Ethylene in Plant Growth, Development, and Senescence

  • Chapter
Plant Hormones

Abstract

Amongst hormones in both plant and animal kingdoms, ethylene, a gaseous hydrocarbon, is unique. Despite its chemical simplicity, it is a potent growth regulator, affecting the growth, differentiation, and senescence of plants, in concentrations as little as 0.01 μ1/1. As recently as twenty-five years ago, plant physiologists were divided as to whether this gas, which had been shown to have a range of striking effects on plant tissues, could properly be called a hormone. Since then, the advent of gas chromatographic means of detecting and measuring ethylene, the elucidation of its biosynthetic pathway, and the discovery of potent regulators of its production and action, have provided powerful tools for physiologists to explore the role of ethylene in plant growth and development. Ethylene is now considered to be one of the important natural plant growth regulators, and the literature abounds with reports of its effects on almost every phase of the life of plants. Although the majority of studies have concentrated on particular processes, particularly fruit ripening, flower senescence, and abscission, many other reported responses of plants to ethylene may be important parts of normal growth and development. The proceedings of several symposia (7, 51) and a number of reviews (1, 18, 66) provide an excellent background in the subject; the pathway of ethylene biosynthesis and molecular aspects of the role of ethylene in fruit ripening are discussed in Chapters B4 and E4 respectively. The aim of this chapter is briefly to review present understanding of the role of ethylene in plant growth and development, highlighting effects of this gas that have received less attention in previous reviews.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abeles, F.B., Morgan, P.W., Saltveit, M.E. (1992) Ethylene in Plant Biology, 2nd Ed. Academic Press, New York.

    Google Scholar 

  2. Baker, J.E., Wang, C.Y., Lieberman, M., Hardenburg, R.E. (1977) Delay of senescence in carnations by a rhizobitoxine analog and sodium benzoate. HortScience 12, 38–39.

    CAS  Google Scholar 

  3. Becker, W., Apel, K. (1993) Differences in gene expression between natural and artificially induced leaf senescence. Planta, 189,74–79.

    Article  CAS  Google Scholar 

  4. Beyer, E.M.Jr. (1976) A potent inhibitor of ethylene action in plants. Plant Physiol. 58, 268–271.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Biale, J.B., Young, R.E. (1981) Respiration and ripening in fruits--retrospect and prospect. In: Recent Advances in the Biochemistry of Fruits and Vegetables, pp. 1–39, Friend, J., Rhodes, M.J.C., eds. Academic Press, London.

    Google Scholar 

  6. Biro, R.L., Jaffe, M.J. (1984) Thigmomorphogenesis: Ethylene evolution and its role in the changes observed in mechanically perturbed bean plants. Plant Physiol. 62, 289–296.

    Article  CAS  Google Scholar 

  7. Blanpied, G.D. (1985) Ethylene in postharvest biology and technology of horticultural crops. Symposium of the American Society for Horticultural Science. HortScience 20, 40–60

    Google Scholar 

  8. Bleecker, A.B., Estelle, M.A., Somerville, C., Kende, H. (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241, 1086–1089.

    Article  CAS  PubMed  Google Scholar 

  9. Bradford, K.J., Yang, S.F. (1980) Xylem transport of 1-aminocyclopropane-1-carboxylic acid, an ethylene precursor, in waterlogged tomato plants. Plant Physiol. 65, 322–326.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Bufler, G., Mor, Y., Reid, M.S., Yang, S.F. (1980) Changes in the 1-aminocyclopropane1-carboxylic acid content of cut carnation flowers in relation to their senescence. Planta 150, 439–442.

    Article  CAS  PubMed  Google Scholar 

  11. Burg, S.P., Burg, E.A. (1967) Molecular requirements for the biological activity of ethylene. Plant Physiol. 42, 144–152.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Cameron, A.C., Reid, M.S. (1983) The use of silver thiosulfate to prevent flower abscission from potted plants. Scientia Hortic. 19, 373–378.

    Article  CAS  Google Scholar 

  13. Camprubi, P., Nichols, R. (1979) Ethylene-induced growth of petals and styles in the immature carnation inflorescence. J. Hort. Sci. 54, 225–258.

    CAS  Google Scholar 

  14. Chandler, W.H. (1950) Evergreen Orchards. Lea & Febiger, Philadelphia. 452 pp.

    Google Scholar 

  15. Chang, C., Kwok, S.F., Bleecker, A.B., Meyerowitz, E.M. (1993) Arabidopsis ethylene-response gene ETRI: Similarity of product to two-component regulators. Science 262,539–544.

    Article  CAS  PubMed  Google Scholar 

  16. De Candolle, A.P. (1832) Physiologie Vegetale, ou Exposition des Forces et des Fonctions Vitales des Vegetaux. Bechet Jeune, Paris. Vol. 2, 517.

    Google Scholar 

  17. De Munk, W.J. (1975) Ethylene disorders in bulbous crops during storage and glasshouse cultivation. Acta Hort 51, 321–335.

    Google Scholar 

  18. Eisinger, W. (1983) Regulation of pea internode expansion by ethylene. Ann. Rev. Plant Physiol. 34, 225–240.

    Article  CAS  Google Scholar 

  19. Fu**o, D.W., Reid, M.S., Yang, S.F. (1981) Effects of aminooxyacetic acid on postharvest characteristics of carnation. Acta Hortic. 113, 59–64.

    Google Scholar 

  20. Goeschl, J.D., Rappaport, L., Pratt, H.K. (1966) Ethylene as a factor regulating the growth of pea epicotyls subjected to physical stress. Plant Physiol. 41, 877–884.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Halevy, A. H., Mayak, S. (1979) Senescence and postharvest physiology of cut flowers, Part I. In: Horticultural Reviews, Vol. 1, pp. 204–36, Janick, J., ed. AVI, Westport.

    Google Scholar 

  22. Han, S.S., Halevy, A.H., Sachs, R.M., Reid, M.S. (1990) Enhancement of growth and flowering of Triteleia laxa by ethylene. J. Am. Soc. Hortic. Sci. 115, 482–486.

    CAS  Google Scholar 

  23. Hiraki, K., Ota, Y. (1975) The relationship between growth inhibition and ethylene production by mechanical stimulation in Lilium longiflorum. Plant Cell Physiol. 16, 185–89.

    CAS  Google Scholar 

  24. Hoekstra, F.A., Weges, R. (1986) Lack of control by early pistillate ethylene of the accelerated wilting of Petunia hybrida flowers. Plant Physiol. 80, 403–408.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Huelin, F.E., Barker, J. (1939) The effect of ethylene on the respiration and carbohydrate metabolism of potatoes. New Phytol. 38, 85–104.

    Article  CAS  Google Scholar 

  26. Imanishi, H., Halevy, A.H., Kofranek, A.M., Han, S., Reid, M.S. (1993). Respiratory and carbohydrate changes during ethylene-mediated flower induction in iris. Scientia Hortic. In Press.

    Google Scholar 

  27. Imanishi, H., Fortanier, E.J. (1982/83) Effects of exposing Freesia corms to ethylene or to smoke on dormancy-breaking and flowering. Scientia Hortic. 18, 381–389.

    Article  Google Scholar 

  28. Jackson, M.B. (1985) Ethylene and responses of plants to soil waterlogging and submergence. Ann. Rev. Plant Physiol. 36, 145–174.

    Article  CAS  Google Scholar 

  29. Jackson, M.B. (1979) Is the diageotropica tomato ethylene deficient? Physiol. Plant. 46, 347–351.

    Article  CAS  Google Scholar 

  30. Jackson, M.B., Morrow, I.B., Osborne, D.J. (1972) Abscission and dehiscence in the squirting cucumber (Ecballium elaterium). Can. J. Bot. 50, 1465–1471.

    Article  CAS  Google Scholar 

  31. Kende, H., Acaster, M.A., Jones, J.F., Metraux, J.P. (1982) On the mode of action of ethylene. In:Plant Growth Substances, 1982, pp. 269–277, Warding, P.F., ed. Academic Press, London.

    Google Scholar 

  32. Ketring, D.L. (1977) Ethylene and seed germination. In:The Physiology and Biochemistry of Seed Dormancy and Germination, pp. 157–178, Khan, ed. Elsevier, Amsterdam.

    Google Scholar 

  33. Koning, R.E. (1983) The roles of auxin, ethylene, and acid growth in filament elongation in Gaillardia grandiflora (Asteraceae). Amer. J. Bot. 70, 602–610.

    Article  CAS  Google Scholar 

  34. Koshland, D.E. Jr. (1993) The two-component pathway comes to eukaryotes. Science 262, 532.

    Article  PubMed  Google Scholar 

  35. Lawton, K.A., Huang, B., Goldsbrough, P.B., Woodson, W.R., (1989) Molecular cloning and characterization of senescence-related genes from carnation flower petals. Plant Physiol. 90, 690–696.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Lawton, K.A., Raghothama, K.G., Goldsbrough, P.B., Woodson, W.R. (1990) Regulation of senescence-related gene expression in carnation flowers petals by ethylene. Plant Physiol. 93, 1370–1375.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Lay-Yee, M., Sachs, R.M., Reid, M.S. (1987) Changes in cotyledon mRNA during ethylene inhibition of floral induction in Pharbitis nil strain violet. Plant Physiol. 84, 545–548.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Meyer, R.C., Goldsbrough, P.B., Woodson, W.R. (1991) An ethylene-responsive flower senescence-related gene from carnation encodes a protein homologous to glutathione stransferases. Plant Mol. Biol. 17, 277–281.

    Article  CAS  PubMed  Google Scholar 

  39. Mor, Y., Halevy, A.H., Spiegelstein, H., Mayak, S. (1985) The site of 1aminocyclopropane- 1-carboxylic acid synthesis in senescing carnation petals. Physiol. Plant. 65, 196–202.

    Article  CAS  Google Scholar 

  40. Neel, P.L., Harris, R.W. (1971) Factors influencing tree trunk growth. Arborist’s News 36, 115–138.

    Google Scholar 

  41. Neljubov, D. (1901) Ueber die horizontale Nutation der Stengel von Pisum sativum and einiger anderen Pflanzen. Beih. Bot. Centralbl. 10, 128–139.

    Google Scholar 

  42. Nichols, R., Buffer, G., Mor, Y., Fu**o, D.W., Reid, M.S. (1983) Changes in ethylene production and 1-aminocyclopropane-1-carboxylic acid content of pollinated carnation flowers. J. Plant Growth Regul. 2, 1–8.

    Article  CAS  Google Scholar 

  43. O’Neill, S.D., Hadeau, J.A., Zhang, X.S., Bui, A.Q., Halevy, A.H. (1993). Interorgan regulation of ethylene biosynthetic genes by pollination. The Plant Cell 5,419–432.

    PubMed Central  PubMed  Google Scholar 

  44. Osborne, D.J. (1983) XXX News Bulletin of the British Plant Growth Regulator Group 6, 8–11.

    Google Scholar 

  45. Reid, M.S. (1985) Ethylene and abscission. HortScience 20, 45–50.

    CAS  Google Scholar 

  46. Reid, M.S., Evans, R.Y., Dodge, L.L. (1989) Ethylene and silver thiosulfate influence opening of cut rose flowers. J. Amer. Soc. Hortic. Sci. 114,436–440.

    CAS  Google Scholar 

  47. Reid, M.S., Fu**o, D.W., Hoffman, N.E., Whitehead, C.S. (1984)1-Aminocyclopropane1-carboxylic acid (ACC) - The transmitted stimulus in pollinated flowers? J. Plant Growth Regul. 3, 189–196.

    Article  CAS  Google Scholar 

  48. Reid, M.S., Paul, J.L., Farhoomand, M.B., Kofranek, A.M., Staby, G.L. (1980) Pulse treatments with the silver thiosulfate complex extend the vase life of cut carnations. J. Amer. Soc. Hortic. Sci. 105, 25–27.

    CAS  Google Scholar 

  49. Reid, M.S., Paul, J.L., Young, R.E. (1980) Effects of ethephon and betacyanin leakage from beet root discs. Plant Physiol. 66, 1015–1016.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Robbins, J., Reid, M.S., Rost, T., Paul, J.L. (1985) The effect of ethylene in adventitious root formation of Mung bean (Vigna radiata) cuttings. J. Plant Growth Regul. 4, 147–157.

    Article  CAS  Google Scholar 

  51. Roberts, J.A., Tucker, G.A. (1985) Ethylene and Plant Development. Butterworths, London. 416 pp.

    Google Scholar 

  52. Rylski, I., Rappaport, L., Pratt, H.K. (1974) Dual effects of ethylene on potato dormancy and sprout growth. Plant Physiol. 53, 658–662.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Sexton, R., Lewis, L.N., Trewavas, A.K., Kelly, P. (1985) Ethylene and abscission. In: Ethylene and Plant Development, pp. 173–96, Roberts, J.A., Tucker, G.A., eds. Butterworths, London.

    Chapter  Google Scholar 

  54. Sisler, E.C., Blankenship, S.M. (1993) Diazocyclopentadiene, a light sensitive reagent for the ethylene receptor. Plant Growth Reg. 12,125–132.

    Article  CAS  Google Scholar 

  55. Sisler, E.C., Yang, S.F. (1984) Ethylene, the gaseous plant hormone. BioSci. 34, 234–238.

    Article  CAS  Google Scholar 

  56. Suge, H. (1972) Inhibition of photoperiodic floral induction in Pharbitis nil by ethylene. Plant Cell Physiol. 13, 1031–1038.

    CAS  Google Scholar 

  57. Taylorson, R.B. (1979) Response of weed seeds to ethylene and related hydrocarbons. Weed Sci. 27, 7–10.

    CAS  Google Scholar 

  58. Veen, H. (1983) Silver thiosulphate: an experimental tool in plant science. Scientia Hort 20, 211–224.

    Article  CAS  Google Scholar 

  59. Wang, H., Woodson, W.R. (1991) A flower senescence-related mRNA from carnation shares sequence similarity with fruit ripening-related mRNAs involved in ethylene biosynthesis. Plant Physiol. 96, 1000–1001.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Whitehead, C.S., Fu**o, D.W., Reid, M.S. (1983) The roles of pollen ACC and pollen tube growth in ethylene production by carnations. Acta Hortic. 141, 229–234.

    Google Scholar 

  61. Whitehead, C.S., Fu**o, D.W., Reid, M.S. (1983) Identification of the ethylene precursor,1-aminocyclopropane-l-carboxylic acid (ACC) in pollen. Scientia Hortic. 21, 291–297.

    Article  CAS  Google Scholar 

  62. Whitehead, C.S., Halevy, A.H., Reid, M.S. (1984) Roles of ethylene and 1- aminocyclopropane- 1 -carboxylic acid in pollination and wound-induced senescence of Petunia hybrida flowers. Physiol. Plant. 61, 643–648.

    CAS  Google Scholar 

  63. Woltering E. J. (1990) Interrelationship between the different flower parts during emasculation-induced senescence in cymbidium flowers. J. Exp. Bot. 41, 1021–1029.

    Article  CAS  Google Scholar 

  64. Woltering E.J., van Doom, W.G. (1988) Role of ethylene in the senescence of petals - Morphological and taxonomical relationships. J. Exp. Bot. 39, 1605–1616.

    Article  CAS  Google Scholar 

  65. Woodson, W.R., Lawton, K.A. (1988) Ethylene-induced gene expression in carnation petals. Plant Physiol. 87, 498–503.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Wu, M.J., van Doom W.G., Reid M.S. (1991) Variation in the senescence of carnation (Dianthus caryophyllus L.) cultivars. 1. Comparison of flower life, respiration and ethylene biosynthesis. Scientia Hortic. 48, 99–107.

    Article  CAS  Google Scholar 

  67. Yang, S.F. (1985) Biosynthesis and action of ethylene. HortScience 20, 41–45.

    CAS  Google Scholar 

  68. Yang, S.F., Hoffman, N.E. (1984) Ethylene biosynthesis and its regulation in higher plants. Ann. Rev. Plant Physiol. 35, 155–189.

    Article  CAS  Google Scholar 

  69. Zacarias, L., Reid, M. (1992) Inhibition of ethylene action prevents root penetration through compressed media in tomato (Lyeopersiconesculentum) seedlings. Physiol. Plant. 86,301–307.

    CAS  Google Scholar 

  70. Zacarias, L., Reid, M.S. (1990) Role of growth regulators in the senescence of Arabidopsis thaliana leaves. Physiol. Plant. 80,549–554.

    CAS  Google Scholar 

  71. Zobel, R.W. (1973) Some physiological characteristics of the ethylene-requiring tomato mutant diageotropica. Plant Physiol. 52, 385–389.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Reid, M.S. (1995). Ethylene in Plant Growth, Development, and Senescence. In: Davies, P.J. (eds) Plant Hormones. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0473-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0473-9_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-2985-5

  • Online ISBN: 978-94-011-0473-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation