Morphogenesis and Regeneration

  • Chapter
Plant Cell and Tissue Culture

Abstract

All normal living cells within the plant body possess the potential capacity to regenerate the entire organism, i.e. to express their totipotency. This potentiality has been exploited through the culture of protoplasts, cells, tissues and organs in vitro. In cultured material it has been possible to study such processes as cytodifferentiation, and organ and somatic embryo formation. Morphogenesis, or the origin of form, can be examined through manipulation approaches, descriptively, physiologically, biochemically or at the molecular level. In addition to such fundamental studies, the capacity to form organs and embryos de novo can be exploited to regenerate plantlets for clonal propagation. In this chapter the emphasis will be on the manipulation of tissue cultures, i.e. an examination of the factors leading to the regeneration of plantlets in vitro via organogenesis and somatic embryogenesis. In this process, cells and tissues which are mitotically quiescent, or already committed to some function or pathway of development can be (re)directed into organ or embryo formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ammirato, P.V. (1977). Hormonal control of somatic embryo development from cultured caraway. Plant Physiol. 59: 579–586.

    Article  PubMed  CAS  Google Scholar 

  • Ammirato, P.V. (1983). Embryogenesis. In: Handbook of Plant Cell Culture, Vol. 1. D.A. Evans, W.R. Sharp, P.V. Ammirato, and Y. Yamada (eds.), Macmillan, New York, pp. 82123.

    Google Scholar 

  • Ball, E. (1946). Development in sterile culture of stem tip and adjacent regions of Tropaeolum majus L. and of Lupinus majus L. Am. J. Bot. 33: 301–318.

    Google Scholar 

  • Bagni, N. and Biondi, S. (1987). Polyamines. In: Cell and Tissue Culture in Forestry, Vol. 1.

    Google Scholar 

  • J.M. Bonga and D.J. Durzan (eds.), Martinus Nijhoff Publishers, Dordrecht, pp. 113–124.

    Google Scholar 

  • Banks, M.S. (1979). Plant regeneration from callus from two growth phases of English ivy, Hedera helix L. Z. Pflanzenphysiol. 92: 349–353.

    Google Scholar 

  • Bouniols, A. (1974). Néoformation de bourgeons floraux in vitro à partir de fragments de racine d’éndive Cichorium intybus L.: Influence du degré d’hydration des tissus, et ses consequences sur la composition en acides aminés. Plant Sci. Lett. 2: 363–371.

    Google Scholar 

  • Bouniols, A. and Margara, J. (1968). Recherches expérimentales sur la néoformation de bourgeons inflorescentiels ou végétatifs in vitro à partir d’explantats d’Endive (Cichorium intybus L). Ann. Physiol. Veg. 10: 69–81.

    Google Scholar 

  • Brown, D. (1984). The role of stable complexes that repress and activate eucaryotic genes. Cell 37: 359–365.

    Article  PubMed  CAS  Google Scholar 

  • Brown, D.C.W. and Atanassov, A.I. (1985). Role of genetic background in somatic embryogenesis in Medicago. Plant Cell Tissue Org. Cult. 4: 111–122.

    Google Scholar 

  • Brown, D.C.W. and Thorpe, T.A. (1986). Plant regeneration by organogenesis. In: Cell Culture and Somatic Cell Genetics in Plants, Vol. 3. I.K. Vasil (ed.), Academic Press, New York, pp. 49–66.

    Google Scholar 

  • Brown, D.C.W., Leung, D.W.M. and Thorpe, T.A. (1979). Osmotic requirement for shoot formation in tobacco callus. Physiol. Plant. 46: 36–41.

    Google Scholar 

  • Button, J., Kochba, J. and Bornman, C.H. (1974). Fine structure of and embryoid development from embryogenic ovular callus of `Shamouti’ orange (Citrus sinensis Osb.). J. Exp. Bot. 25: 446–457.

    Google Scholar 

  • Chalupa, V. (1987). Temperature. In: Cell and Tissue Culture in Forestry, Vol. 1. J.M. Bonga and D.J. Durzan (eds.), Martinus Nijhoff Publishers, Dordrecht, pp. 142–151.

    Google Scholar 

  • Chandler, S.F. and Thorpe, T.A. (1986). Hormonal regulation of organogenesis in vitro. In: Hormonal Regulation of Plant Growth and Development, Vol. 3. S.S. Purohit (ed.), Agro Botanical Publishers, India, pp. 1–27.

    Google Scholar 

  • Chlyah, H. (1974). Formation and propagation of cell division centres in the epidermal layers of internodal segments of Torenia fournieri grown in vitro. Can. J. Bot. 52: 867–872.

    Google Scholar 

  • Christianson, M.L. (1987). Causal events in morphogenesis. In: Plant Tissue and Cell Culture.

    Google Scholar 

  • C.E. Green, D.A. Somers, W.P. Hackett and D.O. Biesboer (eds.), Alan Liss, New York; pp. 45–55.

    Google Scholar 

  • Chuang, M.-J. and Chang, W.-C. (1987). Somatic embryogenesis and plant regeneration in callus culture derived from immature seeds and mature zygotic embryos of Dysosma pleiantha ( Hance) Woodson. Plant Cell Rep. 6: 484–485.

    Google Scholar 

  • Compton, M.E., Benton, C.M., Gray, D.J. and Songstad, D.D. (1992). Plant recovery from maize somatic embryos subjected to controlled relative humidity dehydration. In vitro Cell. Dev. Biol. 28P: 197–201.

    Google Scholar 

  • Conger, B.V. (ed.) (1981). Principles and Practices of Cloning Agricultural Plants via in vitro Techniques. CRC Press, Boca Raton, Florida, 273 pp.

    Google Scholar 

  • Dalton, C.C. and Street, H.E. (1976). The role of the gas phase in the greening and growth of illuminated cell suspension cultures of spinach (Spinacea oleracea L). In vitro 12: 485–494.

    Article  PubMed  CAS  Google Scholar 

  • Debergh, P.L. and Zimmerman, R.H. (eds.) (1991). Micropropagation. Kluwer Academic Publishers, Dordrecht, 484 pp.

    Google Scholar 

  • Dougall, D.K (1981). Media factors affecting growth. Env. Exptal. Bot. 21: 277–280.

    Google Scholar 

  • Dougall, D.K. and Verma, D.C. (1978). Growth and embryo formation in wild-carrot suspension cultures with ammonium ion as a sole nitrogen source. In vitro 14: 180–182.

    Article  PubMed  CAS  Google Scholar 

  • Dunstan, D.I. (1988). Prospects and progress in conifer biotechnology. Can. J. For. Res. 18: 1497–1506.

    Google Scholar 

  • Earle, E.D. and Torrey, J.G. (1965). Morphogenesis in cell colonies grown from Convolvulus cell suspensions plated on synthetic media. Am. J. Bot. 52: 891–899.

    Google Scholar 

  • Eriksson, T. (1965). Studies on growth requirements and growth measurements of cell cultures of Haplopappus gracilis. Physiol. Plant. 18: 976–993.

    Google Scholar 

  • Evans, D.A., Sharp, W.R. and Flick, C.E. (1981). Growth and behavior of cell cultures. In: Plant Tissue Culture–Methods and Applications in Agriculture. T.A. Thorpe (ed.), Academic Press, New York, pp. 45–113.

    Google Scholar 

  • Feier, R.P., Mignon, G. and Litvay, J.D. (1984). Arginine decarboxylase and polyamines required for embryogenesis in wild carrot. Science 223: 1433–1435.

    Article  Google Scholar 

  • Fry, S.C. (1990). Roles of the primary cell wall in morphogenesis. In: Progress in Plant Cellular and Molecular Biology. H.J.J. Nijkamp, L.H.W. Van Der Plas and J. Van Aartrijk (eds.), Kluwer Academic Publishers, Dordrecht, pp. 504–5123.

    Chapter  Google Scholar 

  • Fujimura, T. and Komamine, A. (1975). Effects of various growth regulators on the embryogenesis in a carrot cell suspension culture. Plant Sci. Lett. 5: 359–364.

    Article  CAS  Google Scholar 

  • Fujimura, T. and Komamine, A. (1979). Involvement of endogenous auxin in somatic embryogenesis in a carrot cell suspension culture. Z. Pflanzenphysiol. 95: 13–19.

    CAS  Google Scholar 

  • Gamborg, O.L., Miller, R.A. and Ojima, K 1968. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 50. 151–158.

    Article  PubMed  CAS  Google Scholar 

  • Gamborg, O.L., Murashige, T., Thorpe, T.A. and Vasil, I.K. (1976). Plant tissue culture media. In vitro 12: 473–478.

    Article  PubMed  CAS  Google Scholar 

  • Gautheret, R.J. (1966). Factors affecting differentiation of plant tissues grown in vitro. In: Cell Differentiation and Morphogenesis. W. Beerman (ed.), North Holland Publishig Co., Amsterdam, pp. 55–71.

    Google Scholar 

  • Halperin, W. (1966). Alternative morphogenetic events in cell suspensions. Am. J. Bot. 53: 443453.

    Google Scholar 

  • Halperin, W. (1986). Attainment and retention of morphogenetic capacity in vitro. In: Cell Culture and Somatic Cell Genetics of Plants, Vol. 3. I.K. Vasil (ed.), Academic Press, New York, pp. 3–47.

    Google Scholar 

  • Halperin, W. and Wetherell, D.F. (1964). Adventive embryony in tissue cultures of the wild carrot, Daucus carota. Am. J. Bot. 51: 274–283.

    Google Scholar 

  • Heller, R. (1953). Recherches sur la nutrition minérale des tissus végétaux cultivés in vitro. Ann. Sci. Natl. Biol. Veg. 14: 1–223.

    Google Scholar 

  • Hicks, G.S. (1980). Patterns of organ development in plant tissue culture and the problem of organ determination. Bot. Rev. 46: 1–23.

    Google Scholar 

  • Hodges, T.K., Kamo, K.K., Imbrie, C.W. and Becwar, M.R. (1986). Genotype specificity of somatic embryogenesis and regeneration in maize. Bio/Tech. 4: 218–223.

    Article  Google Scholar 

  • Hughes, KW. (1981). In vitro ecology: exogenous factors affecting growth and morphogenesis in plant tissue cultures. Env. Exptal. Bot. 21: 281–288.

    Article  CAS  Google Scholar 

  • Huxter, T.J., Reid, D.M. and Thorpe, T.A. (1979). Ethylene production by tobacco (Nicotiana tabacum) callus. Physiol. Plant. 46: 374–380.

    Article  CAS  Google Scholar 

  • Huxter, T.J., Thorpe, T.A. and Reid, D.M. (1981). Shoot initiation in light and dark-grown tobacco callus: The role of ethylene. Physiol. Plant. 53: 319–326.

    Article  CAS  Google Scholar 

  • Jelaska, S. (1974). Embryogenesis and organogenesis in pumpkin explants. Physiol. Plant. 31: 257–261.

    Google Scholar 

  • Kamada, H. and Harada, H. (1979). Studies on organogenesis in carrot tissue culture, II: Effects of amino acids and inorganic nitrogenous compounds on somatic embryogenesis. Z. Pflanzenphysiol. 91: 453–463.

    CAS  Google Scholar 

  • Kamada, H., Saga, H., and Harada, H. (1986). The induction of somatic embryogenesis by osmotic stress in Daucus carota. In D.A. Somers, B.G. Gengenbach, D.D. Biesboer, W.P. Hackett, C.E. Green (eds.), Abstr., VI. Int. Congr. Plant Tissue & Cell Culture. University of Minnesota, Minneapolis, p. 446.

    Google Scholar 

  • Kohlenbach, H.W. (1978). Comparative somatic embryogenesis. In: Frontiers of Plant Tissue Culture 1978. T.A. Thorpe (ed.), University of Calgary Printing Services, Calgary, pp. 5966.

    Google Scholar 

  • Komamine, A., Kawahara, R., Matsumoto, M., Sunabori, S., Toya, T., Fujiwara, A., Tsukahara, M., Smith, J., Ito, M., Fukuda, H., Nomura, K. and Fujimura, T. (1992). Mechanisms of somatic embryogensis in cell cultures: Physiology, biochemistry, and molecular biology. In vitro Cell. Dev. Biol. 28 P: 11–14.

    Google Scholar 

  • Kumar, P.P., Reid, D.M. and Thorpe, T.A. (1987). The role of ethylene and carbon dioxide in differentiation of shoot buds in excised cotyledons of Pinus radiata in vitro. Physiol. Plant. 69: 244–252.

    Google Scholar 

  • Lance, B., Reid, D.M. and Thorpe, T.A. (1976). Endogenous gibberelins and growth of tobacco callus cultures. Physiol. Plant. 36: 287–292.

    Google Scholar 

  • Levin, R., Gaba, V., Tal., B., Hirsch, S., DeNola, D. and Vasil, I.K. (1988). Automated plant tissue culture for mass propagation. Bio/Tech. 6: 1035–1040.

    Google Scholar 

  • Litz, R.E. (1986). Effect of osmotic stress on somatic embryogenesis in Carica papaya suspension cultures. J. Am. Soc. Hort. Sci. 111: 969–972.

    Google Scholar 

  • Lu, C.-Y., Vasil, V. and Vasil, I.K. (1983). Improved efficiency of somatic embryogenesis and plant regeneration in tissue cultures of maize (Zea mays L.). Theor. Appl. Genet. 66: 285289.

    Google Scholar 

  • Margara, J. and Bouniois, A. (1967). Comparison in vitro de l’influence due milieu liquide ou gélosé, sur l’initiation florale chez Cichoium intybus L. C.R. Acad. Sci., Sér. D. 264: 1166–1168.

    Google Scholar 

  • Martin, S.M., Rose, D. and Hui, V. (1977). Growth of plant cell suspension cultures with ammonium as the sole source of nitrogen. Can. J. Bot. 55: 2838–2843.

    Google Scholar 

  • Merkle, S.A., Parrott, W.A. and Williams, E.G. (1990). Applications of somatic embryogenesis and embryo cloning. In: Plant Tissue Culture: Applications and Limitations. S.S. Bhojwani (ed.), Elsevier, Amsterdam, pp. 67–101.

    Google Scholar 

  • Minotha, S.C. (1987). PH of the medium and the growth and metabolism of cells in culture. In Cell and Tissue Culture in Forestry, Vol. 1. J.M. Bonga and D.J. Durzan (eds.), Martinus Nijhoff Publishers,FDordrecht, pp. 125–141.

    Google Scholar 

  • Montague, M.J. Koppenbrink, J.W. and Jaworski, E.G. (1978). Polyamine metabolism in embryogenic cells of Daucus carota, I: Changes in intracellular content and rates of synthesis. Plant Physiol. 62: 430–433.

    Google Scholar 

  • Montague, M.J., Armstrong, T.A. and Jaworski, E.G. (1979). Polyamine metabolism in embryogenic cells otDaucus carota, II: Changes in arginine decarboxylase activity. Plant Physiol. 63: 341–345.

    Google Scholar 

  • Morel, G.M. (1960). Producing virus-free Cymbidium. Am. Orchid Soc. Bull 29: 495–497.

    Google Scholar 

  • Morel, G.M. (1964). Tissue culture - A new means of clonal; propagation of orchids. Am. Orchid Soc. Bull. 33: 473–478.

    Google Scholar 

  • Mullins, M.G. anllSrinivasan, C. (1976). Somatic embryos and-piantlets from an ancient clone of the grapevine (cv.Cnbernet-Sauvignon) by apomixis in vitro. J. Exp. Bot. 27: 1022–1030.

    Google Scholar 

  • Murashige, T. (1974). Plant propagation through tissue culture. Annu. Rev. Plant Physiol. 25: 135–166.

    Google Scholar 

  • Murashige, T. (1978). The impact of plant tissue culture on agriculture. In: Frontiers of Plant Tissue Culture 1978. T.A. Thorpe (ed.), University of Calgary, Printing Services, Calgary, pp. 15–26, 518–524.

    Google Scholar 

  • Murashige, T. (1979). Principles of rapid propagation. In: Propagation of Higher:Plants Through Tissue Culture: A:Bridge Between Research and Application. K.W. Hughes, R. Henke, and M. Constantin (eds.), Conf. 780411. US Tech. Inf. Center, DOE, Springfield, VA, pp. 1424.

    Google Scholar 

  • Murashige, T. (1990). Plant propagation by tissue culture: Practice with unrealized potential. In: Handbook of Plant Cell Culture, Vol. 5. P.V. Ammirato, D.A. Evans, W.R. Sharp and Y.P.S. Bajaj (eds.), McGraw-Hill, New York, pp. 3–9.

    Google Scholar 

  • Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

    Google Scholar 

  • Nadar, H.M., Soepraptoto, S., Heinz, D.J. and Ladd, S.L. (1978). Fine structure of sugarcane (Saecharum sp.) callus and the role of auxin in embryogenesis. Crop Sci. 18: 210–216.

    Article  CAS  Google Scholar 

  • Nobteourt,:P. (1939). Sur les radicelles naissant des cultures de tissus du tubercule de carotte. CR. Seances Soc. Biol. Ses Fil. 130:1271–1272.

    Google Scholar 

  • Nomura, K and Komamine, A. (1985). Identification and isolation of single cells that produce somatic embryos at a high frequency in a carrot suspension culture. Plant Physiol. 79: 988–991.

    Article  PubMed  CAS  Google Scholar 

  • Nomura, K., Komamine, A. (1986). Somatic embryogenesis in carrot cells. Dev. Growth Differ. 28: 511–517.

    Google Scholar 

  • Norris, R., Smith, R.H. and Vaughn, KC. (1983). Plant chimeras used to estâbliSh de novo origin of shoots. Science 220: 75–76.

    Article  PubMed  CAS  Google Scholar 

  • Patel, K.R. and Thorpe, T.A. (1984). In vitro differentiation of plantlets from embryonic explants of lodgepole pine (Pinus contorta Dougl. ex Loud). Plant Cell Tissue Org. Cult. 3: 31–142.

    Google Scholar 

  • Reinert, J. (1958). Morphogenese und ihre Kontrolle an Gewebekulturen aus Karotten. Naturwissenschaften 45: 344–345.

    Article  CAS  Google Scholar 

  • Righetti, B. and Facini, O. (1992). Headspace gas composition in four Prunus avium cultivars with differing photosynthetic capabilities. In vitro Cell. Dev. Biol. 28P: 179–182.

    Google Scholar 

  • Roberts, D.R., Sutton, B.C.S. and Flinn, B.S. (1990). Synchronous and high frequency germination of interior spruce somatic embryos following partial drying at high relative humidity. Can. J. Bot. 68-: 1086–1090.

    Google Scholar 

  • Rumary, C. and Thorpe, T.A. (1984). Plantlet formation in black and white spruce, I: In vitro techniques. Can. J. For. Res. 14: 10–16.

    Google Scholar 

  • Schell, J., Van Montague, M., Holsters, M., Hernalsteens, J.P., Dhaese, P., De Greve, H., Leemans, J. Joos, H., Inzel, D., Willmitzer, L., Otten, L., Wostemeyer, A. and Schroeder, (1982). Plant cells transformed by modified Ti plasmids: A model system to study plant development. In: Biochemistry of Differentiation and Morphogenesis. L. Jaenicke (ed.), Springer-Verlag, Berlin, pp. 65–73.

    Chapter  Google Scholar 

  • Schenk, R.U. and Hildebrandt, A.C. (1972). Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can. J. Bot. 50.: 199–204.

    Google Scholar 

  • Shang, X.M., Huang, J.Y., Haigler, C.H. and Trolinder, N.L. (1991). Buffer capacity of cotton cells and effects of extracellular pH on growth and somatic embryogenesis in cotton cell suspensions. In vitro Cell. Dev. Biol. 27P: 147–152.

    Google Scholar 

  • Sharp, W.R., Sondhal, M.R., Caldas, L.S. and Maraffa, S.B. (1980). The physiology of in vitro asexual embryogenesis. Hortic. Rev. 2: 268–310.

    Google Scholar 

  • Skoog, F. (1944). Growth and organ formation in tobacco tissue cultures. Am. J. Bot. 31: 1924.

    Google Scholar 

  • Skoog, F. and Miller, C.O. (1957). Chemical regulation of growth and organ formation in plant tissues cultured in vitro. Symp. Soc. Exp. Biol. 11: 118–131.

    Google Scholar 

  • Smith, D.L. and Krikorian, A.D. (1989). Release of somatic embryogenic potential from excised zygotic embryos of carrot and maintenance of proembryonic cultures in hormone-free medium. Am. J. Bot. 76: 1832–1843.

    Google Scholar 

  • Smith, D.L. and Krikorian, A.D. (1990). Somatic proembryo production from excised, wounded zygotic carrot embryos on hormone-free medium: Evaluation of the effects of pH, ethylene and activated charcoal. Plant Cell. Rep. 9: 34–37.

    Google Scholar 

  • Smith, D.R. and Thorpe, T.A. (1975). Root initiation in cuttings of Pinus radiata seedlings, I: Developmental sequence. J. Exp. Bot. 26: 184–192.

    Google Scholar 

  • Steward, F.C., Mapes, M.O. and Mears, K. (1958). Growth and organized development of cultured cells, II: Orgânization in cultures growth from freely suspended cells. Am. J. Bot. 45: 705–708.

    Google Scholar 

  • Street, H.E. (1969). Growth in organized and unorganized systems–knowledge gained by culture of organs and tissue explants. In: Plant Physiology, Vol. 513. F.C. Steward (ed.), Academic Press, New York, pp. 3–224.

    Google Scholar 

  • Street, H.E. (1976). Cell cultures: a tool in plant biology. In: Cell Genetics in Higher Plants. D. Dudits, G.L. Farkas and P. Maliga (eds.), Akademiai Kiado, Budapest, pp. 7–38.

    Google Scholar 

  • Sung, Z.R., Smith, R., and Horowitz, J. (1979). Quantitative studies of embryogenesis in normal and 5-methyltryptophan-resistant cell lines of wild carrot-effects of growth regulators. Planta 147: 236–240.

    Article  CAS  Google Scholar 

  • Terzi, M. and Loschiaivo, F. (1990). Somatic embryogenesis In: Plant Tissue Culture: Applications and Limitations. S.S. Bhojwani (ed.), Elsevier, Amsterdam, pp. 54–66.

    Book  Google Scholar 

  • Thomas, D.C. and Murashige, T. (1979a). Volatile emissions of plant tissue cultures, I: Identification of the major components. In vitro 15: 654–658.

    Article  CAS  Google Scholar 

  • Thomas, D.S. and Murashige, T. (1979b). Volatile emissions of plant tissue cultures, II: Effects of the auxin 2,4-D on production of volatiles in callus cultures. In vitro 15: 659–663.

    Article  CAS  Google Scholar 

  • Thorpe, T.A. (1980). Organogenesis in vitro: Structural, physiological and biochemical aspects. Int. Rev. Cytol. Suppl. 11A: 71–111.

    Google Scholar 

  • Thorpe, T.A. (1982). Callus organization and de novo formation of shoots, roots and embryos in vitro. In: Techniques and Applications of Plant Cell and Tissue Culture to Agriculture and Industry. D.T. Tomes, B.E. Ellis, P.M. Harney, K.J. Kasha, and •R.L. Peterson (eds.), University of Guelph, Ontario, pp. 115–138.

    Google Scholar 

  • Thorpe, T.A. (1988a). In vitro somatic embryogenesis. ISI Atlas of Science - Animal and Plant Sciences 1:81–88.

    Google Scholar 

  • Thorpe, T.A. (1988b). Physiology of bud induction in conifers in vitro. In: Genetic Manipulation of Woody Plants. J.W. Hanover and D.E. Keathley (eds.), Plenum Press, New York, pp. 167–184.

    Chapter  Google Scholar 

  • Thorpe, T.A. (1993). In vitro organogenesis and somatic embryogenesis: Physiological and biochemical aspects. In: Markers of Plant Morphogenesis. K.A. Roubelakis-Angelakis and K. Tran Thanh Van (eds.), Plenum Press, New York, in press.

    Google Scholar 

  • Thorpe, T.A., Harry, I.S. and Kumar, P.P. (1991). Application of micropropagation to forestry. In: Micropropagation. P.C. Debergh and R.H. Zimmerman (eds.), Kluwer Academic Publishers, Dordrecht, pp. 311–336.

    Chapter  Google Scholar 

  • Tisserat, B., Esan, E.B. and Murashige, T. (1979). Somatic embryogenesis in angiosperms. Hortic. Rev. 1: 1–78.

    Google Scholar 

  • Torrey, J.G. (1966). The initiation of organized development in plants. Adv. Morphogen. 5: 3991.

    Google Scholar 

  • Torrey, J.G. and Reinert, J. (1961). Suspension cultures of higher plant cells in synthetic medium. Plant Physiol. 36: 483–491.

    Article  PubMed  CAS  Google Scholar 

  • Torrigiani, P., Altamura, M.M., Capitani, F., Serafini-Fracassini, D. and Bagni, N. (1989). De novo root formation in thin layers of tobacco: Changes in free and bound polyamines. Physiol. Plant. 77: 294–301.

    Article  CAS  Google Scholar 

  • Torrigiani, P., Altamura, M.M., Pasqua, G., Monacelli, B., Serafini-Fracassini, D. and Bagni, N. (1987). Free and conjugated polyamines during de novo floral and vegetative bud formation in thin cell layers of tobacco. Physiol. Plant. 70: 453–460.

    Google Scholar 

  • Tran Thanh Van, K. (1980). Control of morphogenesis by inherent and exogenously applied factors in thin cell layers. Int. Rev. Cytol. Suppl. 11A: 175–194.

    Google Scholar 

  • Tran Thanh Van, K. (1981). Control of morphogenesis in in vitro cultures. Annu. Rev. Plant Physiol. 32: 291–311.

    Google Scholar 

  • Tran Thanh Van, K and Trinh, H. (1978). Morphogenesis in thin cell layers: Concept, methodology and results. In: Frontiers of Plant Tissue Culture 1978. T.A. Thorpe (ed.), University of Calgary, Printing Services, Calgary, pp. 37–48.

    Google Scholar 

  • Tran Thanh Van, K. and Trinh, T.H. (1990). Organogenic differentiation. In: Plant Tissue Culture: Applications and Limitations. S.S. Bhojwanil (ed.), Elsevier, Amsterdam, pp. 3453.

    Google Scholar 

  • Tran Thanh Van, K., Toubart, P., Cousson, A., Darvill, A.J., Gollin, D.G., Chelf, P. and Albersheim, P. (1985). Manipulation of morphogenetic pathways of tobacco explants by oligosaccharins. Nature 314: 615–617.

    Article  Google Scholar 

  • Vasil, I.K. (ed.) (1991). Cell Culture and Somatic Cell Genetics of Plants, Vol. 8. Scale-up and Automation in Plant Propagation. Academic Press, San Diego.

    Google Scholar 

  • Vasil, I.K and Vasil, V. (1980). Clonal propagation. Int. Rev. Cytol. Suppl. 11A: 145–173.

    Google Scholar 

  • Vasil, I.K. and Vasil, V. (1986). Regeneration in cereal and other grass species. In: Cell Culture and Somatic Cell Genetics of Plants, Vol. 3. I.K. Vasil (ed.), Academic Press, New York, pp. 121–150.

    Google Scholar 

  • Villalobos, V.M., Leung, D.W.M. and Thorpe, T.A. (1984). Light-cytokinin interaction in shoot formation in cultured cotyledon expiants of radiata pine. Physiol. Plant. 61: 497–504.

    Article  CAS  Google Scholar 

  • Walker, K.A., Yu, P.C., Sato, S.J. and Jaworski, E.G. (1978). The hormonal control of organ formation in callus of Medicago sativa L. cultured in vitro. Am. J. Bot. 65: 654–659.

    Article  CAS  Google Scholar 

  • Wetherell, D.F. (1979). In vitro embryoid formation in cells derived from somatic plant tissues.

    Google Scholar 

  • In: Propagation of Higher Plants Through Tissue Culture - A Bridge Between Research and Application. K.W. Hughes, R. Henke and M. Constantin (eds.), Conf. - 780411 U.S. Tech. Inf. Center, DOE, Springfield, VA, pp. 102–124.

    Google Scholar 

  • Wetherell, D.F. (1984). Enhanced adventive embryogenesis resulting from plasmolysis of cultured wild carrot cells. Plant Cell Tissue Org. Cult. 3: 221–227.

    Article  Google Scholar 

  • Wetherell, D.F. and Dougall, D.K. (1976). Sources of nitrogen supporting growth and embryogenesis in cultured wild carrot tissue. Physiol. Plant. 37: 37–103.

    Article  Google Scholar 

  • White, P.R. (1939). Controlled differentiation in a plant tissue culture. Bull. Torrey Bot. Club 66: 507–513.

    Article  Google Scholar 

  • White, P.R. (1943). Nutrient deficiency studies and an improved inorganic nutrient for cultivation of excised tomato roots. Growth 7: 53–65.

    CAS  Google Scholar 

  • Williams, E.G. and Maheswaran, G. (1986). Somatic embryogenesis: Factors influencing coordinated behaviour of cells as an embryogenic group. Ann. Bot. 57: 443–462.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Thorpe, T.A. (1994). Morphogenesis and Regeneration. In: Vasil, I.K., Thorpe, T.A. (eds) Plant Cell and Tissue Culture. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2681-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2681-8_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4327-6

  • Online ISBN: 978-94-017-2681-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation