Are We Giving Unbalanced Amino Acid Solutions?

-From Protein Hydrolysates to Tailored Solutions-

  • Chapter
Metabolic Support of the Critically Ill Patient

Part of the book series: Update in Intensive Care and Emergency Medicine ((UICM,volume 17))

Abstract

It has been known for more than 50 years that a severe traumatic injury gives rise to striking changes in metabolism. In particular, there is a marked increase in nitrogen (N) excretion indicating net protein catabolism and an enhanced oxygen utilization, demonstrating increased oxidation of energy substrates [1]. Recent developments in nutritional support of such patients have enabled body mass to be preserved while healing occurs [2]. Today consensus has been reached that amino acid nutrition beneficially affects net nitrogen balance during episodes of trauma, injury or infection [3–6]. Negative N-balance after severe trauma or injury can therefore be minimized if large amounts of amino acid N together with energy substrates are provided by the intravenous route [5, 7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cuthbertson DP (1932) Observations of the disturbances of metabolism produced by injury to the limbs. Q J Med 1:223–230

    Google Scholar 

  2. Davies JWL, et al (1977) The nutrition of patients with burns. In: Richards JR, Kinney JM (eds) Nutritional aspects of care in the critically ill. Churchill Livingstone, London, pp 595–612

    Google Scholar 

  3. Van Way CW, Meng HC, Sandstead HH (1975) Nitrogen balance in postoperative patients receiving parenteral nutrition. Ann Surg 110:272–276

    Google Scholar 

  4. Fürst P, Bergström J, Kinney JM, Vinnars E (1977) Nutrition in post-operative catabolism. In: Richards JR, Kinney JM (eds) Nutritional aspects of care of the critically ill. Churchill Livingstone, Edinburgh, pp 389–410

    Google Scholar 

  5. Shenkin A, Neuhäuser M, Bergström J, et al (1980) Biochemical changes associated with severe trauma. Am J Clin Nutr 33:2119–2127

    PubMed  CAS  Google Scholar 

  6. Iapichino G, Gattinoni L, Solca M, et al (1982) Protein sparing and protein replacement in acutely injured patients during TPN with and without amino acid supply. Intensive Care Med 8:25–31

    Article  PubMed  CAS  Google Scholar 

  7. Kinney JM, Elwyn DH (1983) Protein metabolism and injury. Annu Rev Nutr 3:433–466

    Article  PubMed  CAS  Google Scholar 

  8. Moore FD, Brennan MR (1975) Intravenous amino acids. N Engl J Med 293:194–195

    Article  PubMed  CAS  Google Scholar 

  9. Fürst P, Stehle P (1992) New substrates for protein nutrition. In: Schlierf G (ed) Recent advances in clinical nutrition. Smith-Gordon, London, pp 213–229

    Google Scholar 

  10. Levenson SM, Hopkins BS, Waldron M, Canham JE, Seifter E (1984) Early history of parenteral nutrition. Fed Proc 43:1391–1406

    PubMed  CAS  Google Scholar 

  11. Fürst P, Stehle P (1990) Künstliche Ernährung - gestern, heute, morgen. Infusionsther Klin Ern 17:237–244

    Google Scholar 

  12. Fürst P (1985) Regulation of intracellular metabolism of amino acids. In: Bozetti F, Dionigi R (eds) Nutrition in trauma and cancer sepsis. Karger, Basel, pp 21–53

    Google Scholar 

  13. Fürst P (1983) Intracellular muscle free amino acids - their measurement and function. Proc Nutr Soc 42:451–462

    Article  PubMed  Google Scholar 

  14. Harper AE (1964) Amino acid toxicities and imbalances. In: Munro HN, Allison JB (eds) Mammalian protein metabolism. Academic Press, New York, pp 87–134

    Google Scholar 

  15. Fürst P (1983) Criteria underlying the formulation of amino acid regimens: Established and new approaches. In: Kleinberger G, Deutsch E (eds) New aspects of clinical nutrition. Karger, Basel, New York, pp 361–376

    Google Scholar 

  16. O’Dwyer ST, Smith RJ, Kripke SA, Settle RG, Rombeau JL (1990) New fuels for the gut. In: Rombeau JL, Caldwell MD (eds) Clinical nutrition: Enteral and tube feeding. WB Saunders Co, Philadelphia, pp 540–555

    Google Scholar 

  17. Fürst P, Stehle P (1993) The potential use of parenteral dipeptides in clinical nutrition. Nutr in Pract 8 (in press)

    Google Scholar 

  18. Wilmore DW (1989) The practice of clinical nutrition: How to prepare for the future. JPEN 13:337–343

    Article  CAS  Google Scholar 

  19. Snyderman SE (1970) The protein and amino acid requirements of the premature infant. In: Jonxis JHP, Visser HKA, Troelstra JA (eds) Metabolic processes in the foetus and newborn infant. Stenfert Kroese, Leiden, pp 128–141

    Google Scholar 

  20. Anderson HL, Cho ES, Wixom RL (1986) Effects of long-term, low histidine diet on men. In: Fürst P, Kluthe R (eds) Histidine III. Wissenschaftliche Verlagsgesellschaft, Stuttgart, pp 2–25

    Google Scholar 

  21. Fürst P (1972) 15N-studies in severe renal failure. II. Evidence for the essentiality of histidine. Scand J Clin Lab Invest 30:307–312

    Article  PubMed  Google Scholar 

  22. Fürst P (1989) Amino acid metabolism in uremia. J Am Coll Nutr 8:310–323

    PubMed  Google Scholar 

  23. Galbraith RA, Buse MG (1981) Effects of serine on protein synthesis and insulin receptors. Am J Physiol 241:C167–C171

    PubMed  CAS  Google Scholar 

  24. Bergström J, Alvestrand A, Fürst P (1990) Plasma and muscle free amino acids in maintenance hemodialysis patients without protein malnutrition. Kidney Int 38:108–114

    Article  PubMed  Google Scholar 

  25. Najarian N, Harper AE (1956) A clinical study of the effect of arginine on blood ammonia. Am J Med 21:832–842

    Article  PubMed  Google Scholar 

  26. Kirk SJ, Barbul A (1990) Role of arginine in trauma, sepsis, and immunity. JPEN 14:226S-229S

    Article  CAS  Google Scholar 

  27. Daly JM, Reynolds J, Thom A (1988) Immune and metabolic effects of arginine in the surgical patients. Ann Surg 208:512–523

    Article  PubMed  CAS  Google Scholar 

  28. Vinnars E, Fürst P, Hallgren B, Hermansson IL, Josephson B (1970) The nutritive effect in man of non-essential acids infused intravenously (together with the essential ones). I. Individual non-essential amino acids. Acta Anaesth Scand 14:147–172

    Article  PubMed  CAS  Google Scholar 

  29. Bergström J, Fürst P, Noree LO, Vinnars E (1974) Intracellular free amino acid concentration in human muscle tissue. J Appl Physiol 36:693–697

    PubMed  Google Scholar 

  30. Bergström J, Alvestrand A, Fürst P, Lindholm B (1989) Sulphur amino acids in plasma and muscle in patients with chronic renal failure. Evidence for taurine depletion. J Int Med 226:189–194

    Article  Google Scholar 

  31. Geggel HS, Ament ME, Heckenlively JR, Martin DA, Kopple BS, Kopple JD (1985) Nutritional requirement for taurine in patients receiving long-term parenteral nutrition. N Engl J Med 312:142–146

    Article  PubMed  CAS  Google Scholar 

  32. Zelikovic I, Chesney RW, Friedman AL, Ahlfors CE (1990) Taurine depletion in very low birth weight infants receiving prolonged total parenteral nutrition: Role of renal immaturity. J Pediatr 116:301–306

    Article  PubMed  CAS  Google Scholar 

  33. Desai TK, Maliakkal J, Kinzie JL, Ehrinpreis MN (1992) Taurine deficiency after intensive chemotherapy and/or radiation. Am J Clin Nutr 55:708–711

    PubMed  CAS  Google Scholar 

  34. Kopple JD, Vinton NE, Laidlaw SA, Ament ME (1990) Effect of intravenous taurine supplementation on plasma, blood cell, and urine taurine concentrations in adults undergoing long-term parenteral nutrition. Am J Clin Nutr. 52:846–853

    PubMed  CAS  Google Scholar 

  35. Sturman JA, Gaull G, Räihä NCR (1970) Absence of cystathionase in human fetal liver. Is cystine essential? Science 169:74–75

    CAS  Google Scholar 

  36. Chawla RK, Lewis FW, Kutner M, Bate DM, Roy RGB, Rudman D (1984) Plasma cysteine, cystine, and glutathione in cirrhosis. Gastroenterology 87:770–776

    PubMed  CAS  Google Scholar 

  37. Stegink LD, Den Besten L (1972) Synthesis of cysteine from methionine in normal adult subjects: Effect of route of alimentation. Science 178:514–516

    Article  PubMed  CAS  Google Scholar 

  38. Räihä NCR (1973) Phenylalanine hydroxylase in human liver during development. Pe- diat Res 7:1–4

    Google Scholar 

  39. Rudman D, Williams PJ (1985) Nutrient deficiencies during total parenteral nutrition. Nutr Rev 43:1–13

    Article  PubMed  CAS  Google Scholar 

  40. Windmueller HG, Spaeth AE (1974) Uptake and metabolism of plasma glutamine by the small intestine. J Biol Chem 249:5070–5079

    PubMed  CAS  Google Scholar 

  41. Souba WW (1991) Glutamine: A key substrate for the splanchnic bed. Annu Rev Nutr 11:285–308

    Article  PubMed  CAS  Google Scholar 

  42. Newsholme EA, Newsholme P, Curi R, Challoner E, Ardawi MSM (1988) A role for muscle in the immune system and its importance in surgery, trauma, sepsis and burns. Nutrition 4:261–268

    Google Scholar 

  43. Jepson MM, Bates PC, Broadbent P, Pell JM, Millward DJ (1988) Relationship between glutamine concentration and protein synthesis in rat skeletal muscle. Am J Physiol 255:E166–E172

    PubMed  CAS  Google Scholar 

  44. MacLennan PA, Brown RA, Rennie MJ (1987) A positive relationship between protein synthetic rate and intracellular glutamine concentration in perfused rat skeletal muscle. FEBS (Lett) 215:187–191

    Article  CAS  Google Scholar 

  45. Fürst P, Albers S, Stehle P (1990) Glutamine-containing dipeptides in parenteral nutrition. JPEN 14:118S-124S

    Article  Google Scholar 

  46. Khan K, Hardy G, McElroy B, Elia M (1991) The stability of L-glutamine in total parenteral nutrition solutions. Clin Nutr 10:193–198

    Article  PubMed  Google Scholar 

  47. Lowe DK, Benfell K, Smith RJ, et al (1990) Safety of glutamine-enriched parenteral nutrient solutions in humans. Am J Clin Nutr 52:1101–1106

    PubMed  CAS  Google Scholar 

  48. Hammarqvist F, Wernerman J, Ali R, Von der Decken A, Vinnars E (1989) Addition of glutamine to total parenteral nutrition after elective abdominal surgery spares free glutamine in muscle, counteracts the fall in muscle protein synthesis, and improves nitrogen balance. Ann Surg 209:455–161

    Article  PubMed  CAS  Google Scholar 

  49. Ziegler TR, Young LS, Benfell K, et al (1992) Clinical and metabolic efficacy of glutamine-supplemented parenteral nutrition after bone marrow transplantation. A randomized, double-blind, controlled study. Ann Intern Med 116:821–828

    PubMed  CAS  Google Scholar 

  50. Fürst P (1991) Peptides in clinical nutrition. Clin Nutr 10:519–524

    Google Scholar 

  51. Daabees TT, Stegink LD (1978) L-alanyl-L-tyrosine as a tyrosine source during intravenous nutrition of the rat. J Nutr 108:1104–1113

    PubMed  CAS  Google Scholar 

  52. Neuhäuser M (1985) Utilization of glycyl-L-tyrosine during long-term parenteral nutrition in the growing rat. Clin Nutr 4 (Suppl): 124–130

    Article  Google Scholar 

  53. Stehle P, Ratz I, Fürst P (1989) In vivo utilization of intravenously supplied L-alanyl- L-glutamine in various tissues of the rat. Nutrition 5:411–415

    PubMed  CAS  Google Scholar 

  54. Stehle P, Ratz I, Fürst P (1991) Whole-body autoradiography in the rat after intravenous bolus injection of L-alanyl-L-[U-14C]glutamine. Ann Nutr Metab 35:213–220

    Article  PubMed  CAS  Google Scholar 

  55. Stehle P, Albers S, Pollack L, Fürst P (1988) In vivo utilization of cystine-containing synthetic short chain peptides after intravenous bolus injection in the rat. J Nutr 118:1470–1474

    PubMed  CAS  Google Scholar 

  56. Roth E, Karner J, Ollenschläger G, Simmel A, Fürst P, Funovics J (1988) Alanylglu- tamine reduces muscle loss of alanine and glutamine in postoperative anaesthetized dogs. Clin Sci 75:641–648

    PubMed  CAS  Google Scholar 

  57. Tamada H, Nezu R, Imamura I, et al (1992) The dipeptide alanyl-glutamine prevents intestinal mucosal atrophy in parenterally fed rats. JPEN 16:110–116

    Article  CAS  Google Scholar 

  58. Albers S, Wernerman J, Stehle P, Vinnars E, Fürst P (1988) Availability of amino acids supplied intravenously in healthy man as synthetic dipeptides: Kinetic evaluation of L-alanyl-L-glutamine and glycyl-L-tyrosine. Clin Sci 75:463–468

    PubMed  CAS  Google Scholar 

  59. Druml W, Lochs H, Roth E, Hübl W, Balcke P, Lenz K (1991) Utilization of tyrosine dipeptides and acetyltyrosine in normal and uremic humans. Am J Physiol 260: E280–E285

    PubMed  CAS  Google Scholar 

  60. Albers S, Wernerman J, Stehle P, Vinnars E, Fürst P (1989) Availability of amino acids supplied by constant intravenous infusion of synthetic dipeptides in healthy man. Clin Sci 76:643–648

    PubMed  CAS  Google Scholar 

  61. Stehle P, Zander J, Mertes N, et al (1989) Effect of parenteral glutamine peptide supplements on muscle glutamine loss and nitrogen balance after major surgery. Lancet 1:231–233

    Article  PubMed  CAS  Google Scholar 

  62. Hammarqvist F, Wernerman J, Von der Decken A, Vinnars E (1990) Alanyl-glutamine counteracts the depletion of free glutamine and the postoperative decline in protein synthesis in skeletal muscle. Ann Surg 212:637–644

    Article  PubMed  CAS  Google Scholar 

  63. Barua JM, Wilson E, Downie S, Weryk B, Cuschieri A, Rennie MJ (1992) The effect of alanyl-glutamine peptide supplementation on muscle protein synthesis in post-surgical patients receiving glutamine-free amino acids intravenously. Proc Nutr Soc 51:104A

    Google Scholar 

  64. Tremel H, Kienle B, Weilemann LS, et al (1992) Glutamine dipeptide supplemented TPN maintains intestinal function in critically ill. Clin Nutr 11:25 (Abst)

    Article  Google Scholar 

  65. Magnusson I, Kihlberg R, Alvestrand A, Wernerman J, Ekman L, Wahren J (1989) Utilization of intravenously administered N-acetyl-L-glutamine in humans. Metabolism 38 (Suppl 1): 82–88

    Article  PubMed  CAS  Google Scholar 

  66. Magnusson I, Ekman L, Wangdahl M, Wahren J (1989) N-acetyl-L-tyrosine and N- acetyl-L-cysteine as tyrosine and cysteine precursors during intravenous infusion in humans. Metabolism 38: 957–961

    Article  PubMed  CAS  Google Scholar 

  67. Clement CY, Harper AE (1974) Liver polysome profile and protein synthesis in rats fed a threonine-imbalanced diet. J Nutr 104:252–260

    Google Scholar 

  68. Gaetani S, Paulucci AM, Spadoni MA, Tomassi G (1964) Activity of amino acid activating enzymes in tissues from protein depleted rats. J Nutr 84:173–181

    PubMed  CAS  Google Scholar 

  69. Noda K, Taniguchi H, Kitasaka R (1975) Effect of amino acid imbalance on protein synthesis of skeletal muscle and liver in rats. Nutr Rep Inter 11:129–134

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fürst, P., Stehle, P. (1993). Are We Giving Unbalanced Amino Acid Solutions?. In: Wilmore, D.W., Carpentier, Y.A. (eds) Metabolic Support of the Critically Ill Patient. Update in Intensive Care and Emergency Medicine, vol 17. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-85011-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-85011-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-85013-4

  • Online ISBN: 978-3-642-85011-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation