Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 976))

Abstract

Glioma is the most common type of brain tumors and malignant glioma is extremely lethal, with patients’ 5-year survival rate less than 10%. Treatment of gliomas poses remarkable clinical challenges, not only because of their particular localization but also because glioma cells possess several malignant biological features, including highly proliferative, highly invasive, highly angiogenic, and highly metabolic aberrant. All these features make gliomas highly recurrent and drug resistant. Finding new and effective molecular drug targets for glioma is an urgent and critical task for both basic and clinical research. Recent studies have proposed a type of non-voltage-gated calcium channels, namely, canonical transient receptor potential (TRPC) channels, to be newly emerged potential drug targets for glioma. They are heavily involved in the proliferation, migration, invasion, angiogenesis, and metabolism of glioma cells. Abundant evidence from both cell models and preclinical mouse models has demonstrated that inhibition of TRPC channels shows promising anti-glioma effect. In this chapter, we will give a comprehensive review on the current progress in the studies on TRPC channels and glioma and discuss their potential clinical implication in glioma therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 159.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 159.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Behin A, Hoang-Xuan K et al (2003) Primary brain tumours in adults. Lancet 361(9354):323–331

    Google Scholar 

  2. Bello L, Giussani C et al (2004) Angiogenesis and invasion in gliomas. Cancer Treat Res 117:263–284

    Google Scholar 

  3. Berridge MJ, Bootman MD et al (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4(7):517–529

    Google Scholar 

  4. Bomben VC, Sontheimer H (2010) Disruption of transient receptor potential canonical channel 1 causes incomplete cytokinesis and slows the growth of human malignant gliomas. Glia 58(10):1145–1156

    Google Scholar 

  5. Bomben VC, Sontheimer HW (2008) Inhibition of transient receptor potential canonical channels impairs cytokinesis in human malignant gliomas. Cell Prolif 41(1):98–121

    Google Scholar 

  6. Bomben VC, Turner KL et al (2011) Transient receptor potential canonical channels are essential for chemotactic migration of human malignant gliomas. J Cell Physiol 226(7):1879–1888

    Google Scholar 

  7. Bryant JA, Finn RS et al (2004) EGF activates intracellular and intercellular calcium signaling by distinct pathways in tumor cells. Cancer Biol Ther 3(12):1243–1249

    Google Scholar 

  8. Cairns RA, Harris IS et al (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11(2):85–95

    Google Scholar 

  9. Chakraborty S, Berwick ZC et al (2011) Bromoenol lactone inhibits voltage-gated Ca2+ and transient receptor potential canonical channels. J Pharmacol Exp Ther 339(2):329–340

    Google Scholar 

  10. Chigurupati S, Venkataraman R et al (2010) Receptor channel TRPC6 is a key mediator of Notch-driven glioblastoma growth and invasiveness. Cancer Res 70(1):418–427

    Google Scholar 

  11. Ding X, He Z et al (2010) Essential role of TRPC6 channels in G2/M phase transition and development of human glioma. J Natl Cancer Inst 102(14):1052–1068

    Google Scholar 

  12. Dolecek TA, Propp JM et al (2012) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2005–2009. Neuro-Oncology 14(Suppl 5):v1–49

    Google Scholar 

  13. El Boustany C, Bidaux G et al (2008) Capacitative calcium entry and transient receptor potential canonical 6 expression control human hepatoma cell proliferation. Hepatology 47(6):2068–2077

    Google Scholar 

  14. Fabian A, Fortmann T et al (2008) TRPC1 channels regulate directionality of migrating cells. Pflugers Arch 457(2):475–484

    Google Scholar 

  15. Ge R, Tai Y et al (2009) Critical role of TRPC6 channels in VEGF-mediated angiogenesis. Cancer Lett 283(1):43–51

    Google Scholar 

  16. Goodenberger ML, Jenkins RB (2012) Genetics of adult glioma. Cancer Genet 205(12):613–621

    Google Scholar 

  17. Gustafsson MV, Zheng X et al (2005) Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell 9(5):617–628

    Google Scholar 

  18. Halaszovich CR, Zitt C et al (2000) Inhibition of TRP3 channels by lanthanides. Block from the cytosolic side of the plasma membrane. J Biol Chem 275(48):37423–37428

    Google Scholar 

  19. Hamdollah Zadeh MA, Glass CA et al (2008) VEGF-mediated elevated intracellular calcium and angiogenesis in human microvascular endothelial cells in vitro are inhibited by dominant negative TRPC6. Microcirculation 15(7):605–614

    Google Scholar 

  20. Hellwig N, Albrecht N et al (2005) Homo- and heteromeric assembly of TRPV channel subunits. J Cell Sci 118(Pt 5):917–928

    Google Scholar 

  21. Hofmann T, Schaefer M et al (2002) Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci U S A 99(11):7461–7466

    Google Scholar 

  22. Inoue R, Okada T et al (2001) The transient receptor potential protein homologue TRP6 is the essential component of vascular alpha(1)-adrenoceptor-activated Ca(2+)-permeable cation channel. Circ Res 88(3):325–332

    Google Scholar 

  23. Jones NP, Schulze A (2012) Targeting cancer metabolism – aiming at a tumour’s sweet-spot. Drug Discov Today 17(5–6):232–241

    Google Scholar 

  24. Jung S, Muhle A et al (2003) Lanthanides potentiate TRPC5 currents by an action at extracellular sites close to the pore mouth. J Biol Chem 278(6):3562–3571

    Google Scholar 

  25. Kahl CR, Means AR (2003) Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr Rev 24(6):719–736

    Google Scholar 

  26. Kini V, Chavez A et al (2010) A new role for PTEN in regulating transient receptor potential canonical channel 6-mediated Ca2+ entry, endothelial permeability, and angiogenesis. J Biol Chem 285(43):33082–33091

    Google Scholar 

  27. Kiyonaka S, Kato K et al (2009) Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proc Natl Acad Sci U S A 106(13):5400–5405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Komuro H, Kumada T (2005) Ca2+ transients control CNS neuronal migration. Cell Calcium 37(5):387–393

    Article  CAS  PubMed  Google Scholar 

  29. Koppenol WH, Bounds PL et al (2011) Otto Warburg’s contributions to current concepts of cancer metabolism. Nat Rev Cancer 11(5):325–337

    Article  CAS  PubMed  Google Scholar 

  30. Kraft R (2007) The Na+/Ca2+ exchange inhibitor KB-R7943 potently blocks TRPC channels. Biochem Biophys Res Commun 361(1):230–236

    Article  CAS  PubMed  Google Scholar 

  31. Krock BL, Skuli N et al (2011) Hypoxia-induced angiogenesis: good and evil. Genes Cancer 2(12):1117–1133

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li S, Wang J et al (2015) Crucial role of TRPC6 in maintaining the stability of HIF-1alpha in glioma cells under hypoxia. J Cell Sci 128(17):3317–3329

    Article  CAS  PubMed  Google Scholar 

  33. Lievremont JP, Bird GS et al (2005) Mechanism of inhibition of TRPC cation channels by 2-aminoethoxydiphenylborane. Mol Pharmacol 68(3):758–762

    CAS  PubMed  Google Scholar 

  34. Liu Y, Cox SR et al (1995) Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5′ enhancer. Circ Res 77(3):638–643

    Google Scholar 

  35. Louis DN, Ohgaki H et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109

    Article  PubMed  PubMed Central  Google Scholar 

  36. Louis M, Zanou N et al (2008) TRPC1 regulates skeletal myoblast migration and differentiation. J Cell Sci 121(Pt 23):3951–3959

    Article  CAS  PubMed  Google Scholar 

  37. Majeed Y, Amer MS et al (2011) Stereo-selective inhibition of transient receptor potential TRPC5 cation channels by neuroactive steroids. Br J Pharmacol 162(7):1509–1520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Malarkey EB, Ni Y et al (2008) Ca2+ entry through TRPC1 channels contributes to intracellular Ca2+ dynamics and consequent glutamate release from rat astrocytes. Glia 56(8):821–835

    Article  PubMed  Google Scholar 

  39. Mareel M, Leroy A (2003) Clinical, cellular, and molecular aspects of cancer invasion. Physiol Rev 83(2):337–376

    Article  CAS  PubMed  Google Scholar 

  40. Merritt JE, Armstrong WP et al (1990) SK&F 96365, a novel inhibitor of receptor-mediated calcium entry. Biochem J 271(2):515–522

    Google Scholar 

  41. Miller M, Shi J et al (2011) Identification of ML204, a novel potent antagonist that selectively modulates native TRPC4/C5 ion channels. J Biol Chem 286(38):33436–33446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Munoz-Pinedo C, El Mjiyad N et al (2012) Cancer metabolism: current perspectives and future directions. Cell Death Dis 3:e248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Obukhov AG, Nowycky MC (2005) A cytosolic residue mediates Mg2+ block and regulates inward current amplitude of a transient receptor potential channel. J Neurosci 25(5):1234–1239

    Article  CAS  PubMed  Google Scholar 

  44. Odell AF, Scott JL et al (2005) Epidermal growth factor induces tyrosine phosphorylation, membrane insertion, and activation of transient receptor potential channel 4. J Biol Chem 280(45):37974–37987

    Article  CAS  PubMed  Google Scholar 

  45. Oermann EK, Wu J et al (2012) Alterations of metabolic genes and metabolites in cancer. Semin Cell Dev Biol 23(4):370–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Okada T, Inoue R et al (1999) Molecular and functional characterization of a novel mouse transient receptor potential protein homologue TRP7. Ca(2+)-permeable cation channel that is constitutively activated and enhanced by stimulation of G protein-coupled receptor. J Biol Chem 274(39):27359–27370

    Article  CAS  PubMed  Google Scholar 

  47. Orrenius S, Nicotera P (1994) The calcium ion and cell death. J Neural Transm Suppl 43:1–11

    CAS  PubMed  Google Scholar 

  48. Radner H, Blumcke I et al (2002) The new WHO classification of tumors of the nervous system 2000. Pathology and genetics. Pathologe 23(4):260–283

    Article  CAS  PubMed  Google Scholar 

  49. Roderick HL, Cook SJ (2008) Ca2+ signalling checkpoints in cancer: remodelling Ca2+ for cancer cell proliferation and survival. Nat Rev Cancer 8(5):361–375

    Article  CAS  PubMed  Google Scholar 

  50. Sahlgren C, Gustafsson MV et al (2008) Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci U S A 105(17):6392–6397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Singh I, Knezevic N et al (2007) Galphaq-TRPC6-mediated Ca2+ entry induces RhoA activation and resultant endothelial cell shape change in response to thrombin. J Biol Chem 282(11):7833–7843

    Google Scholar 

  52. Song LL, Peng Y et al (2008) Notch-1 associates with IKKalpha and regulates IKK activity in cervical cancer cells. Oncogene 27(44):5833–5844

    Article  CAS  PubMed  Google Scholar 

  53. Strübing C, Krapivinsky G et al (2001) TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29(3):645–655

    Article  PubMed  Google Scholar 

  54. Van Meir EG, Hadjipanayis CG et al (2010) Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin 60(3):166–193

    Google Scholar 

  55. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    Google Scholar 

  56. Walker RL, Koh SD et al (2002) TRPC4 currents have properties similar to the pacemaker current in interstitial cells of Cajal. Am J Phys Cell Physiol 283(6):C1637–C1645

    Article  CAS  Google Scholar 

  57. Wang B, Li W et al (2009) Hypoxia up-regulates vascular endothelial growth factor in U-87 MG cells: involvement of TRPC1. Neurosci Lett 459(3):132–136

    Article  CAS  PubMed  Google Scholar 

  58. Wang GX, Poo MM (2005) Requirement of TRPC channels in netrin-1-induced chemotropic turning of nerve growth cones. Nature 434(7035):898–904

    Article  CAS  PubMed  Google Scholar 

  59. Xu SZ, Zeng F et al (2005) Block of TRPC5 channels by 2-aminoethoxydiphenyl borate: a differential, extracellular and voltage-dependent effect. Br J Pharmacol 145(4):405–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xu W, Yang H et al (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19(1):17–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Yang F, Zhang H et al (2014) Reciprocal regulation of HIF-1alpha and lincRNA-p21 modulates the Warburg effect. Mol Cell 53(1):88–100

    Article  CAS  PubMed  Google Scholar 

  62. Yang H, Mergler S et al (2005) TRPC4 knockdown suppresses epidermal growth factor-induced store-operated channel activation and growth in human corneal epithelial cells. J Biol Chem 280(37):32230–32237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yu P-C, Gu S-Y et al (2010) TRPC1 is essential for in vivo angiogenesis in zebrafish. Circ Res 106(7):1221–1232

    Article  CAS  PubMed  Google Scholar 

  64. Zitt C, Zobel A et al (1996) Cloning and functional expression of a human Ca2+-permeable cation channel activated by calcium store depletion. Neuron 16(6):1189–1196

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shanshan Li or **a Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Li, S., Ding, X. (2017). TRPC Channels and Glioma. In: Wang, Y. (eds) Transient Receptor Potential Canonical Channels and Brain Diseases. Advances in Experimental Medicine and Biology, vol 976. Springer, Dordrecht. https://doi.org/10.1007/978-94-024-1088-4_14

Download citation

Publish with us

Policies and ethics

Navigation