Polyamines: Role in Plants Under Abiotic Stress

  • Chapter
  • First Online:
Crop Production for Agricultural Improvement

Abstract

Environmental changes, irrespective of source, cause a variety of stresses in plants. These stresses affect the growth and development and trigger a series of morphological, physiological, biochemical and molecular changes in plants. Abiotic stress is the primary cause of crop loss worldwide. The most challenging job before the plant biologists is the development of stress tolerant plants and maintenance of sufficient yield of crops in this changing environment. Polyamines can be of great use to enhance stress tolerance in such crop plants. Polyamines are small organic polycations present in all organisms and have a leading role in cell cycle, expression of genes, signaling, plant growth and development and tolerance to a variety of abiotic stresses. High accumulation of polyamines (putrescine, spermidine and spermine) in plants during abiotic stress has been well documented and is correlated with increased tolerance to abiotic stress. Genetic engineering of PA biosynthetic genes in crop plants is the way to create tolerance against different stresses. The present review throws light on the role of polyamines in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 210.99
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 210.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmad P, Sharma S (2008) Salt stress and phyto-biochemical responses of plants. Plant Soil Environ 54:89–99

    Google Scholar 

  • Ahmad P, Sarwat M, Sharma S (2008) Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol 51:167–173

    Article  CAS  Google Scholar 

  • Ahmad P, Jaleel CA, Salem MA, Nabi GH, Sharma S (2010a) Roles of enzymatic and non-enzymatic antioxidants in plants during abiotic stress. Crit Rev Biotechnol 30:161–175

    Article  PubMed  CAS  Google Scholar 

  • Ahmad P, Umar S, Sharma S (2010b) Mechanism of free radical scavenging and role of phytohormones during abiotic stress in plants. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer, Dordrecht/Heidelberg/London/New York, pp 99–108

    Chapter  Google Scholar 

  • Ahmad P, Ashraf M, Younis M, Hu X, Kumar A, Akram NA, Al-Qurainy F (2011) Role of transgenic plants in agriculture and biopharming. Biotechnol Adv. doi:10.1016/j.biotechadv.2011.09.006

  • Akiyama T, ** S (2007) Molecular cloning and characterization of an arginine decarboxylase gene up-regulated by chilling stress in rice seedlings. J Plant Physiol 164:645–654

    Article  PubMed  CAS  Google Scholar 

  • Alcázar R, Cuevas JC, Patrón M, Altabella T, Tiburcio AF (2006a) Abscisic acid modulates polyamine metabolism under water stress in Arabidopsis thaliana. Plant Physiol 128:448–455

    Article  CAS  Google Scholar 

  • Alcázar R, Marco F, Cuevas JC, Patrón M, Ferrando A, Carrasco P, Tiburcio AF, Altabella T (2006b) Involvement of polyamines in plant response to abiotic stress. Biotechnol Lett 28:1867–1876

    Article  PubMed  CAS  Google Scholar 

  • Alcazar R, Altabella T, Marco F, Bortolotti C, Reymond M, Koncz C, Carrasco P, Tiburcio AF (2010) Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta 231:1237–1249

    Article  PubMed  CAS  Google Scholar 

  • Alonso-Blanco C, Aarts MGM, Bentsink L, Keurentjes JJB, Reymond M, Vreugdenhil D, Koornneef M (2009) What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell 21:1877–1896

    Article  PubMed  CAS  Google Scholar 

  • An ZF, **g W, Liu YL, Zhang WH (2008) Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba. J Exp Bot 59:815–825

    Article  PubMed  CAS  Google Scholar 

  • Applewhite PB, Kaur-Sawhney R, Galston AW (2000) A role for spermidine in the bolting and flowering of Arabidopsis. Physiol Plant 108:314–320

    Article  CAS  Google Scholar 

  • Bagni N, Tassoni A (2001) Biosynthesis, oxidation and conjugation of aliphatic polyamines in higher plants. Amino Acids 20:301–317

    Article  PubMed  CAS  Google Scholar 

  • Bais HP, Ravishankar GA (2002) Role of polyamines in the ontogeny of plants and their biotechnological applications. Plant Cell Tissue Organ Cult 69:1–34

    Article  CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Basu R, Maitra N, Ghosh B (1988) Salinity results in polyamine accumulation in early rice (Oryza sativa L.) seedlings. Aust J Plant Physiol 15:777–786

    Article  CAS  Google Scholar 

  • Bell E, Malmberg RL (1990) Analysis of a cDNA encoding arginine decarboxylase from oat reveals similarity to the Escherichia coli arginine decarboxylase and evidence of protein processing. Mol Gen Genet 224:431–436

    Article  PubMed  CAS  Google Scholar 

  • Bethke PC, Jones RL (1997) Reversible protein phosphorylation regulates the activity of the slow-vacuolar ion channel. Plant J 11:1227–1235

    Article  CAS  Google Scholar 

  • Bhatnagar P, Glasheen BM, Bains SK, Long SL, Minocha R, Walter C, Minocha SC (2001) Transgenic manipulation of polyamine metabolism in poplar (Populus nigra X maximoviczii) cells. Plant Physiol 125:2139–2153

    Article  PubMed  CAS  Google Scholar 

  • Bhatnagar P, Minocha R, Minocha SC (2002) Genetic manipulation of polyamines in poplar cells. The regulation of putrescine catabolism. Plant Physiol 128:1455–1469

    Article  PubMed  CAS  Google Scholar 

  • Borrell A, Besford RT, Altabella T, Masgrau C, Tiburcio AF (1996) Regulation of arginine decarboxylase by spermine in osmotically-stressed oat leaves. Plant Physiol 98:105–110

    Article  CAS  Google Scholar 

  • Bors W, Langebartels C, Michel C, Sandermann H Jr (1989) Polyamines as radical scavengers and protectants against Ozone damage. Phytochemistry 28:1589–1595

    Article  CAS  Google Scholar 

  • Bouchereau A, Aziz A, Larher F, Martin-Tanguy J (1999) Polyamines and environmental challenges: recent development. Plant Sci 140:103–125

    Article  CAS  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Article  Google Scholar 

  • Bruggemann LI, Pottosin II, Schonknecht G (1998) Cytoplasmic polyamines block the fast-activating vacuolar cation channel. Plant J 16:101–105

    Article  CAS  Google Scholar 

  • Capell T, Escobar C, Liu H, Burtin D, Lepri O, Christou P (1998) Over-expression of oat arginine decarboxylase cDNA in transgenic rice (Oryza sativa L.) affects normal development pattern in vitro and results in putrescine accumulation in transgenic plants. Theor Appl Genet 97:246–254

    Article  CAS  Google Scholar 

  • Capell T, Bassie L, Christou P (2004) Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proc Natl Acad Sci U S A 101:9909–9914

    Article  PubMed  CAS  Google Scholar 

  • Cervelli M, Polticelli F, Federico R, Mariottini P (2003) Heterologous expression and characterization of mouse spermine oxidase. J Biol Chem 278:5271–5276

    Article  PubMed  CAS  Google Scholar 

  • Cheng L, Zou Y, Ding S, Zhang J, Yu X, Cao J, Lu G (2009) Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J Integ Plant Biol 51:489–499

    Article  CAS  Google Scholar 

  • Cona A, Rea G, Angelini R, Federico R, Tavladoraki P (2006) Functions of amine oxidases in plant development and defence. Trends Plant Sci 11:80–88

    Article  PubMed  CAS  Google Scholar 

  • Cuevas JC, López-Cobollo R, Alcázar R, Zarza X, Koncz C, Altabella T, Salinas J, Tiburcio AT, Ferrando A (2008) Putrescine is involved in Arabidopsis freezing tolerance and cold acclimation by regulating abscisic acid levels in response to low temperature. Plant Physiol 148:1094–1105

    Article  PubMed  CAS  Google Scholar 

  • Cuevas JC, López-Cobollo R, Alcázar R, Zarza X, Koncz C, Altabella T, Salinas J, Tiburcio AT, Ferrando A (2009) Putrescine as a signal to modulate the indispensable ABA increase under cold stress. Plant Signal Behav 4:219–220

    Article  PubMed  CAS  Google Scholar 

  • Dat JF, Pellinen R, Van De Cotte B, Langebartels C, Kangasjarvi J, Inze D, Van Breusegem F (2003) Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J 33:621–632

    Article  CAS  Google Scholar 

  • Delavega AL, Delcour AH (1995) Cadaverine induces closing of Escherichia coli porins. EMBO J 14:6058–6065

    PubMed  CAS  Google Scholar 

  • Drolet G, Dumbroff EB, Legge RL, Thompson JE (1986) Radical scavenging properties of polyamines. Phytochemistry 25:367–371

    Article  CAS  Google Scholar 

  • Evans PT, Malmberg RL (1989) Do polyamines have a role in plant development? Annu Rev Plant Physiol Plant Mol Biol 40:235–269

    Article  CAS  Google Scholar 

  • Falasca G, Franceschetti M, Bagni N, Altamura MM, Biasi R (2010) Polyamine biosynthesis and control of the development of functional pollen in kiwifruit. Plant Physiol Biochem 48:565–573

    Article  PubMed  CAS  Google Scholar 

  • Feirer RP, Mignon G, Litvay JD (1984) Arginine decarboxylase and polyamines required for embryogenesis in the wild carrot. Science 223L:1433–1435

    Article  Google Scholar 

  • Flores HE, Galston AW (1982) Analysis of polyamines in higher plants by high performance liquid chromatography. Plant Physiol 69:701–706

    Article  PubMed  CAS  Google Scholar 

  • Flores HE, Galston AW (1984) Osmotic stress-induced polyamine accumulation in cereal leaves. I. Physiological parameters of the response. Plant Physiol 75:102–109

    Article  PubMed  CAS  Google Scholar 

  • Franceschetti M, Fornale S, Tassoni A, Zuccherelli K, Mayer MJ, Bagni N (2004) Effects of spermidine synthase over-expression on polyamine biosynthetic pathway in tobacco plants. J Plant Physiol 161:989–1001

    Article  PubMed  CAS  Google Scholar 

  • Galston AW (1991) On the trail of a new regulatory system in plants. New Biol 3:450–453

    PubMed  CAS  Google Scholar 

  • Galston AW, Kaur-Sawhney R (1990) Polyamines in plant physiology. Plant Physiol 94:406–410

    Article  PubMed  CAS  Google Scholar 

  • Galston AW, Tiburcio AF (eds) (1991) Lecture course on polyamines as modulators of plant development 257. Fundacion Jaun, Madrid

    Google Scholar 

  • Galston AW, Kaur-Sawhney R, Altabella T, Tiburcio AF (1997) Plant polyamines in reproductive activity and response to abiotic stress. Bot Acta 110:197–207

    CAS  Google Scholar 

  • Geny L, Broquedis M, Martin-Tanguy J, Soyer JP, Bouard J (1997) Effects of potassium nutrition on polyamine content of various organs of fruiting cuttings of Vitis vinifera L. cv. Cabernet Sauvignon. Am J Enol Vitic 48:85–91

    CAS  Google Scholar 

  • Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45

    Article  PubMed  CAS  Google Scholar 

  • Groppa MD, Rosales EP, Iannone MF, Benavides MP (2008) Nitric oxide, polyamines and Cd-induced phytotoxicity in wheat roots. Phytochemistry 69:2609–2615

    Article  PubMed  CAS  Google Scholar 

  • Hanfrey C, Sommer S, Mayer MJ, Burtin D, Michael AJ (2001) Arabidopsis polyamine biosynthesis: absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity. Plant J 27:551–560

    Article  PubMed  CAS  Google Scholar 

  • Hao YJ, Zhang Z, Kitashiba H, Honda C, Ubi B, Kita M, Moriguchi T (2005) Molecular cloning and functional characterization of two apple S-adenosylmethionine decarboxylase genes and their different expression in fruit development, cell growth and stress responses. Gene 350:41–50

    Article  PubMed  CAS  Google Scholar 

  • He L, Ban Y, ınoue H, Matsuda N, Liu J, Moriguchi T (2008) Enhancement of spermidine content and antioxidant capacity in transgenic pear shoots overexpressing apple spermidine synthase in response to salinity and hyperosmosis. Phytochemistry 69:2133–2141

    Article  PubMed  CAS  Google Scholar 

  • Heagle AS (1989) Ozone and crop yield. Ann Rev Phytopathol 27:397–412

    Article  CAS  Google Scholar 

  • Heimer YM, Mizrahi Y (1982) Characterization of ornithine decarboxylase of tobacco cells and tomato ovaries. Biochem J 201:373–376

    PubMed  CAS  Google Scholar 

  • Hummel I, Gouesbet G, El Amrani A, Aïnouche A, Couée I (2004) Characterization of the two arginine decarboxylase (polyamine biosynthesis) paralogues of the endemic subantarctic cruciferous species Pringlea antiscorbutica and analysis of their differential expression during development and response to environmental stress. Gene 342:199–209

    Article  PubMed  CAS  Google Scholar 

  • Igarasahi K, Kashiwagi K (2000) Polyamines: mysterious modulators of cellular functions. Biochem Biophys Res Commun 271:559–564

    Article  PubMed  CAS  Google Scholar 

  • Jiménez-Bremont JF, Ruiz OA, Rodríguez-Kessler M (2007) Modulation of spermidine and spermine levels in maize seedlings subjected to long-term salt stress. Plant Physiol Biochem 45:812–821

    Article  PubMed  CAS  Google Scholar 

  • Johnson TD (1996) Modulation of channel function by polyamines. Trends Pharmacol Sci 17:22–27

    Article  PubMed  CAS  Google Scholar 

  • Kakkar RK, Rai VK (1993) Plant polyamines in flowering and fruit ripening. Phytochemistry 33:1281–1288

    Article  CAS  Google Scholar 

  • Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712–722

    Article  PubMed  CAS  Google Scholar 

  • Kasukabe Y, He L, Watakabe Y, Otani M, Shimada T, Tachibana S (2006) Improvement of environmental stress tolerance of sweet potato by introduction of genes for spermidine synthase. Plant Biotechnol 23:75–83

    Article  CAS  Google Scholar 

  • Kaur-Sawhney R, Shih Flores HE, Galston AW (1982) Relation of polyamine synthesis and titer to aging and senescence in oat leaves. Plant Physiol 69:405–410

    Article  PubMed  CAS  Google Scholar 

  • Kaur-Sawhney R, Tiburcio AF, Altabella T, Galston AW (2003) Polyamines in plants: an overview. J Cell Mol Biol 2:1–12

    Google Scholar 

  • Kuehn GD, Rodriguez-Garay B, Bagga S, Phillips GC (1990) Novel occurrence of uncommon polyamines in higher plants. Plant Physiol 94:855–857

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Altabella T, Taylor M, Tiburcio AF (1997) Recent advances in polyamine research. Trends Plant Sci 2:124–130

    Article  Google Scholar 

  • Kumria R, Rajam MV (2002) Ornithine decarboxylase transgene in tobacco affects polyamine metabolism, in vitro morphogenesis and response to salt stress. J Plant Physiol 159:983–990

    Article  CAS  Google Scholar 

  • Kusano T, Yamaguchi K, Berberich T, Takahashi Y (2007) The polyamine spermine rescues Arabidopsis from salinity and drought stresses. Plant Signal Behav 2:251–252

    Article  PubMed  Google Scholar 

  • Kusano T, Berberich T, Tateda C, Takahashi Y (2008) Polyamines: essential factors for growth and survival. Planta 228:367–381

    Article  PubMed  CAS  Google Scholar 

  • Langebartels C, Kerner KJ, Leonardi S, Schraudner M, Trost M, Heller W, Sanderman H Jr (1991) Biochemical plant response to ozone. I. Differential induction of polyamine and ethylene biosynthesis in tobacco. Plant Physiol 91:882–887

    Article  Google Scholar 

  • Lee TM, Shieh YJ, Chou CH (1996) Role of putrescine in enhancing shoot elongation in Scirpus mucronatus under submergence. Plant Physiol 96:419–424

    Article  CAS  Google Scholar 

  • Li CZ, Jiao J, Wang GX (2010) The important roles of reactive oxygen species in the relationship between ethylene and polyamines in leaves of spring wheat seedlings under root osmotic stress. Plant Sci 166:303–315

    Article  CAS  Google Scholar 

  • Liu K, Fu H, Bei Q, Luan S (2000) Inward potassium channel in guard cells as a target for polyamine regulation of stomatal movements. Plant Physiol 124:1315–1326

    Article  PubMed  CAS  Google Scholar 

  • Liu JH, Nada K, Honda C, Kitashiba H, Wen XP, Pang XM, Moriguchi T (2006) Polyamine biosynthesis of apple callus under salt stress: importance of the arginine decarboxylase pathway in stress response. J Exp Bot 57:2589–2599

    Article  PubMed  CAS  Google Scholar 

  • Liu JH, Kitashiba H, Wang J, Ban Y, Moriguchi T (2007) Polyamines and their ability to provide environmental stress tolerance to plants. Plant Biotechnol 24:117–126

    Article  CAS  Google Scholar 

  • Liu HP, Dong BH, Zhang YY, Liu ZP, Liu YL (2010) Relationship between osmotic stress and the levels of free, conjugated and bound polyamines in leaves of wheat seedlings. Plant Sci 166:1261–1267

    Article  CAS  Google Scholar 

  • Malmberg RL, Watson MB, Galloway GL, Yu W (1998) Molecular genetic analyses of plant polyamines. Crit Rev Plant Sci 17:199–224

    CAS  Google Scholar 

  • Masgrau C, Altabella T, Farras R, Flores P, Thompson AJ, Besford RT, Tiburcio AF (1997) Inducible overexpression of oat arginine decarboxylase in transgenic tobacco plants. Plant J 11:465–473

    Article  PubMed  CAS  Google Scholar 

  • Matto AK, Sobolev AP, Neelam A, Goyal RK, Handa AK, Segre AL (2006) Nuclear magnetic resonance spectroscopy-based metabolite profiling of transgenic tomato fruit engineered to accumulate spermidine and spermine reveals enhanced anabolic and nitrogen-carbon interactions. Plant Physiol 142:1759–1770

    Article  CAS  Google Scholar 

  • Mehta RA, Cassol T, Li N, Ali N, Handa AK, Matto AK (2002) Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat Biotechnol 20:613–618

    Article  PubMed  CAS  Google Scholar 

  • Michael AJ, Furze JM, Rhodes MJ, Burtin D (1996) Molecular cloning and functional identification of a plant ornithine decarboxylase cDNA. Biochem J 314:241–248

    PubMed  CAS  Google Scholar 

  • Michard E, Dreyer I, Lacombe B, Sentenac H, Thibaud JB (2005) Inward rectification of the AKT2 channel abolished by voltage dependent phosphorylation. Plant J 44:783–797

    Article  PubMed  CAS  Google Scholar 

  • Mo H, Pua EC (2002) Up-regulation of arginine decarboxylase gene expression and accumulation of polyamines in mustard (Brassica juncea) in response to stress. Physiol Plant 114:439–449

    Article  PubMed  CAS  Google Scholar 

  • Montague M, Koppenbrink J, Jaworski E (1978) Polyamine metabolism in embryogenic cells of Daucuscarota. I. Changes in intracellular content and rates of synthesis. Plant Physiol 62:430–433

    Article  PubMed  CAS  Google Scholar 

  • Muhitch MJ, Edwards LA, Fletcher JS (1983) Influence of diamines and polyamines on the senescence of plant suspension cultures. Plant Cell Rep 2:82–84

    Article  PubMed  CAS  Google Scholar 

  • Navakoudis E, Lutz C, Langebartels C, Lutz-Meindl U, Kotzabasis K (2003) Ozone impact on the photosynthetic apparatus and the protective role of polyamines. Biochim Biophys Acta 1621:160–169

    Article  PubMed  CAS  Google Scholar 

  • Neill S, Barros R, Bright J, Desikan R, Hancock J, Harrison J, Morris P, Ribeiro D, Wilson I (2008) Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59:165–176

    Article  PubMed  CAS  Google Scholar 

  • Neily MH, Matsukura C, Maucourt M, Bernillon S, Deborde C, Moing A, Yin YG, Saito T, Mori K, Asamizu E, Rolin D, Moriguchi T, Ezura H (2011) Enhanced polyamine accumulation alters carotenoid metabolism at the transcriptional level in tomato fruit over-expressing spermidine synthase. J Plant Physiol 168:242–252

    Article  PubMed  CAS  Google Scholar 

  • Nordborg M, Weigel D (2008) Next-generation genetics in plants. Nature 456:720–723

    Article  PubMed  CAS  Google Scholar 

  • Panicot M, Masgrau C, Borrell A, Corderio A, Tiburcio AF, Altabella T (2002) Effects of putrescine accumulation in tobacco transgenic plants with different expression levels of oat arginine decarboxylase. Physiol Plant 114:281–287

    Article  PubMed  CAS  Google Scholar 

  • Paschalidis KA, Roubelakis-Angelakis KA (2005) Spatial and temporal distribution of polyamine levels and polyamine anabolism in different organs/tissues of the tobacco plant. correlations with age, cell division/expansion, and differentiation. Plant Physiol 138:142–152

    Article  PubMed  CAS  Google Scholar 

  • Perez-Amador MA, Leon J, Green PJ, Carbonell J (2002) Induction of the arginine decarboxylase ADC2 gene provides evidence for the involvement of polyamines in the wound response in Arabidopsis. Plant Physiol 130:1454–1463

    Article  PubMed  CAS  Google Scholar 

  • Philipps GC, Kuehn GD (1991) Uncommon polyamines in plants and other mechanisms. In: Slocum RD, Flores HE (eds) Biochemistry and physiology of polyamines in plants. CRC Press, Boca Raton, pp 121–133

    Google Scholar 

  • Piqueras A, Cortina M, Serna MD, Casas JL (2002) Polyamines and hyperhydricity in micropropagated carnation plants. Plant Sci 162:671–678

    Article  CAS  Google Scholar 

  • Prabhavathi VR, Rajam MV (2007) Polyamine accumulation in transgenic eggplant enhances tolerance to multiple abiotic stresses and fungal resistance. Plant Biotechnol 24:273–282

    Article  CAS  Google Scholar 

  • Prakash L, Prathapsenan G (1988) Effect of NaCl salinity and putrescine on shoot growth, tissue ion concentration and yield of rice (Oryza sativa). J Agron Crop Sci 160:325–334

    Article  CAS  Google Scholar 

  • Raison JK, Lyons JM (1970) Oxidative activity of mitochondria isolated from plant tissues sensitive and resistant to chilling injury. Plant Physiol 45:386–389

    Article  PubMed  Google Scholar 

  • Rajam MV, Dagar S, Waie B, Yadav JS, Kumar PA, Shoeb F, Kumria R (1998) Genetic engineering of polyamine and carbohydrate metabolism for osmotic stress tolerance in higher plants. J Biosci 23:473–482

    Article  CAS  Google Scholar 

  • Reggiani R, Bertani A (1989) Effect of decreasing oxygen concentration on polyamine metabolism in rice and wheat shoots. J Plant Physiol 135:375–377

    Article  Google Scholar 

  • Reggiani R, Bertani A (1990) Polyamines and oxygen availability. In: Flores HE, Arteca RN, Shannon JC (eds) Polyamines and ethylene: biochemistry, physiology and interactions. Rockville, MA: American Society of Plant Physiologists, pp 394–396

    Google Scholar 

  • Reggiani R, Hochkoeppler A, Bertani A (1989) Polyamines and anaerobic elongation of rice coleoptiles. Plant Cell Physiol 30:893–898

    CAS  Google Scholar 

  • Reggiani R, Giussani P, Bertani A (1990) Relationship between the accumulation of putrescine and the tolerance to oxygen deficit stress in Graminae seedlings. Plant Cell Physiol 31:489–494

    CAS  Google Scholar 

  • Rhee HJ, Kim E-J, Lee JK (2007) Physiological polyamines: simple primordial stress molecules. J Cell Mol Med 11:685–703

    Article  PubMed  CAS  Google Scholar 

  • Richards FJ, Coleman EG (1952) Occurrence of putrescine in potassium deficient barley. Nature 170:460–461

    Article  PubMed  CAS  Google Scholar 

  • Rodrıguez-Kessler M, Alpuche-Solís AG, Ruiz OA, Jiménez-Bremont JF (2006) Effect of salt stress on the regulation of maize (Zea mays L.) genes involved in polyamine biosynthesis. Plant Growth Regul 48:175–185

    Article  CAS  Google Scholar 

  • Rowland-Bamford AJ, Barland AM, Lea PJ, Mansfield TA (1989) The role of arginine decarboxylase in modulating the sensitivity of barley to ozone. Environ Pollut 61:93–99

    Article  Google Scholar 

  • Roy M, Ghosh B (1996) Polyamines, both common and uncommon, under heat stress in rice (Oryza sativa) callus. Plant Physiol 98:196–200

    Article  CAS  Google Scholar 

  • Roy M, Wu R (2001) Arginine decarboxylase transgene expression and analysis of environmental stress tolerance in transgenic rice. Plant Sci 160:869–875

    Article  PubMed  CAS  Google Scholar 

  • Roy M, Wu R (2002) Overexpression of S-adenosylmethionine decarboxylase gene in rice increases polyamine level and enhances sodium chloride-stress tolerance. Plant Sci 163:987–992

    Article  PubMed  CAS  Google Scholar 

  • Santa-Gruz A, Pérez-Alfocea MA, Bolarin C (1997) Changes in free polyamine levels induced by salt stress in leaves of cultivated and wild tomato species. Plant Physiol 101:341–346

    Article  Google Scholar 

  • Schraudner M, Trost M, Kerner K, Heller W, Leonardi S, Langebartels C, Sanderman H Jr (1990) Ozone induction and function of polyamines in ozone-tolerant and ozone-sensitive tobacco cultivars. In: Flores HE, Arteca RN, Shannon JC (eds) Polyamines and ethylene: biochemistry, physiology and interactions. Rockville, MA: American Society of Plant Physiologists, pp 394–396

    Google Scholar 

  • Slocum RD (1991) Tissue and subcellular localisation of polyamines and enzymes of polyamine metabolism. In: Slocum RD, Flores HE (eds) Biochemistry and physiology of polyamines in plants. CRC Press, Boca Raton, pp 22–40

    Google Scholar 

  • Slocum RD, Galston AW (1985) Changes in polyamine biosynthesis associated with post-fertilization growth and development in tobacco ovary tissues. Plant Physiol 79:336–343

    Article  PubMed  CAS  Google Scholar 

  • Slocum RD, Kaur-Sawhney R, Galston AW (1984) The physiology and biochemistry of polyamines in plants. Arch Biochem Biophys 325:283–303

    Article  Google Scholar 

  • Smith TA, Richards FJ (1962) The biosynthesis of putrescine in higher plants and its relation to potassium nutrition. Biochem J 84:292–294

    PubMed  CAS  Google Scholar 

  • Tang W, Newton RJ (2005) Polyamines reduce salt-induced oxidative damage by increasing the activities of antioxidant enzymes and decreasing lipid peroxidation in Virginia pine. Plant Growth Regul 46:31–43

    Article  CAS  Google Scholar 

  • Tassoni A, Franceschetti M, Bagni N (2010) Polyamines and salt stress response and tolerance in Arabidopsis thaliana flowers. Plant Physiol Biochem 46:607–613

    Article  CAS  Google Scholar 

  • Tiburcio AF, Besford RT, Borrell A, Mace M (1995) Metabolism and function of polyamines during osmotically induced senescence in oat leaves and protoplasts. In: Wallsgrove RM (ed) Amino acids and their derivatives in higher plants. Cambridge University Press, Cambridge, UK, pp 205–225

    Chapter  Google Scholar 

  • Tun NN, Santa-Catarina C, Begum T, Silveira V, Handro W, Floh EIS, Scherer GFE (2006) Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol 47:346–354

    Article  PubMed  CAS  Google Scholar 

  • Urano K, Yoshiba Y, Nanjo T, Igarashi Y, Seki M, Sekiguchi F, Yamaguchi-Shinozaki K, Shinozaki K (2003) Characterization of Arabidopsis genes involved in biosynthesis of polyamines in abiotic stress responses and developmental stages. Plant Cell Environ 26:1917–1926

    Article  CAS  Google Scholar 

  • Urano K, Yoshiba Y, Nanjo T, Ito T, Yamaguchi-Shinozaki K, Shinozaki K (2004) Arabidopsis stress-inducible gene for arginine decarboxylase AtADC2 is required for accumulation of putrescine in salt tolerance. Biochem Biophys Res Commun 313:369–375

    Article  PubMed  CAS  Google Scholar 

  • Vujcic S, Diegelmann P, Bacchi CJ, Kramer DL, Porter CW (2002) Identification and characterization of a novel flavin-containing spermine oxidase of mammalian cell origin. Biochem J 367:665–675

    Article  PubMed  CAS  Google Scholar 

  • Waie B, Rajam MV (2003) Effect of increased polyamine biosynthesis on stress response in transgenic tobacco by introduction of human S-adenosylmethionine gene. Plant Sci 164:727–734

    Article  CAS  Google Scholar 

  • Walden R, Cordeiro A, Tiburcio AF (1997) Polyamines: small molecules triggering pathways in growth and development. Plant Physiol 113:1009–1013

    Article  PubMed  CAS  Google Scholar 

  • Walters DR (2003a) Resistance to plant pathogens: possible roles for free polyamines and polyamine catabolism. New Phytol 159:109–115

    Article  CAS  Google Scholar 

  • Walters DR (2003b) Polyamines and plant disease. Phytochemistry 64:97–107

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Devereux W, Woster PM, Stewart TM, Hacker A, Casero RA Jr (2001) Cloning and characterization of a human polyamine oxidase that is inducible by polyamine analogue exposure. Cancer Res 61:5370–5373

    PubMed  CAS  Google Scholar 

  • Wen XP, Pang XM, Matsuda N, Kita M, Inoue H, Hao YJ et al (2008) Overexpression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res 17:251–263

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, Takahashi Y, Berberich T, Imai A, Miyazaki A, Takahashi T, Michael A, Kusano T (2006) The polyamine spermine protects against high salt stress in Arabidopsis thaliana. FEBS Lett 580:6783–6788

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, Takahashi Y, Berberich T, Imai A, Takahashi T, Michael AJ, Kusano T (2007) A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem Biophys Res Commun 352:486–490

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Yang H (2008) Exogenous polyamines alleviate the lipid peroxidation induced by cadmium chloride stress in Malus hupehensis Rehd. Sci Hort 116:442–447

    Article  CAS  Google Scholar 

  • Zhao FG, Song CP, He JQ, Zhu H (2007) Polyamines improve K+/Na+ homeostasis in barley seedlings by regulating root ion channel activities. Plant Physiol 145:1061–1072

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvaiz Ahmad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ahmad, P. et al. (2012). Polyamines: Role in Plants Under Abiotic Stress. In: Ashraf, M., Öztürk, M., Ahmad, M., Aksoy, A. (eds) Crop Production for Agricultural Improvement. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4116-4_19

Download citation

Publish with us

Policies and ethics

Navigation