Interplay Between Environmental Signals and Endogenous Salicylic Acid Concentration

  • Chapter
  • First Online:
SALICYLIC ACID

Abstract

Salicylic acid (SA), a naturally occurring plant hormone, is primarily associated with the induction or activation of defence mechanism responses by higher plants when they are attacked by pathogens. Attack of these plants by pathogens rapidly triggers changes in a wide range of the plant’s metabolic pathways which in turn are followed by modifications in the plant’s growth and development. There are a number of references in the recent literature where SA was applied to plants that are being subjected to changes in environmental signaling without the involvement of pathogens. In these examples, SA appears to be functioning as a hormone. Significant changes (usually positive) in shoot growth and photosynthesis occur when SA is applied at low concentrations to plants subjected to environmental stresses. In this review we focused on the interplay between changes in endogenous SA concentrations and key environmental signals, i.e. light intensity and quality, temperature, soil water availability and carbon dioxide levels. In doing so, we evaluated the concept that endogenous SA functions as an important signaling hormone in the plant’s growth response to a changing environment, even in the absence of pathogen attack.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abass, M., & Rajashekar, C. B. (1993). Abscisic acid accumulation in leaves and cultured cells during heat acclimation in grapes. HortScience, 28, 50–52.

    CAS  Google Scholar 

  • Abreu, M. E., & Munne-Bosch, S. (2008). Salicylic acid may be involved in the regulation of drought-induced leaf senescence in perennials: A case study in field-grown Salvia officinalis L. plants. Environmental and Experimental Botany, 64, 105–112.

    Article  CAS  Google Scholar 

  • Assmann, S. M. (2010). Abscisic acid signal transduction in stomatal responses. In P. J. Davies (Ed.), Plant hormones: Biosynthesis, signal transduction and action! (3rd ed., pp. 399–426). Dordrecht, Heidelberg: Springer.

    Google Scholar 

  • Bandurska, H., & Stroinski, A. (2005). The effect of salicylic acid on barley response to water deficit. Acta Physiologiae Plantarum, 27, 379–386.

    Article  CAS  Google Scholar 

  • Bechtold, U., Lawson, T., Mejia-Carranza, J., Meyer, R. C., Brown, I. R., Altmann, T., et al. (2010). Constitutive salicylic acid defences do not compromise seed yield, drought tolerance and water productivity in the Arabidopsis accession C24. Plant, Cell and Environment, 33, 1959–1973.

    Article  PubMed  CAS  Google Scholar 

  • Bowling, S. A., Guo, A., Cao, H., Gordon, A. S., Klessig, D. F., & Dong, X. (1994). A mutation in Arabidopsis that leads to constitutive expression of systemic acquired resistance. Plant Cell, 6, 1845–1857.

    PubMed  CAS  Google Scholar 

  • Bowling, S. A., Clarke, J. D., Liu, Y., Klessig, D. F., & Dong, X. (1997). The cpr5 mutant of Arabidopsis expresses both NPR1-dependent and NPR1-independent resistance. Plant Cell, 9, 1573–1584.

    PubMed  CAS  Google Scholar 

  • Catinot, J., Buchala, A., Abou-Mansour, E., & Metraux, J.-P. (2008). Salicylic acid production in response to biotic and abiotic stress depends on isochorismate in Nicotiana benthamiana. FEBS Letters, 582, 473–478.

    Article  PubMed  CAS  Google Scholar 

  • Chandler, P. M., & Robertson, M. (1994). Gene expression regulated by abscisic acid and its relation to stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology, 45, 113–141.

    Article  CAS  Google Scholar 

  • Chen, Z., Silva, H., & Klessig, D. F. (1993). Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science, 262, 1883–1886.

    Article  PubMed  CAS  Google Scholar 

  • Chen, Z. Q., Chen, W. L., & Yang, C. W. (2009). Effects of exogenous salicylic acid on photosynthesis in Arabidopsis leaves based on fluorescence spectra and delayed fluorescence technique. Spectroscopy and Spectral Analysis, 29, 2208–2212.

    PubMed  CAS  Google Scholar 

  • Clarke, J. D., Liu, Y., Klessig, D. F., & Dong, X. (1998). Uncoupling PR-gene expression from NPR1 and bacterial resistance: characterization of the dominant Arabidopsis cpr6 mutant. Plant Cell, 10, 557–567.

    PubMed  CAS  Google Scholar 

  • Clarke, S. M., Mur, L. A. J., Wood, J. E., & Scott, I. M. (2004). Salicylic acid dependent signaling promotes basal thermotolerance but is not essential for acquired thermotolerance in Arabidopsis thaliana. Plant Journal, 38, 432–447.

    Article  PubMed  CAS  Google Scholar 

  • Dahal, K., Kane, K., Gadapati, W., Webb, E., Savitch, L. V., Singh, J., et al. (2012). The effects of phenotypic plasticity on photosynthetic performance in winter Rye, winter wheat and Brassica napus. Physiologia Plantarum, 144, 169–188.

    Article  PubMed  CAS  Google Scholar 

  • Dat, J. F., Lopez-Delgado, H., Foyer, C. H., & Scott, I. M. (1998a). Parallel change in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiology, 116, 1351–1357.

    Article  PubMed  CAS  Google Scholar 

  • Dat, J. F., Foyer, C. H., & Scott, I. M. (1998b). Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiology, 118, 1455–1461.

    Article  PubMed  CAS  Google Scholar 

  • Dat, J. F., Lopez-Delgado, H., Foyer, C. H., & Scott, I. M. (2000). Effects of salicylic acid on oxidative stress and thermotolerance in tobacco. Journal of Plant Physiology, 156, 659–665.

    Article  CAS  Google Scholar 

  • Delaney, T. P. (2010). Salicylic acid. In P. J. Davies (Ed.), Plant hormones: Biosynthesis, signal transduction and action! (3rd ed., pp. 681–699). Dordrecht, Heidelberg: Springer.

    Google Scholar 

  • Ding, C. K., Wang, C. Y., Gross, K. C., & Smith, D. L. (2002). Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit. Planta, 214, 895–901.

    Article  PubMed  CAS  Google Scholar 

  • Emery, R. J. N., Chinnappa, C. C., & Chmielewski, J. G. (1994). Specialization, plant strategies, and phenotypic plasticity in populations of Stellaria longipes along an elevational gradient. International Journal of Plant Sciences, 155, 203–219.

    Article  Google Scholar 

  • Ervin, E. H., Zhang, X. Z., & Fike, J. H. (2004). Ultraviolet-B radiation damage on Kentucky Bluegrass II: Hormone supplement effects. HortScience, 39, 1471–1474.

    CAS  Google Scholar 

  • Fariduddin, Q., Hayat, S., & Ahmad, A. (2003). Salicylic acid influences net photosynthetic rate, carboxylation efficiency, nitrate reductase activity and seed yield in Brassica juncea. Photosynthetica, 41, 281–284.

    Article  CAS  Google Scholar 

  • Farooq, M., Wahid, A., Lee, D.-J., Cheema, S. A., & Aziz, T. (2010). Comparative time course action of the foliar applied glycinebetaine, salicylic acid, nitrous oxide, brassinosteroids and spermine in improving drought resistance of rice. Journal of Agricultural Crop Science, 196, 336–345.

    Article  CAS  Google Scholar 

  • Farooq, M., Aziz, T., Basra, S. M. A., Cheema, M. A., & Rehman, H. (2008). Chilling tolerance in hybrid maize induced by seed priming with salicylic acid. Journal of Agricultural Crop Science, 194, 161–168.

    Article  CAS  Google Scholar 

  • Gaskin, P., & MacMillan, J. (1991). GC-MS of the gibberellins and related compounds. Methodology and a library of spectra. Bristol: University of Bristol (Cantock’s Enterprises).

    Google Scholar 

  • Genoud, T., Buchala, A.J., Chua, N.H., & Metraux, J.P. (2002). Phytochrome signalling modulates the SA-perceptive pathway in Arabidopsis. Plant Journal, 31, 87–95.

    Google Scholar 

  • Ghai, N., Setia, R. C., & Setia, N. (2002). Effects of paclobutrazol and salicylic acid on chlorophyll content, hill activity and yield components in Brassica napus L. (cv. GSL-1). Phytomorph, 52, 83–87.

    Google Scholar 

  • Han, S. Y., Kitahata, N., Sekimata, K., Saito, T., Kobayashi, M., Nakashima, K., et al. (2004). A novel inhibitor of 9-cis-epoxycarotenoid dioxygenase in abscisic acid biosynthesis in higher plants. Plant Physiology, 135, 1574–1582.

    Article  PubMed  CAS  Google Scholar 

  • Handro, W., Mello, C. M., Manzano, M. A., & Floh, E. I. S. (1997). Enhancement of stem elongation and flower bud regeneration by salicylic acid. Revista Brasileira de Fisiologia Vegetal, 9, 139–142.

    CAS  Google Scholar 

  • Harper, J. R., & Balke, N. E. (1981). Characterization of the inhibition of K+ absorbtion in oats roots by salicylic acid. Plant Physiology, 68, 1349–1353.

    Article  PubMed  CAS  Google Scholar 

  • Hayat, S., Fariduddin, Q., Ali, B., & Ahmad, A. (2005). Effect of salicylic acid on growth and enzyme activities of wheat seedlings. Acta Agronomica Hungarica, 53, 433–437.

    Article  CAS  Google Scholar 

  • Hayat, S., Hasan, S. A., Fariduddin, Q., & Ahmad, A. (2008). Growth of tomato (Lycopersicon esculentum) in response to salicylic acid under water stress. Journal of Plant International, 3, 297–304.

    Article  CAS  Google Scholar 

  • Hayat, Q., Hayat, S., Irfan, M., & Ahmad, A. (2010). Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany, 68, 14–25.

    Article  CAS  Google Scholar 

  • He, Y., Liu, Y., Cao, W., Huai, M., Xu, B., & Huang, B. (2005). Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky bluegrass. Crop Science, 45, 988–995.

    Article  CAS  Google Scholar 

  • Hegazi, A. M., & El-Shraiy, A. M. (2007). Impact of salicylic acid and paclobutrazol exogenous application on the growth, yield and nodule formation of common bean. Australian Journal of Basic and Applied Science, 1, 834–840.

    Google Scholar 

  • IPCC. (2007). Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Jacobsen, J. V., Pearce, D. W., Poole, A. T., Pharis, R. P., & Mander, L. N. (2002). Abscisic acid, phaseic acid and gibberellin contents associated with dormancy and germination in barley. Physiologia Plantarum, 115, 428–441.

    Article  PubMed  CAS  Google Scholar 

  • Janda, T., Szalai, G., Tari, I., & Paldi, E. (1999). Hydroponic treatment with salicylic acid decreases the effect of chilling injury in maize (Zea mays L.) plants. Planta, 208, 175–180.

    Article  CAS  Google Scholar 

  • Janda, T., Szalai, G., Antunovics, Z. S., Horvath, E., & Paldi, E. (2000). Effect of benzoic acid and aspirin on chilling tolerance and photosynthesis in young maize plants. Maydica, 45, 29–33.

    Google Scholar 

  • Jenkins, G. I. (2009). Signal transduction in responses to UV-B radiation. Annual Review of Plant Biology, 60, 407–431.

    Article  PubMed  CAS  Google Scholar 

  • Jwa, N. S., & Walling, L. L. (2001). Influence of elevated CO2 concentration on disease development in tomato. New Phytologist, 149, 509–518.

    Article  CAS  Google Scholar 

  • Kang, H. M., & Saltveit, M. E. (2002). Chilling tolerance of maize, cucumber and rice seedling leaves and roots are differentially affected by salicylic acid. Physiologia Plantarum, 115, 571–576.

    Article  PubMed  CAS  Google Scholar 

  • Kang, G. Z., Wang, C. H., Sun, G. C., & Wang, Z. X. (2003). Salicylic acid changes activities of H2O2-metabolizing enzymes and increases the chilling tolerance of banana seedlings. Environmental and Experimental Botany, 50, 9–15.

    Article  CAS  Google Scholar 

  • Kang, Y. Y., & Guo, S.R. (2011). Role of Brassinosteroids on horticultural crops. In S. Hayat & A. Ahmad (Eds.), Brassinosteroids: A class of plant hormones (pp. 269–288). Springer Science and Business Media B.V. http://springer.longhoe.net/book/10.1007/978-94-007- 0189-2/page/1

  • Kaplan, F., Kopka, J., Haskell, D. W., Zhao, W., Schiller, K. C., Gatzke, N., et al. (2004). Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiology, 136, 4159–4168.

    Article  PubMed  CAS  Google Scholar 

  • Khripach, V. A., Zhabinskii, V. N., & de Groot, A. E. (1999). Brassinosteroids—a new class of plant hormones (pp. 325–346). San Diego: Academic Press.

    Google Scholar 

  • Kitajima, K., & Augspurger, C.K. (1989). Seed and seedling ecology of a monocarpic tropical tree, Tachigalia versicolor. Ecology, 70, 1102–1114.

    Google Scholar 

  • Kumar Patel, P., Hemantaranjan, A., Sarma, B. K., & Singh, R. (2011). Growth and antioxidant system under drought stress in Chickpea (Cicer arietinum L.) as sustained by salicylic acid. Journal of Stress Physiology Biochemistry, 7, 130–144.

    Google Scholar 

  • Kurepin, L. V., Emery, R. J. N., Pharis, R. P., & Reid, D. M. (2007a). Uncoupling light quality from light irradiance effects in Helianthus annuus shoots: putative roles for gibberellins, auxin, cytokinins, abscisic acid and ethylene in leaf and internode growth. Journal of Experimental Botany, 58, 2145–2157.

    Article  PubMed  CAS  Google Scholar 

  • Kurepin, L. V., Emery, R. J. N., Pharis, R. P., & Reid, D. M. (2007b). The interaction of light quality and irradiance with gibberellins, cytokinins and auxin in regulating growth of Helianthus annuus hypocotyls. Plant, Cell and Environment, 30, 147–155.

    Article  PubMed  CAS  Google Scholar 

  • Kurepin, L. V., Walton, L. J., & Reid, D. M. (2007c). Interaction of red to far red light ratio and ethylene in regulating stem elongation of Helianthus annuus. Plant Growth Regulation, 51, 53–61.

    Article  CAS  Google Scholar 

  • Kurepin, L. V., Qaderi, M. M., Back, T. G., Reid, D. M., & Pharis, R. P. (2008). A rapid effect of applied brassinolide on abscisic acid levels in Brassica napus leaf tissue subjected to short-term heat stress. Plant Growth Regulation, 55, 165–167.

    Article  CAS  Google Scholar 

  • Kurepin, L. V., Walton, L. J., Reid, D. M., & Chinnappa, C. C. (2010a). Light regulation of endogenous salicylic acid levels in hypocotyls of Helianthus annuus seedlings. Botany, 88, 668–674.

    Article  CAS  Google Scholar 

  • Kurepin, L. V., Walton, L. J., Yeung, E. C., Chinnappa, C. C., & Reid, D. M. (2010b). The interaction of light irradiance with ethylene in regulating growth of Helianthus annuus shoot tissues. Plant Growth Regulation, 62, 43–50.

    Article  CAS  Google Scholar 

  • Kurepin, L. V., Walton, L. J., Pharis, R. P., Emery, R. J. N., & Reid, D. M. (2011a). Interactions of temperature and light quality on phytohormone-mediated elongation of Helianthus annuus hypocotyls. Plant Growth Regulation, 64, 147–154.

    Article  CAS  Google Scholar 

  • Kurepin, L. V., Walton, L. J., Yeung, E. C., & Reid, D. M. (2011b). The interaction of light irradiance with auxin in regulating growth of Helianthus annuus shoots. Plant Growth Regulation, 65, 255–262.

    Article  CAS  Google Scholar 

  • Kurepin, L. V., Walton, L. J., Hayward, A., Emery, R. J. N., Reid, D. M., & Chinnappa, C. C. (2012a). Shade light interaction with salicylic acid in regulating growth of sun (alpine) and shade (prairie) ecotypes of Stellaria longipes. Plant Growth Regulation, 68, 1–8.

    Article  CAS  Google Scholar 

  • Kurepin, L. V., Hwan-Joo, S., Kim, S.-K., Pharis, R. P., & Back, T. G. (2012b). Interaction of brassinosteroids with light quality and plant hormones in regulating shoot growth of young sunflower and Arabidopsis seedlings. Journal of Plant Growth Regulation, 31, 156–164.

    Article  CAS  Google Scholar 

  • Kurepin, L. V., Walton, L. J., Hayward, A., Emery, R. J. N., Pharis, R. P., & Reid, D. M. (2012c). Interactions between plant hormones and light quality signaling in regulating the shoot growth of Arabidopsis thaliana seedlings. Botany, 90, 237–246.

    Article  CAS  Google Scholar 

  • Larkindale, J., & Knight, M. R. (2002). Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiology, 128, 682–695.

    Article  PubMed  CAS  Google Scholar 

  • Larkindale, J., & Huang, B. R. (2005). Effects of abscisic acid, salicylic acid, ethylene and hydrogen peroxide in thermotolerance and recovery for cree** bentgrass. Plant Growth Regulation, 47, 17–28.

    Article  CAS  Google Scholar 

  • Larkindale, J., Hall, J. D., Knight, M. R., & Vierling, E. (2005). Heat stress phenotypes of Arabidopsis mutants implicate multiple signaling pathways in the acquisition of thermotolerance. Plant Physiology, 138, 882–897.

    Article  PubMed  CAS  Google Scholar 

  • Larque-Saavedra, A. (1979). Stomatal closure in response to acetylsalicylic acid treatments. Zeitschrift fur Physiologische, 93, 371–375.

    CAS  Google Scholar 

  • Lei, T., Feng, H., Sun, X., Dai, Q.-L., Zhang, F., Liang, H.-G., et al. (2010). The alternative pathway in cucumber seedlings under low temperature stress was enhanced by salicylic acid. Plant Growth Regulation, 60, 35–42.

    Article  CAS  Google Scholar 

  • Leon, J., Shulaev, V., Yalpani, N., Lawton, M. A., & Raskin, I. (1995). Benzoic acid 2-hydroxylase, a soluble oxygenase from tobacco, catalyzes salicylic acid biosynthesis. Proceedings of National Academy of Science USA, 92, 10413–10417.

    Article  CAS  Google Scholar 

  • Li, X. M., Zhang, L. H., Ma, L. J., & Li, Y. Y. (2011). Elevated carbon dioxide and/or ozone concentrations induce hormonal changes in Pinus tabulaeformis. Journal of Chemical Ecology, 37, 779–784.

    Article  PubMed  CAS  Google Scholar 

  • Liu, H. T., Liu, Y. Y., Pan, Q. H., Yang, H. R., Zhan, J. C., & Huang, W. D. (2006). Novel interrelationship between salicylic acid, abscisic acid, and PIP2-specific phospholipase C in heat acclimation-induced thermotolerance in pea leaves. Journal of Experimental Botany, 57, 3337–3347.

    Article  PubMed  CAS  Google Scholar 

  • Liu, H. T., Liu, Y. P., & Huang, W. D. (2008). Root-fed salicylic acid in grape involves the response caused by aboveground high temperature. Journal of Integrative Plant Biology, 50, 761–767.

    Article  PubMed  CAS  Google Scholar 

  • Loveys, B. R., Kriedemann, P. E., & Torokfalvy, E. (1973). Is abscisic acid involved in stomatal response to carbon dioxide? Plant Science Letters, 1, 335–338.

    Article  CAS  Google Scholar 

  • Manfre, A., Glenn, M., Nunez, A., Moreau, A. R., & Dardick, C. (2011). Light quantity and photosystem function mediate host susceptibility to Turnip mosaic virus via a salicylic acid–independent mechanism. Molecular Plant-Microbe Interactions, 24, 315–327.

    Article  PubMed  CAS  Google Scholar 

  • Manthe, B., Schulz, M., & Schnable, H. (1992). Effects of salicylic acid on growth and stomatal movements on Vicia faba L: evidence for salicylic acid metabolism. Journal of Chemical Ecology, 18, 1525–1539.

    Article  CAS  Google Scholar 

  • Mateo, A., Muhlenbock, P., Rusterucci, C., Chang, C. C., Miszalski, Z., Karpinska, B., et al. (2004). LESION SIMULATING DISEASE 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiology, 136, 2818–2830.

    Article  PubMed  CAS  Google Scholar 

  • Mateo, A., Funck, D., Muhlenbock, P., Kular, B., Mullineaux, P. M., & Karpinski, S. (2006). Controlled levels of salicylic acid are required for optimal photosynthesis and redox homeostasis. Journal of Experimental Botany, 57, 1795–1807.

    Article  PubMed  CAS  Google Scholar 

  • Matros, A., Amme, S., Kettig, B., Buck-Sorlin, G. H., Sonnewald, U., & Mock, H. P. (2006). Growth at elevated CO2 concentrations leads to modified profiles of secondary metabolites in tobacco cv. SamsunNN and to increased resistance against infection with potato virus Y. Plant Cell Environmental, 29, 126–137.

    Article  CAS  Google Scholar 

  • Mora-Herrera, M. E., Lopez-Delgado, H., Castillo-Morales, A., & Foyer, C. H. (2005). Salicylic acid and H2O2 function by independent pathways in the induction of freezing tolerance in potato. Physiologia Plantarum, 125, 430–440.

    CAS  Google Scholar 

  • Munne-Bosch, S., & Penuelas, J. (2003). Photo- and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta, 217, 758–766.

    Article  PubMed  CAS  Google Scholar 

  • Nawrath, C., & Metraux, J. P. (1999). Salicylic acid induction-deficient mutants of Arabidopsis express PR-2 and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell, 11, 1393–1404.

    PubMed  CAS  Google Scholar 

  • O’Hanlon-Manners, D.L., & Kotanen, P.M. (2004). Evidence that fungal pathogens inhibit recruitment of a shade-intolerant tree, White Birch (Betula papyfifera), in understory habitats. Oecologia, 140, 650–653.

    Google Scholar 

  • Pan, Q., Zhan, J., Liu, H., Zhang, J., Chen, J., Wen, P., et al. (2006). Salicylic acid synthesized by benzoic acid 2-hydroxylase participates in the development of thermotolerance in pea plants. Plant Science, 171, 226–233.

    Article  CAS  Google Scholar 

  • Pancheva, T. V., Popova, L. P., & Uzunova, A. N. (1996). Effects of salicylic acid on growth and photosynthesis in barley plants. Journal of Plant Physiology, 149, 57–63.

    Article  CAS  Google Scholar 

  • Pancheva, T. V., & Popova, L. P. (1998). Effect of salicylic acid on the synthesis of ribulose-1,5-bisphosphate carboxylase/oxygenase in barley leaves. Plant Physiology, 152, 381–386.

    Article  CAS  Google Scholar 

  • Prins, A., Mukubi, J. M., Pellny, T. K., Verrier, P. J., Beyene, G., Lopes, M. S., et al. (2011). Acclimation to high CO2 in maize is related to water status and dependent on leaf rank. Plant Cell Environmental, 34, 314–331.

    Article  CAS  Google Scholar 

  • Rademacher, W. (2000). Growth retardants: Effects on gibberellin biosynthesis and other metabolic pathways. Annual Review Plant Physiology Plant Molecular Biology, 51, 501–531.

    Article  CAS  Google Scholar 

  • Rai, V. K., Sharma, S. S., & Sharma, S. (1986). Reversal of ABA-induced stomatal closure by phenolic compounds. Journal of Experimental Botany, 37, 129–134.

    Article  CAS  Google Scholar 

  • Rao, M. V., Paliyath, G., Ormrod, D. P., Murr, D. P., & Watkins, C. B. (1997). Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzymes. Salicylic acid-mediated oxidative damage requires H2O2. Plant Physiology, 115, 137–149.

    Article  PubMed  CAS  Google Scholar 

  • Raskin, I. (1992). Role of salicylic acid in plants. Annual Review Plant Physiology Plant Molecular Biology, 43, 439–463.

    Article  CAS  Google Scholar 

  • Raskin, I. (1995). Salicylic acid. In P. J. Davies (Ed.), Plant hormones, physiology, biochemistry and molecular biology (pp. 188–205). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Robertson, A. J., Ishikawa, M., Gusta, L. V., & MacKenzie, S. L. (1994). Abscisic acid-induced heat tolerance in Bromus inermis Leyss cell-suspension cultures. Heat-stable, abscisic acid-responsive polypeptides in combination with sucrose confer enhanced thermostability. Plant Physiology, 105, 181–190.

    Article  PubMed  CAS  Google Scholar 

  • Schettel, N. L., & Balke, N. E. (1983). Plant growth response to several allelopathic chemicals. Weed Science, 31, 293–298.

    Google Scholar 

  • Scott, I. M., Clarke, S. M., Wood, J. E., & Mur, L. A. J. (2004). Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiology, 135, 1040–1049.

    Article  PubMed  CAS  Google Scholar 

  • Senaratna, T., Touvhell, D., Bunn, E., & Dixon, K. (2000). Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plant. Plant Growth Regulation, 30, 157–161.

    Article  CAS  Google Scholar 

  • Shakirova, F. M., Sakhabutdinova, A. R., Bezrukova, M. V., Fatkhutdinova, R. A., & Fatkhutdinova, D. R. (2003). Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Science, 164, 317–322.

    Article  CAS  Google Scholar 

  • Shirasu, K., Nakajima, H., Rajasekhar, V. K., Dixon, R. A., & Lamb, C. (1997). Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell, 9, 261–270.

    PubMed  CAS  Google Scholar 

  • Singh, B., & Usha, K. (2003). Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regulation, 39, 137–141.

    Article  CAS  Google Scholar 

  • Smith, H. (2000). Phytochromes and light signal perception by plants—an emerging synthesis. Nature, 407, 585–591.

    Article  PubMed  CAS  Google Scholar 

  • Ton, J., Pieterse, C. M. J., & Van Loon, L. C. (1999). Identification of a locus in Arabidopsis controlling both the expression of rhizobacteria-mediated induced systemic resistance (ISR) and basal resistance against Pseudomonas syringae pv. tomato. Molecular Plant–Microbe Interaction, 12, 911–918.

    Article  CAS  Google Scholar 

  • Uzunova, A. N., & Popova, L. P. (2000). Effect of salicylic acid on leaf anatomy and chloroplast ultrastructure of barley plants. Photosynthetica, 38, 243–250.

    Article  CAS  Google Scholar 

  • Wang, L. J., Huang, W. D., & Zhan, J. C. (2004). The response of 14C-salicylic acid to heat stress in young plants of Vitis vinifera. Russian Journal of Plant Physiology, 51, 194–197.

    Article  CAS  Google Scholar 

  • Wang, L. J., Huang, W. D., Liu, Y. P., & Zhan, J. C. (2005). Changes in salicylic and abscisic acid contents during heat treatment and their effect on thermotolerance of grape plants. Russian Journal of Plant Physiology, 52, 516–520.

    Article  CAS  Google Scholar 

  • Wang, L., Chen, S., Kong, W., Li, S., & Archbold, D. D. (2006). Salicylic acid pretreatment alleviates chilling injury and affects the antioxidant system and heat shock proteins of peaches during cold storage. Postharvest Biology and Technology, 41, 244–251.

    Article  Google Scholar 

  • Wang, L.-J., Fan, L., Loescher, W., Duan, W., Liu, G.-J., Cheng, J.-S., et al. (2010). Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biology, 10, 34–43.

    Article  PubMed  Google Scholar 

  • Yalpani, N., Enyedi, A. J., Leon, J., & Raskin, I. (1994). Ultraviolet light and ozone stimulate accumulation of salicylic acid, pathogenesis-related proteins and virus resistance in tobacco. Planta, 193, 372–376.

    Article  CAS  Google Scholar 

  • Zeier, J., Pink, B., Mueller, M. J., & Berger, S. (2004). Light conditions influence specific defence responses in incompatible plant–pathogen interactions: uncoupling systemic resistance from salicylic acid and PR-1 accumulation. Planta, 219, 673–683.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored by Ballance Agri-Nutrients, Ltd., New Zealand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Kurepin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kurepin, L.V., Dahal, K.P., Zaman, M., Pharis, R.P. (2013). Interplay Between Environmental Signals and Endogenous Salicylic Acid Concentration. In: Hayat, S., Ahmad, A., Alyemeni, M. (eds) SALICYLIC ACID. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6428-6_5

Download citation

Publish with us

Policies and ethics

Navigation