Abstract

Concern over sustainability of fossil fuel use is raised due to depleting fuel resources and emitting greenhouse gases (GHGs) from it. Among many alternative energy sources, biofuels, natural gas, hydrogen, and synthesis gas (syngas) emerge as four strategically important sustainable energy sources. As hydrogen gas is renewable, it does not evolve GHGs, and releases large amount of energy in combustion of unit weight and hydrogen can also be easily converted into electricity by fuel cell. It could be a strong candidate for future alternate energy resource. Biological H2 production delivers clean H2 in sustainable manner with simple technology and more attractive potential than the current chemical production of H2. Although present industrial hydrogen production system is based on chemical processing units, research trend on biohydrogen promises a deafening potential of industrial biohydrogen production in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 105.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Arimi MM, Knodel J, Kiprop A, Namango SS, Zhang Y, Geiben SU (2015) Strategies for improvement of biohydrogen production from organic-rich wastewater: a review. Biomass Bioenergy 75:101–118

    Article  CAS  Google Scholar 

  • Basak N, Jana AK, Das D, Saikia D (2014) Photofermentative molecular biohydrogen production by purple-non-sulfur (PNS) bacteria in various modes: the present progress and future perspective. Int J Hydrog Energy 39:6853–6871

    Article  CAS  Google Scholar 

  • Benchmarking of Biodiesel Fuel Standardization in East Asia Working Group (2010) Energy situation in the world. In: Goto S, Oguma M, Chollacoop N (eds) EAS-ERIA biodiesel fuel trade handbook: 2010. ERIA, Jakarta, pp 6–15

    Google Scholar 

  • BP (2015) BP energy outlook 2035. British Petroleum. Available at: http://www.bp.com/content/dam/bp/pdf/energy-economics/energy-outlook-2015/bp-energy-outlook-2035-booklet.pdf. Accessed on 24 Feb 2016

  • Brentner LB, Peccia J, Zimmerman JB (2010) Challenges in develo** biohydrogen as a sustainable energy source: implications for a research agenda. Environ Sci Technol 44(7):2243–2254

    Article  CAS  Google Scholar 

  • Claassen PAM (2011) Final activity report of integrated project “Non-thermal production of pure hydrogen from biomass”. Available at: http://www.biohydrogen.nl/downloadattachment/22636/26107/PES_P5_Final_Report_08092011.pdf on 21 June 2015

  • Corbo P, Migliardini F, Veneri O (2011) Hydrogen fuel cells for road vehicles. Green energy and technology. Springer-Verlag London Limited, London, UK

    Google Scholar 

  • Das D, Veziroglu TN (2008) Advances in biological hydrogen production processes. Int J Hydrogen Energy 33:6046–6057

    Article  CAS  Google Scholar 

  • Dhanya MS, Prasad S, Singh A (2013) Biogas technology for develo** countries: an approach to sustainable development. In: Koress NE, O’Kiely P, Benzie JAH, West JS (eds) Bioenergy production by anaerobic digestion: using agricultural biomass and organic wastes. Routledge (Taylor and Francis Group), New York, pp 30–45

    Google Scholar 

  • Energy Information Administration (2011) Annual energy outlook 2011 with projections to 2035. Washington, DC. Available at http://www.eia.gov/oiaf/aeo/aeoref_tab.htm

  • FAO (2005) Bioenergy. Sustainable Development Department, FAO, Rome, Italy. 11 Mar 2006. Available from http://www.fao.org/sd/dim_en2/en2_050402_en.htm. Accessed on 5 Jan 2012

  • Gallucci M (2015) Oil price outlook is still uncertain as global demand and supplies both surge, energy agency says. The International Business Times, New York. Available at: http://www.ibtimes.com/oil-price-outlook-still-uncertain-global-demand-supplies-both-surge-energy-agency-1883284 [Accessed on 30th May 2016].

  • Ghimire A, Frunzo L, Pirozzi F, Trably E, Escudie R, Lens PNL, Esposito G (2015) A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl Energy 144:73–95

    Article  CAS  Google Scholar 

  • Gullison RE, Frumhoff PC, Canadell JG, Field CB, Nepstad DC, Hayhoe K, Avissar R, Curran LM, Friedlingstein P, Jones CD, Nobre C (2007) Tropical forests and climate change. Science 316:985–986

    Article  CAS  Google Scholar 

  • Hallenbeck PC, Ghosh D (2009) Advances in fermentative biohydrogen production: the way forward? Trends Biotechnol 27:287–297

    Article  CAS  Google Scholar 

  • Hepbasli A (2008) A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renewable sustain. Energy Rev 12:593–661

    Google Scholar 

  • Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139(4):244–260

    Article  CAS  Google Scholar 

  • http://www.hyways.de/. Accessed on Jan 2015

  • IEA (2007) World energy outlook 2007 - special report - focus on energy poverty. International Energy Agency, Paris

    Book  Google Scholar 

  • IEA (2008) Worldwide trends in energy use and efficiency key insights from IEA indicator analysis. International Energy Agency, Paris

    Google Scholar 

  • IEA (2014) World energy outlook 2014 factsheet. International Energy Agency, Paris

    Book  Google Scholar 

  • IEA (2015a) Key world energy statistics. International Energy Agency (IEA), France

    Google Scholar 

  • IEA (2015b) World energy outlook 2015: executive summary. International Energy Agency (IEA), France

    Book  Google Scholar 

  • International Energy Agency (2006) Renewable energy: RD&D priorities, insights from the IEA technology programmes. IEA, Paris

    Google Scholar 

  • Kalamaras CM, Efstathiou AM (2013) Hydrogen production technologies: current state and future developments. In: Conference papers in energy, Article ID 690627. Hindawi Publishing Corporation

    Google Scholar 

  • Lay JJ (2001) Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol Bioeng 74:280–287

    Article  CAS  Google Scholar 

  • Lee DH (2014) Development and environmental impact of hydrogen supply chain in Japan: assessment by the CGE-LCA method in Japan with a discussion of the importance of biohydrogen. Int J Hydrog Energy 39(33):19294–19310

    Article  CAS  Google Scholar 

  • Lee DH, Chiu LH (2012) Development of a biohydrogen economy in the United States, China, Japan, and India: with discussion of a chicken-and-egg debate. Int J Hydrog Energy 37:15736–15745

    Article  CAS  Google Scholar 

  • Lee DH, Hung CP (2012) Toward a clean energy economy: with discussion on role of hydrogen sectors. Int J Hydrog Energy 37:15753–15765

    Article  CAS  Google Scholar 

  • Levin DB, Chahine R (2010) Challenges for renewable hydrogen production from biomass. Int J Hydrog Energy 35:4962–4969

    Article  CAS  Google Scholar 

  • Ma T, Chen M, Wang C, Mao Z, Jiang M (2013) Study on the environment-resource economy comprehensive efficiency evaluation of the biohydrogen production technology. Int J Hydrog Energy 38:13062–13068

    Article  CAS  Google Scholar 

  • Maniatis K (2003) Pathways for the production of bio-hydrogen: opportunities and challenges. In: Towards hydrogen. IEA, Paris. 3 Mar 2003

    Google Scholar 

  • Manish S, Banerjee R (2008) Comparison of biohydrogen production processes. Int J Hydrog Energy 33:279–286

    Article  CAS  Google Scholar 

  • Marone A, Varrone C, Fiocchetti F, Giussani B, Izzo G, Mentuccia L, Rosa S, Signorini A (2015) Optimization of substrate composition for biohydrogen production from buffalo slurry co-fermented with cheese whey and crude glycerol, using microbial mixed culture. Int J Hydrog Energy 40(1):209–218

    Article  CAS  Google Scholar 

  • Maru BT (2014) Sustainable production of hydrogen and chemical commodities from biodiesel waste crude glycerol and cellulose by biological and catalytic processes. PhD thesis submitted to Universitat Rovira I Virgili

    Google Scholar 

  • Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol 127:740–748

    Article  CAS  Google Scholar 

  • Melis A, Melnicki MR (2006) Integrated biological hydrogen production. Int J Hydrogen Energy 31:1563–1573

    Article  CAS  Google Scholar 

  • Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Progress Energy Combust Sci 37:52–68

    Article  CAS  Google Scholar 

  • Oncel SS, Kose A, Faraloni C (2015) Genetic optimization of microalgae for biohydrogen production. In: Handbook of marine microalgae. Biotechnology advances. Academic, pp 383–404

    Google Scholar 

  • Prasad S, Singh A, Joshi HC (2007a) Ethanol as an alternative fuel from agricultural, industrial and urban residues’. Resour Conserv Recycl 50:1–39

    Article  Google Scholar 

  • Prasad S, Singh A, Jain N, Joshi HC (2007b) Ethanol production from sweet sorghum syrup for utilization as automotive fuel in India. Energy Fuel 21(4):2415–2420

    Article  CAS  Google Scholar 

  • Rathore D, Singh A (2013) Biohydrogen production from microalgae. In: Gupta VK, Tuohy MG (eds) Biofuels technologies recent developments. Springer, Berlin, pp 317–333

    Chapter  Google Scholar 

  • Rathore D, Pant D, Singh A (2013) A comparison of life cycle assessment studies of different biofuels. In: Singh A, Pant D, Olsen SI (eds) Life cycle assessment of renewable energy sources. S**er-Verlag, London, pp 269–289

    Chapter  Google Scholar 

  • Rathore D, Nigam PS, Singh A (2015) Biorefinery concept for a microalgal bioenergy production system. In: Kim SK, Lee CG (eds) Marine bioenergy: trends and developments. CRC Press, Boca Raton, pp 179–194

    Chapter  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res 1:20–43

    Article  Google Scholar 

  • Sekoai PT, Daramola MO (2015) Biohydrogen production as a potential energy fuel in South Africa. Biofuel Res J 6:223–226

    Article  Google Scholar 

  • Sheehan J (2009) Biofuels and the conundrum of sustainability. Curr Opin Biotechnol 20:318–324

    Article  CAS  Google Scholar 

  • Show KY, Lee DJ, Jhang ZP (2011a) Production of biohydrogen: current perspectives and future prospects. In: Pandey A, Larroche C, Ricke SC, Dussap C-G, Gnansounou E (eds) Biofuels alternative feedstocks and conversion processes. Academic Press, Amsterdam, pp 467–479.

    Google Scholar 

  • Show KY, Lee DJ, Chang JS (2011b) Bioreactor and process design for biohydrogen production. Bioresour Technol 102:8524–8533

    Article  CAS  Google Scholar 

  • Show KY, Lee DJ, Tay JH, Lin CY, Chang JS (2012) Biohydrogen production: current perspectives and the way forward. Int J Hydrog Energy 37:15616–15631

    Article  CAS  Google Scholar 

  • Sims REH, Schock RN, Adegbululgbe A, Fenhann J, Konstantinaviciute I, Moomaw W, Nimir HB, Schlamadinger B, Torres-Martínez J, Turner C, Uchiyama Y, Vuori SJV, Wamukonya N, Zhang X (2007) Energy supply. In: Metz B, Davidson OR, Bosch PR, Dave R, Meyer LA (eds) Climate change 2007: mitigation. Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Singh A, Olsen SI (2012) Key issues in life cycle assessment of biofuels. In: Gopalakrishnan K et al (eds) Sustainable bioenergy and bioproducts, green energy and technology. Springer-Verlag London Limited, London, UK, pp 213–228.

    Google Scholar 

  • Singh A, Pant D, Korres NE, Nizami AS, Prasad S, Murphy JD (2010a) Key issues in life cycle assessment of ethanol production from lignocellulosic biomass: challenges and perspectives. Bioresour Technol 101(13):5003–5012

    Article  CAS  Google Scholar 

  • Singh A, Smyth BM, Murphy JD (2010b) A biofuel strategy for Ireland with an emphasis on production of biomethane and minimization of land-take. Renew Sustain Energy Rev 14(1):277–288

    Article  CAS  Google Scholar 

  • Singh A, Olsen SI, Nigam PS (2011) A viable technology to generate third generation biofuel. J Chem Technol Biotechnol 86(11):1349–1353

    Article  CAS  Google Scholar 

  • Sinha P, Pandey A (2011) An evaluation report and challenges for fermentative biohydrogen production. Int J Hydrog Energy 36:7460–7478

    Article  CAS  Google Scholar 

  • Sittijunda S, Reungsang A, O-thong S (2010) Biohydrogen production from dual digestion pretreatment of poultry slaughterhouse sludge by anaerobic self-fermentation. Int J Hydrog Energy 35(24):13427–13434

    Article  CAS  Google Scholar 

  • Skonieczny MT, Yargeau V (2009) Biohydrogen production from wastewater by Clostridium beijerinckii: effect of pH and substrate concentration. Int J Hydrog Energy 34(8):3288–3294

    Article  CAS  Google Scholar 

  • Sørensen B (2012) Hydrogen and fuel cells emerging technologies and applications, 2nd edn. Academic Press, Oxford

    Google Scholar 

  • Subhadra B, Edwards M (2010) An integrated renewable energy park approach for algal biofuel production in United States. Energy Policy 38(9):4897–4902

    Google Scholar 

  • Turner JA (2004) Sustainable hydrogen production. Science 305(5686):972–974

    Article  CAS  Google Scholar 

  • Venghaus S, Selbmann K (2014) Biofuel as social fuel: introducing socio environmental services as a means to reduce global inequity? Ecol Econ 97:84–92

    Article  Google Scholar 

  • Venkata Mohan S (2010) Waste to renewable energy: a sustainable and green approach towards production of biohydrogen by acidogenic fermentation. In: Singh OV, Harvey SP (eds) Sustainable biotechnology. Springer, Amsterdam, pp 129–164

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anoop Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer India

About this chapter

Cite this chapter

Singh, A., Rathore, D. (2017). Biohydrogen: Next Generation Fuel. In: Singh, A., Rathore, D. (eds) Biohydrogen Production: Sustainability of Current Technology and Future Perspective. Springer, New Delhi. https://doi.org/10.1007/978-81-322-3577-4_1

Download citation

Publish with us

Policies and ethics

Navigation