS  Google Scholar 

  57. Han Y, Li Z, Miao X, Zhang F. Statistical optimization of medium components to improve the chitinase activity of Streptomyces sp. DA11 associated with the South China Sea sponge Craniella australiensis. Process Biochem. 2008;43:1088–93.

    Article  CAS  Google Scholar 

  58. Zhang H, Zhang F, Li Z. Gene analysis, optimized production and property of marine lipase from Bacillus pumilus B106 associated with South China Sea sponge Halichondria rugosa. World J Microbiol Biotechnol. 2009;25:1267–74.

    Article  CAS  Google Scholar 

  59. Collins CM, D’Orazio SE. Bacterial urease: structure, regulation of expression and role in pathogenesis. Mol Microbiol. 1993;9:907–13.

    Article  CAS  PubMed  Google Scholar 

  60. Su J, ** L, Jiang Q, Sun W, Zhang F, Li Z. Phylogenetically diverse ureC genes and their expression suggest the urea utilization by bacterial symbionts in marine sponge Xestospongia testudinaria. PLoS One. 2013;8:e64848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Selvin J. Exploring the antagonistic producer Streptomyces MSI051: implications of polyketide synthase gene type II and a ubiquitous defense enzyme phospholipase A2 in host sponge Dendrilla nigra. Curr Microbiol. 2009;58:459–63.

    Article  CAS  PubMed  Google Scholar 

  62. Hutchinson CR. Polyketide and non-ribosomal peptide synthases: falling together by coming apart. Proc Natl Acad Sci U S A. 2003;100:3010–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Bayer K, Scheuermayer M, Fieseler L, Hentschel U. Genomic mining for novel FADH2-dependent halogenases in marine sponge-associated microbial consortia. Mar Biotechnol. 2013;15:63–72.

    Article  CAS  Google Scholar 

  64. Piel J, Hui D, Wen G, Butzke D, Platzer M, Fusetani N, et al. Antitumor polyketide biosynthesis by an uncultivated bacterial symbiont of the marine sponge Theonella swinhoei. Proc Natl Acad Sci U S A. 2004;101:16222–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fieseler L. Widespread occurrence and genomic context of unusually small polyketide synthase genes in microbial consortia associated with marine sponges. Appl Environ Microbiol. 2007;73:2144–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fisch KM, Gurgui C, Heycke N, Van Der Sar SA, Anderson SA, Webb VL, et al. Polyketide assembly lines of uncultivated sponge symbionts from structure-based gene targeting. J Nat Chem Biol. 2009;5:494–501.

    Article  CAS  Google Scholar 

  67. Schirmer A, Gadkari R, Reeves CD, Ibrahim F, DeLong EF, Hutchinson CR. Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl Environ Microbiol. 2005;71:4840–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schleper C, Swanson RV, Mathur EJ, DeLong EF. Characterization of a DNA polymerase from the uncultivated psychrophilic archaeon Cenarchaeum symbiosum. J Bacteriol. 1997;179:7803–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kennedy J. Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems. J Appl Microbiol. 2011;111:7877–99.

    Article  CAS  Google Scholar 

  70. Stanley GD. The evolution of modern corals and their early history. Earth-Sci Rev. 2003;60:195–225.

    Article  Google Scholar 

  71. Tapanila L. Direct evidence of ancient symbiosis using trace fossils. Paleontol Soc Pap. 2008;14:271–87.

    Google Scholar 

  72. Ainsworth TD, Thurber RV, Gates RD. The future of coral reefs: a microbial perspective. Trends Ecol Evol. 2010;25:233–40.

    Article  PubMed  Google Scholar 

  73. Krediet CJ, Ritchie KB, Paul VJ, Teplitski M. Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases. Proc R Soc B. 2013;280:20122328.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Klaus JS, Frias-Lopez J, Bonheyo GT, Heikoop JM, Fouke BW. Bacterial communities inhabiting the healthy tissues of two Caribbean reef corals: interspecific and spatial variation. Coral Reefs. 2005;24:129–37.

    Article  Google Scholar 

  75. Sun W, Anbuchezhian R, Li Z. Association of coral-microbes, and the ecological roles of microbial symbionts in corals. In: Goffredo S, Dubinsky Z, editors. Medusa and her sisters The Cnidaria, past, present and future. Cham: Springer Press; 2016. p. 347–57.

    Chapter  Google Scholar 

  76. Ritchie KB. Regulation of microbial populations by coral surface mucus and mucusassociated bacteria. Mar Ecol Prog Ser. 2006;322:1–14.

    Article  CAS  Google Scholar 

  77. Shnit-Orland M, Kushmaro A. Coral mucus-associated bacteria: a possible first line of defense. FEMS Microbiol Ecol. 2009;67:371–80.

    Article  CAS  PubMed  Google Scholar 

  78. Anithajothi R, Duraikannu K, Umagowsalya G, Ramakritinan CM. The presence of biomarker enzymes of selected scleractinian corals of Palk bay, Southeast Coast of India. Biomed Res Int. 2014;2014:684874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Anithajothi R, Nagarani N, Umagowsalya G, Duraikannu K, Ramakritinan CM. Screening, isolation and characterization of protease producing moderately halophilic microorganism Halomonas meridiana associated with coral mucus. Toxicol Environ Chem. 2014;96:296–306.

    Article  CAS  Google Scholar 

  80. Poosarla A, Tulasi CDSLN, Rajan PR. Isolaton of soft corals associated fungi from andaman and nicobar marine water and screening for antimicrobial and protease activity. J Pure Appl Microbiol. 2012;6:221–9.

    Google Scholar 

  81. Puspasari F, Nurachman Z, Noer AS, Radjasa OK, van der Maarel MJEC, Natalia D. Characteristics of raw starch degrading α-amylase from Bacillus aquimaris MKSC 6.2 associated with soft coral Sinularia sp. Starch. 2011;63:461–7.

    Article  CAS  Google Scholar 

  82. Selvin J, Kennedy J, Lejon DPH, Kiran GS, Dobson ADW. Isolation identification and biochemical characterization of a novel halo-tolerant lipase from the metagenome of the marine sponge Haliclona simulans. Microb Cell Fact. 2012;11:72.

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial supports from the Natural Science Foundation of China (NSFC) (31861143020, 41776138, 41742002, U1301131, 41176127, 41076077), and High-Tech Research and Development Program of China (2013AA092901, 2011AA090702, 2007AA09Z447, 2004AA628060, 2002AA608080) and the Chinese Post-Doctoral Funding (No.15005188).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karthik, L., Li, Z. (2019). Marine Enzymes from Microbial Symbionts of Sponges and Corals. In: Li, Z. (eds) Symbiotic Microbiomes of Coral Reefs Sponges and Corals. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1612-1_18

Download citation

Publish with us

Policies and ethics

Navigation