Abstract

The composition of gases released from volcanoes is a function of deep processes, such as vapor-melt separation during the generation and rise of the magmas, and shallow processes, active within the volcanic structures themselves. Of the three major types of volcanic systems, those associated with andesitic magmatism are the most suitable to the application of geochemical surveillance and monitoring techniques. Volatile contents of andesitic magmas, largely representing fluids released from the subducted slab, are likely to be high enough to allow a separate, volatile-rich phase to be present during all stages of magma generation and migration. In spite of highly variable solubilities in magmatic melts, the proportions of volatiles present in the vapors discharged from volcanic fumaroles resemble closely those acquired at depth suggesting that the vapor-melt systems have attained steady-state and that the overall process active during the rise of the volatiles is effectively nonfractionating.

The variability in the composition of volcanic gases accessible to sampling, therefore, is largely due to shallow processes, such as reequilibration in response to cooling and dilution by meteoric water, and interaction with fluids of associated hydrothermal systems. The most important buffer of the redox state of volcanic gases is that involving H2S and SO2 of the vapor phase. The concentrations of rapidly responding species, such as H2 and CO, reflect redox control by this “gas buffer”. Species with slower kinetic responses, such as CH4, are largely generated within the slow-moving hydrothermal systems associated with most active volcanic structures. At shallow levels, the contents of H2S and SO2 are affected by the deposition and reevaporation of elemental S and disproportionation of SO2 to H2S and sulfate in a hydrothermal environment. Relative amounts of the highly soluble species HCl and HF are also affected by interaction with hydro-thermal solutions. The compositions of the inert species, such as CO2, N2 and the noble gases provide information on the origins of the vapors, from the mantle, the subducted slab, or groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allard P, Carbonelle J, Dajlevic D, LeBronec JL, Morel P, Robe MC, Maurenas JM, Faivre-Pierret R, Martin D, Sabroux JC, Zettwoog P (1991) Eruptive and diffusive emission of CO2 from Mount Etna. Nature: 387–391

    Google Scholar 

  • Anderson AT, Newman S, Williams SN, Druitt TH, Skirius C, Stolper E (1989) H2O, CO2, Cl and gas in Plinian and ash-flow Bishop rhyolite. Geology 17: 221–225

    Article  Google Scholar 

  • Bacon CR, Newman S, Stolper E (1992) Water, CO2, Cl and F in melt inclusions in phenocrysts from three Holocene explosive eruptions, crater Lake, Oregon. Am Mineral 77: 1021–1030

    Google Scholar 

  • Blank JG, Stolper EM, Carroll MR (1993) Solubilities of carbon dioxide and water in rhyolitic melt at 850 °C and 750 bar. Earth Planet Sci Lett 119: 27–36

    Article  Google Scholar 

  • Bottinga Y, Javoy M (1990) MORB degassing: Bubble growth and ascent. Chem Geol 81: 255–270

    Article  Google Scholar 

  • Byers CD, Garcia MO, Muenow DW (1986) Volatiles in basaltic glasses from the East Pacific Rise at 21° N: implications for MORB sources and submarine lava flow morphology. Earth Planet Sci Lett 79: 9–20

    Article  Google Scholar 

  • Carmichael ISE, Ghiorso MS (1986) Oxidation-reduction relations in basic magma: a case for homogeneous equilibria. Earth Planet Sci Lett 78: 200–210

    Article  Google Scholar 

  • Carroll MR, Rutherford MJ (1985) Sulfide and sulfate saturation in hydrous silicate melts. J Geophys Res 90C: 601–612

    Google Scholar 

  • Chiodini G, Cioni R, Marini L (1993) Reactions governing the chemistry of crater fumaroles from Vulcano Island, Italy, and implications for volcanic surveillance. Appl Geochem 8: 357–371

    Article  Google Scholar 

  • Cole JW (1990) Structural control and origin of volcanism in the Taupo volcanic zone, New Zealand. Bull Volcanol 52: 445–459

    Article  Google Scholar 

  • D’Amore F, Bolognesi L (1993) Isotopic variation of the hydrothermal system on Vulcano Island, Italy. Geochim Cosmochim Acta 57: 2069–2082

    Article  Google Scholar 

  • Davis AS, Clague DA, Schultz MS, Hein JR (1991) Low sulfur content in submarine lavas: an unreliable indicator of subaerial eruption. Geology 19: 750–753

    Article  Google Scholar 

  • Delaney JR, Muenow DW, Graham DG (1978) Abundance and distribution of water, carbon and sulfur in the glassy rims of submarine pillow basalts. Geochim Cosmochim Acta 42: 581–594

    Article  Google Scholar 

  • Dixon JE, Clague DA, Stolper E (1991) Degassing history of water, sulfur and carbon in submarine lavas from Kilauea, Hawaii. J Geol 99: 371–394

    Article  Google Scholar 

  • Dunbar NW, Hervig RL, Kyle PR (1989) Determination of pre-emptive H2O, F and Cl contents of silicic magmas using melt inclusions: example from Taupo Volcanic Center, New Zealand. Bull Volcanol 51: 177–184

    Article  Google Scholar 

  • Ellis AJ (1957) Chemical equilibrium in magmatic gases. Am J Sci 255: 416–431

    Article  Google Scholar 

  • Francis P, Oppenheimer C, Stevenson D (1993) Endogenous growth of persistently active volcanoes. Nature 366: 554–557

    Article  Google Scholar 

  • Gerlach TM (1979) Evaluation and restauration of the 1970 volcanic gas analyses from Mt Etna, Sicily. J Volcanol Geotherm Res 6: 165–178

    Article  Google Scholar 

  • Gerlach TM (1986) Exsolution of H2O, CO2, and S during eruptive episodes at Kilauea volcano, Hawaii. J Geophys Res 91: 12177–12185

    Article  Google Scholar 

  • Giggenbach WF (1975) A simple method for the collection and analysis of volcanic gas samples. Bull Volcanol 39: 132–145

    Article  Google Scholar 

  • Giggenbach WF (1987) Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. Appl Geochem 2: 143–161

    Article  Google Scholar 

  • Giggenbach WF (1988) Yasur volcano investigations, Vanuatu, Sept 1988. NZ Geol Surv Rep G136: 45–60

    Google Scholar 

  • Giggenbach WF (1992a) The composition of gases in geothermal and volcanic systems as a function of tectonic setting. Proc Int Symp Water-Rock Interaction 8: 873–878

    Google Scholar 

  • Giggenbach WF (1992b) Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin. Earth Planet Sci Lett 113: 495–510.

    Article  Google Scholar 

  • Giggenbach WF (1993) Redox control of gas compositions in Philippine volcanic-hydrothermal systems. Geothermics 22: 575–587

    Article  Google Scholar 

  • Giggenbach WF (1995) Variations in the chemical and isotopic composition of fluids discharged over the Taupo Volcanic Zone. J Volcanol Geotherm Res 68: 89–116

    Article  Google Scholar 

  • Giggenbach WF, Glover RB (1992) Tectonic regime and major processes governing the chemistry of water and gas discharges from the Rotorua geothermal field, New Zealand. Geothermics 21: 121–140

    Article  Google Scholar 

  • Giggenbach WF, LeGuern F (1976) The chemistry of magmatic gases from Erta’Ale, Ethiopia. Geochim Cosmochim Acta 40: 25–30

    Article  Google Scholar 

  • Giggenbach WF, Matsuo S (1991) Evaluation of results from second and third IAVCEI field workshops on volcanic gases, Mt. Usu, Japan, and White Island, New Zealand. Appl Geochem 6: 125–141

    Article  Google Scholar 

  • Giggenbach WF, Naranjo JA (1989) Lonquimay volcano: gas chemistry. SEAN Bull 14: 13–15

    Google Scholar 

  • Giggenbach WF, Sheppard DS (1989) Variations in the temperature and chemistry of White Island fumarole discharges 1972–1985. NZ Geol Surv Bull 103: 119–126

    Google Scholar 

  • Giggenbach WF, N Garcia P, A Londoño C, L Rodriguez V, N Rojas G, ML Calvache V (1990) The chemistry of fumarolic vapor and thermal spring discharges from the Nevado del Ruiz volcanic-magmatic-hydrothermal system, Colombia. J Volcanol Geotherm Res 42: 13–39

    Article  Google Scholar 

  • Giggenbach WF, Sano Y, Wakita H (1993) Isotopic composition of helium, and CO2 and CH4 contents in gases produced along the New Zealand part of a convergent plate boundary. Geochim Cosmochim Acta 57: 3427–3455

    Article  Google Scholar 

  • Graham IJ, Cole JW, Briggs RM, Gamble JA, Smith IEM (1995) Petrology of volcanic rocks from the Taupo Volcanic Zone: a general review. J Volcanol Geotherm Res 68: 59–87

    Article  Google Scholar 

  • Harris DM, Anderson AT (1983) Concentrations, sources and losses of H2O, CO2 and S in Ki-lauean basalt. Geochim Cosmochim Acta 47: 1139–1150

    Article  Google Scholar 

  • Haughton DR, Roeder PL, Skinner BJ (1974) Solubility of sulfur in mafic magmas. Econ Geol 69: 451–463

    Article  Google Scholar 

  • Heald EF, Naughton JJ, Barnes IL (1963) The chemistry of volcanic gases, II. Use of equilibrium calculations in the interpretation of volcanic gas samples. J Geophys Res 68: 545–557

    Article  Google Scholar 

  • Hirabayashi J, Yoshida M, Ossaka J (1990) Chemistry of volcanic gases from the 62–1 crater of Mt Tokachi, Hokkaido, Japan. Bull Volcanol Soc Jpn 35: 205–215

    Google Scholar 

  • Hiyagon H, Ozima M (1986) Partition of noble gases between olivine and basalt melt. Geochim Cosmochim Acta 50: 2045–2057

    Article  Google Scholar 

  • Houghton BF, Nairn IA (1991) The 1976–1982 Strombolian and phreatomagmatic eruptions of White Island, New Zealand: eruption and depositional mechanisms at a ‘wet’ volcano. Bull Volcanol 54: 25–49

    Article  Google Scholar 

  • Iwasaki B, Katsura T (1967) The solubilty of hydrogen chloride in volcanic rock melts at a total pressure of one atmosphere and at temperatures of 1200 °C and 1290 °C under anhydrous conditions. Bull Chem Soc Jpn 40: 554–561

    Article  Google Scholar 

  • Jambon A, Weber H, Braun O (1986) Solubility of He, Ne, Ar, Kr and Xe in a basalt melt in the range 1250–1600°C. Geochemical implications. Geochim Cosmochim Acta 50: 401–408

    Article  Google Scholar 

  • Javoy M, Pineau F (1991) The volatiles record of a “pop**” rock from the Mid-Atlantic Ridge at 14° N: chemical and isotopic composition of gas trapped in the vesicles. Earth Planet Sci Lett 107: 598–611

    Article  Google Scholar 

  • Katsura T, Nagashima S (1974) Solubility of sulfur in some magmas at 1 atmosphere. Geochim Cosmochim Acta 38: 517–531

    Article  Google Scholar 

  • Kilinc IA, Burnham CW (1972) Partitioning of chloride between a silicate melt and coexisting aqueous phase from 2 to 8 kilobars. Econ Geol 67: 231–235

    Article  Google Scholar 

  • Kita I, Nitta K, Nagao K, Taguchi S, Koga A (1993) Difference in N2/Ar ratio of magmatic gases from northeast and southwest Japan: new evidence for different state of plate subduction. Geology 21: 391–394

    Article  Google Scholar 

  • LeCloarec MF, Allard P, Ardouin B, Giggenbach WF, Sheppard DS (1992) Radioactive isotopes and trace elements in gaseous emissions from White Island, New Zealand. Earth Planet Sci Lett 108: 19–28

    Article  Google Scholar 

  • Luhr JF (1990) Experimental phase relations of water- and sulfur-saturated arc magmas and the 1982 eruptions of El Chichón volcano. J Petrol 31: 1071–1114

    Google Scholar 

  • Lux G (1987) The behavior of noble gases in silicate liquids: solution, diffusion, bubbles and surface effects, with application to natural samples. Geochim Cosmochim Acta 51: 1549–1560

    Article  Google Scholar 

  • Mangan MT, Cashman KV, Newman S (1993) Vesiculation of basaltic magma during eruption. Geology 21: 157–160

    Article  Google Scholar 

  • Martini M (1993) Galeras. Bull Global Volcanol Network 18: 7–9

    Google Scholar 

  • Martini M, Cellini-Legittimo P (1984) Relations between chemical species distribution and the fluctuating activity of Vulcano (Italy). J Volcanol Geotherm Res 22: 123–132

    Article  Google Scholar 

  • Matsuo S (1960) On the origin of volcanic gases. J Earth Sci Nagoya Univ 8: 222–245

    Google Scholar 

  • Matsuo S, Suzuki M, Mizutani Y (1978) Nitrogen to argon ratio in volcanic gases. Adv Earth Planet Sci 3: 17–25

    Google Scholar 

  • McCulloch MT, Kyser TK, Woodhead JD, Kinsley L (1994) Pb-Sr-Nd-O isotopic constraints on the origin of rhyolites from the Taupo Volcanic Zone of New Zealand: evidence for assimilation followed by fractionation from basalt. Contrib Mineral Petrol 115: 303–312

    Article  Google Scholar 

  • McMillan PF, Holloway JR (1987) Water solubility in aluminosilicate melts. Contrib Mineral Petrol 97: 320–332

    Article  Google Scholar 

  • Menyailov IA, Nikitina LP, Shapar VN, Pilipenko VP (1986) Temperature increase and chemical change of fumarolic gases at Momotombo volcano, Nicaragua, in 1982–1985: are these indicators of possible eruptions? J Geophys Res 91: 12199–12214

    Article  Google Scholar 

  • Mizutani Y, Sugiura T (1982) Variations in chemical and isotopic compositions of fumarolic gases from Showashinzan volcano, Hokkaido, Japan. Geochem J 16: 63–71

    Article  Google Scholar 

  • Muenov DW, Graham DG, Liu NWK (1979) The abundance of volatiles in Hawaiian tholeitic submarine basalts. Earth Planet Sci Lett 42: 71–76

    Article  Google Scholar 

  • Nehring NL, Johnston DA (1981) Use of ash leachates to monitor gas emissions. In: Lipman PW, Mullineaux DR (eds) The 1980 Eruptions of Mt. St Helens USGS Prof Paper 1250: 251–256

    Google Scholar 

  • Oskarsson N (1980) The interaction between volcanic gases and tephra: fluorine adhering to tephra of the 1970 Hekla eruption. J Volcanol Geotherm Res 8: 251–266

    Article  Google Scholar 

  • Pan V, Holloway JR, Hervig RL (1991) The pressure and temperature dependence of carbon dioxide solubility in tholeitic basalt melts. Geochim Cosmochim Acta 55: 1587–1595

    Article  Google Scholar 

  • Pawley AR, Holloway JR, McMillan PF (1992) The effect of oxygen fugacity on the solubility of carbon-oxygen fluids in basic melt. Earth Planet Sci Lett 110: 213–225

    Article  Google Scholar 

  • Shinohara H, Iiyama JT, Matsuo S (1989) Partition of chlorine compounds between silicate melt and hydrothermal solutions. I. Partition of NaCl-KCl. Geochim Cosmochim Acta 53: 2617–2630

    Article  Google Scholar 

  • Shinohara H, Giggenbach WF, Kazahaya K, Hedenquist JW (1993) Geochemistry of volcanic gases and hot springs of Satsuma-Iwojima, Japan: following Matsuo. Geochem J 27: 271–285

    Article  Google Scholar 

  • Sisson TW, Layne GD (1993) H2O in basalt and basaltic andEsite glass inclusions from four subduction-related volcanoes. Earth Planet Sci Lett 117: 619–635

    Article  Google Scholar 

  • Solovova IP, Girnis AV, Gruzhnova AV, Naumov VB (1992) Magmatic salt inclusions in East Pamir basalt minerals. Geokhimiya 1: 68–77

    Google Scholar 

  • Sparks RSJ (1978) The dynamics of bubble formation and growth in magmas: a review and analysis. J Volcanol Geotherm Res 3: 1–37

    Article  Google Scholar 

  • Stix J, Zapata JA, ML Calvache V, GP Cortés J, Fischer TB, Williams SN (1993) A model of degassing at Galeras volcano, Colombia, 1988–1993. Geology 21: 963–967

    Article  Google Scholar 

  • Stolper E (1982) The speciation of water in silicate melts. Geochim Cosmochim Acta 46: 2609–2620

    Article  Google Scholar 

  • Stolper EM, Newman S (1992) Fluids in the source region of subduction zone magmas: clues from the study of volatiles in Mariana Trough magmas. Rep Geol Surv Jpn 279: 161–169

    Google Scholar 

  • Sugiura T, Mizutani Y (1963) Fluorine, chlorine, bromine and iodine in volcanic gases. J Earth Sci Nagoya Univ 11: 272–278

    Google Scholar 

  • Symonds RB, Reed MH (1993) Calculation of multicomponent chemical equilibria in gas-solid-liquid systems: calculation methods, thermochemical data, and applications to studies of high-temperature volcanic gases with examples from Mt. St Helens. Am J Sci 293: 758–864

    Article  Google Scholar 

  • Symonds RB, Rose WI, Reed MH (1988) Contribution of Cl- and F-bearing gases to the atmosphere by volcanoes. Nature 334: 415–418

    Article  Google Scholar 

  • Taran YA, Rozhkov AM, Serafimova EK, Esikov AD (1991) Chemical and isotopic composition of magmatic gases from the 1988 eruption of Klyuchevskoy volcano, Kamchatka. J Volcanol Geotherm Res 46: 255–263

    Article  Google Scholar 

  • Taran Y A, Pilipenko VP, Rozhkov AM, Vakin EA (1992) A geochemical model for fumaroles of the Mutnovsky volcano, Kamchatka, USSR. J Volcanol Geotherm Res 49: 269–283

    Article  Google Scholar 

  • Taylor BE (1986) Magmatic volatiles: isotopic variations of C, H, and S. Reviews in Mineralogy 16: 185–225

    Google Scholar 

  • Taylor BE (1991) Degassing of Obsidian Dome rhyolite, Inyo volcanic chain, California. In: Taylor HP, O’Neil JR, Kaplan IR (eds). Stable isotope geochemistry: a tribute to Samuel Epstein. The Geochemical Society, Spec Publ 3: 339–353

    Google Scholar 

  • Taylor PS, Stoiber RE (1973) Soluble material on ash from active Central American volcanoes. Geol Soc Am Bull 84: 1031–1042

    Article  Google Scholar 

  • Tedesco D, Toutain JP, Allard P, Losno R (1991) Chemical variations in fumarolic gases at Vulcano Island (southern Italy): seasonal and volcanic effects. J Volcanol Geotherm Res 45: 325–334

    Article  Google Scholar 

  • Thorarinsson S, Sigvaldason GE (1972) The Hekla eruption of 1970. Bull Volcanol 36: 269–288

    Article  Google Scholar 

  • Wallace P, Carmichael ISE (1992) Sulfur in basaltic magmas. Geochim Cosmochim Acta 56: 1863–1874

    Article  Google Scholar 

  • Webster JD (1992) Fluid-melt interactions involving Cl-rich granites: Experimental study from 2 to 8 kb. Geochim Cosmochim Acta 56: 659–678

    Article  Google Scholar 

  • Westrich HR, Eichelberger JC, Hervig RL (1991) Degassing of the 1912 Katmai magmas. Geophys Res Lett 18: 1561–1564

    Article  Google Scholar 

  • Westrich HR, Gerlach TM (1992) Magmatic gas source for the stratospheric SO2 cloud from the June 15, 1991, eruption of Mt. Pinatubo. Geology 20: 867–870

    Article  Google Scholar 

  • Williams SN, Stoiber RE, N Garcia P, A Londono C, Gemmell JB, Lowe DR, Connor CB (1986) Eruption of the Nevado del Ruiz volcano, Colombia, on 13 November 1985: Gas flux and fluid chemistry. Science 233: 964–967

    Article  Google Scholar 

  • Zhang Y, Zindler A (1989) Noble gas constraints on the evoution of Earth’s atmosphere. J Geophys Res 94: 13710–13737

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Giggenbach, W.F. (1996). Chemical Composition of Volcanic Gases. In: Monitoring and Mitigation of Volcano Hazards. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-80087-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-80087-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-80089-4

  • Online ISBN: 978-3-642-80087-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation