Eddy Covariance Measurements Over Urban Areas

  • Chapter
  • First Online:
Eddy Covariance

Part of the book series: Springer Atmospheric Sciences ((SPRINGERATMO))

  • 4802 Accesses

Abstract

Throughout the last two decades, numerous research projects applied the eddy covariance (EC) approach to urban ecosystems to directly measure turbulent fluxes between the urban surface and the atmosphere to quantify the exchange of energy, water vapor, greenhouse gases, air pollutants, and aerosols in connection with the assessment of (air pollutant) dispersion and of the urban energy, water, and carbon balances. Numerical models for dispersion, air pollution, and weather forecasting in cities rely on parameterization schemes for turbulence and surface exchange, which should take into account the implications that arise from the extremely rough surface of cities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23:1–16

    Article  Google Scholar 

  • Aubinet M, Feigenwinter C, Heinesch B, Bernhofer C, Canepa E, Lindroth A, Montagnani L, Rebmann C, Sedlak P, Van Gorsel E (2010) Direct advection measurements do not help to solve the night-time CO2 closure problem: evidence from three different forests. Agric For Meteorol 150:655–664

    Article  Google Scholar 

  • Christen A, Vogt R (2004) Energy and radiation balance of a central European city. Int J Climatol 24:1395–1421

    Article  Google Scholar 

  • Christen A, van Gorsel E, Vogt R (2007) Coherent structures in urban roughness sublayer turbulence. Int J Climatol 27:1955–1968

    Article  Google Scholar 

  • Christen A, Vogt R, Rotach MW (2009a) The budget of turbulent kinetic energy in the urban roughness sublayer. Bound Layer Meteorol 131:193–223

    Article  Google Scholar 

  • Christen A, Coops N, Crawford B, Liss K, Oke, TR (2009b) The role of soils and lawns in urban-atmosphere exchange of carbon dioxide. In: 7th International Conference on Urban Climate, Yokahama, Japan

    Google Scholar 

  • Churkina G (2008) Modeling the carbon cycle of urban systems. Ecol Model 216(2):107–113

    Article  Google Scholar 

  • Donateo A, Contini D, Belosi F (2006) Real time measurements of PM2.5 concentrations and vertical turbulent fluxes using an optical detector. Atmos Environ 40:1346–1360

    Article  Google Scholar 

  • Dorsey JR, Nemitz E, Gallagher MW, Fowler D, Williams PI, Bower KN, Beswick KM (2002) Direct measurements and parameterisation of aerosol flux, concentration and emission velocity above a city. Atmos Environ 36:791–800

    Article  Google Scholar 

  • Famulari D, Nemitz E, Di Marco C, Phillips GJ, Thomas R, House E, Fowler D (2009) EC measurements of nitrous oxide fluxes above a city. Agric For Meteor 150:786–793. doi:10.1016/j.agrformet.2009.08.003

    Article  Google Scholar 

  • Feigenwinter C, Vogt R (2005) Detection and analysis of coherent structures in urban turbulence. Theor Appl Climatol 81:219–230. doi:10.1007/s00704-004-0111-2

    Article  Google Scholar 

  • Finnigan JJ, Clement R, Malhi Y, Leuning R, Cleugh HA (2003) A re-evaluation of long-term flux measurement techniques – Part I: averaging and coordinate rotation. Bound Layer Meteorol 107:1–48

    Article  Google Scholar 

  • Grimmond CSB (2006) Progress in measuring and observing the urban atmosphere. Theor Appl Climatol 84:3–22. doi:10.1007/s00704-005-0140-5

    Article  Google Scholar 

  • Grimmond CSB, Oke TR (1998) Anemometrically determined roughness and displacement lengths in urban areas. Bound Layer Meteorol 89:1–24

    Article  Google Scholar 

  • Grimmond CSB, Oke TR (1999) Aerodynamic properties of urban areas derived from analysis of urban form. J Appl Meteorol 38:1262–1292

    Article  Google Scholar 

  • Grimmond CSB, Salmond JA, Oke TR, Offerle B, Lemonsu A (2004) Flux and turbulence measurements at a densely built-up site in Marseille: heat, mass (water and carbon dioxide), and momentum. J Geophys Res 109:D24101. doi:10.1029/2004JD004936

    Article  Google Scholar 

  • Grimmond CSB, Lietzke B, Marras S, Spano D, Vogt R, Young D (2010) Energy, water and carbon. State of the science in urban areas. BRIDGE-Collaborative Project, FP7 contract 211345, pp. 108. Available online on: www.bridge-fp7.eu

  • Ichinose T, Shimodozono K, Hanaki K (1999) Impact of anthropogenic heat on urban climate in Tokyo. Atmos Environ 33:3897–3909

    Article  Google Scholar 

  • Järvi L, Mammarella I, Eugster W, Ibrom A, Siivola E, Dellwik E, Keronen P, Burba G, Vesala T (2009a) Comparison of net CO2 fluxes measured with open- and closed-path infrared gas analyzers in an urban complex environment. Boreal Environ Res 14:499–514

    Google Scholar 

  • Järvi L, Rannik Ü, Mammarella I, Sogachev A, Aalto PP, Keronen P, Siivola E, Kumala M, Vesala T (2009b) Annual particle flux observations over a heterogeneous urban area. Atmos Chem Phys 9:7847–7856

    Article  Google Scholar 

  • Kanda M (2006) Large eddy simulations on the effects of surface geometry of building arrays on turbulent organized structures. Bound Layer Meteorol 118:151–168

    Article  Google Scholar 

  • Kastner-Klein P, Rotach MW (2004) Mean flow and turbulence characteristics in an urban roughness layer. Bound Layer Meteorol 111:55–84

    Article  Google Scholar 

  • Langford B, Davison B, Nemitz E, Hewitt CN (2009) Mixing ratios and eddy covariance flux measurements of volatile organic compounds from an urban canopy Manchester, (UK). Atmos Chem Phys 9:1971–1987

    Article  Google Scholar 

  • Longley D, Gallagher MW, Dorsey JR, Flynn M, Bowr KN, Allen JD (2004) Street canyon aerosol pollutant transport measurements. Sci Total Environ 334–335:327–336

    Google Scholar 

  • Moriwaki R, Kanda M (2004) Seasonal and diurnal fluxes of radiation, heat, water vapor and CO2 over a suburban area. J Appl Meteorol 43:1700–1710

    Article  Google Scholar 

  • Moriwaki R, Kanda M (2006) Local and global similarity in turbulent transfer of heat, water vapour, and CO2 in the dynamic convective sublayer over a suburban area. Bound Layer Meteorol 120:163–179. doi:10.1007/s10546-005-9034-4

    Article  Google Scholar 

  • Moriwaki R, Kanda M, Harumi N (2006) CO2 build-up within a suburban canopy layer in winter night. Atmos Environ 40:1394–1407. doi:10.1016/j.atmosenv.2005.10.059

    Article  Google Scholar 

  • Offerle B, Grimmond CSB, Fortuniak K (2005) Heat storage and anthropogenic heat flux in relation to the energy balance of a central European city centre. Int J Climatol 25:1405–1419

    Article  Google Scholar 

  • Oikawa S, Meng Y (1995) Turbulence characteristics and organized motions in a suburban roughness sublayer. Bound Layer Meteorol 74:289–312

    Article  Google Scholar 

  • Oke TR (1975) The distinction between canopy and boundary-layer urban heat islands. Atmosphere 14:268–277

    Google Scholar 

  • Oke TR (1984) Methods in urban climatology. In: Applied climatology, Zürcher Geographische Schriften, vol 14, pp 19–29

    Google Scholar 

  • Oke T (1987) Boundary layer climates. Methuen, London

    Google Scholar 

  • Oke TR (2006a) Towards better scientific communication in urban climate. Theor Appl Climatol 84:179–190

    Article  Google Scholar 

  • Oke TR (2006b) Initial guidance to obtain representative meteorological observations at urban sites. Instrument and Observing Methods (IOM), report No.81, WMO/TD. No. 1250. World Meteorological Organization, Geneva

    Google Scholar 

  • Pigeon G, Legain D, Durand P, Masson V (2007a) Anthropogenic heat release in an old European agglomeration (Toulouse, France). Int J Climatol 27:1969–1981

    Article  Google Scholar 

  • Pigeon G, Lemonsu A, Grimmond CSB, Durand P, Thouron O, Masson V (2007b) Divergence of turbulent fluxes in the surface layer: case of a coastal city. Bound Layer Meteorol 124:269–290

    Article  Google Scholar 

  • Raupach MR, Finnigan JJ, Brunet Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Bound Layer Meterorol 78:351–382

    Article  Google Scholar 

  • Roberts SM, Oke TR, Grimmond CSB, Voogt JA (2006) Comparison of four methods to estimate urban heat storage. J Appl Meteorol Climatol 45:1766–1781

    Article  Google Scholar 

  • Rotach MW (1999) On the influence of the urban roughness sublayer on turbulence and dispersion. Atmos Environ 33:4001–4008

    Article  Google Scholar 

  • Rotach MW (2001) Simulation of urban-scale dispersion using a Lagrangian stochastic dispersion model. Bound Layer Meteorol 99:379–410

    Article  Google Scholar 

  • Roth M (2000) Review of atmospheric turbulence over cities. Q J R Meteorol Soc 126:941–990

    Article  Google Scholar 

  • Stewart I (2009) Classifying urban climate field sites by “Local Climate Zones”. Urban Climate News 34, 8–11. www.urban-climate.org/IAUC034.pdf

  • Stewart I, Oke TR (2009) Newly developed ‘thermal climate zones’ for defining and measuring urban heat island magnitude in the canopy layer. Preprints T.R. Oke symposium & eighth symposium on urban environment, Phoenix, Paper J8.3. American Meteorological Society, Boston, MA

    Google Scholar 

  • Trusilova K, Churkina G (2008) The response of the terrestrial biosphere to urbanization: land cover conversion, climate, and urban pollution. Biogeosciences 5:1505–1515

    Article  Google Scholar 

  • Velasco E, Lamb B, Pressley S, Allwine E, Westberg H, Jobson BT, Alexander M, Prazeller P, Molina L, Molina M (2005a) Flux measurements of volatile organic compounds from an urban landscape. Geophys Res Lett 32:L20802. doi:10.1029/2005GL023356

    Article  Google Scholar 

  • Velasco E, Pressley S, Allwine E, Westberg H, Lamb B (2005b) Measurements of CO2 fluxes from the Mexico City urban landscape. Atmos Environ 39:7433–7446

    Article  Google Scholar 

  • Velasco E et al (2009) EC flux measurements of pollutant gases in urban Mexico City. Atmos Chem Phys 9:7325–7342

    Article  Google Scholar 

  • Vogt R, Christen A, Rotach MW, Roth M, Satyanarayana ANV (2005) Temporal dynamics of CO2 fluxes and profiles over a Central European city. Theor Appl Climatol 84:117–126. doi:10.1007/s00704-005-0149-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Feigenwinter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Feigenwinter, C., Vogt, R., Christen, A. (2012). Eddy Covariance Measurements Over Urban Areas. In: Aubinet, M., Vesala, T., Papale, D. (eds) Eddy Covariance. Springer Atmospheric Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2351-1_16

Download citation

Publish with us

Policies and ethics

Navigation