The Significance of Rhizosphere Microflora and Mycorrhizas in Plant Nutrition

  • Chapter
Inorganic Plant Nutrition

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 15))

Abstract

Plant roots are always associated with micro-organisms, ranging from organisms external to the root to root-infecting micro-organisms. The nature and significance of these associations have interested soil microbiologists and, to a much lesser extent, plant physiologists, for decades. The term “rhizosphere” was proposed by Hiltner (1904) to define that soil influenced by living roots. The rhizosphere is variable both in extent and composition, and from the root surface to the bulk soil there is a gradient of many chemical, physical and biological properties. To accommodate this gradient, microbiologists have proposed terms such as “outer rhizosphere”, “inner rhizosphere” and “rhizoplane” (the root surface itself). For this paper we treat the rhizosphere as that zone of soil extending from the root—soil interface to the point in the soil where the microflora is unaffected by the root. The non–infective rhizosphere micro-organisms can have a large effect on plant nutrition, as do the infective associations such as mycorrhizal fungi (beneficial) and root diseases (detrimental).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abbott LK, Robson AD (1977) Growth stimulation of subterranean clover with vesicular arbuscular mycorrhizas. Aust J Agrie Res 28: 639–649

    CAS  Google Scholar 

  • Balandreau J, Hamad–Fares I (1975) Importance de la fixation d’azote dans la rhizosphère du riz. Soc Bot Fr, Colloq Rhizosphere: 109–119

    Google Scholar 

  • Balandreau J, Knowles R (1978) The rhizosphere. In: Dommergues YR, Krupa SV (eds) Interactions between nonpathogenic soil microorganisms and plants. Elsevier, 4 Amsterdam New York

    Google Scholar 

  • À Barber DA (1966) Effect of microorganisms on nutrient absorption by plants. Nature 212: 638–640

    CAS  Google Scholar 

  • Barber DA (1967) The effects of microorganisms on the absorption of inorganic nutrients by intact plants. I. Apparatus and culture techniques. J Exp Bot 18: 163–169

    CAS  Google Scholar 

  • Barber DA (1978) Nutrient uptake. In: Dommergues YR, Krupa SV (eds) Interactions between non–pathogenic soil microorganisms and plants. Elsevier, Amsterdam New York

    Google Scholar 

  • Barber DA, Gunn KB (1974) The effect of mechanical forces on the exudation of organic substances by the roots of cereal plants grown under sterile conditions. New Phytol 73: 39–45

    CAS  Google Scholar 

  • Barber DA, Martin JK (1976) The release of organic substances by cereal roots into soil. New Phytol 76: 69–80

    CAS  Google Scholar 

  • Barber DA, Bowen GD, Rovira AD (1976) Effects of microorganisms on the absorption and distribution of phosphate in barley. Aust J Plant Physiol 3: 801–808

    CAS  Google Scholar 

  • Barley KP (1970) The configuration of the root system in relation to nutrient uptake. Adv Agron 22: 159–201

    Google Scholar 

  • Barrow NJ, Malajczuk N, Shaw TC (1977) A direct test of the ability of vesicular arbuscular mycorrhiza to help plants take up fixed soil phosphate. New Phytol 78: 269–276

    CAS  Google Scholar 

  • Bartlett EM, Lewis DH (1973) Surface phosphatase activity of mycorrhizal roots of beech. Soil Biol Biochem 5: 249–257

    CAS  Google Scholar 

  • Baylis GTS (1975) The magnoloid root and mycotrophy in root systems derived from it. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London New York

    Google Scholar 

  • Belford DS, Preston RD (1961) The structure and growth of root hairs. J Exp Bot 12: 157–168

    CAS  Google Scholar 

  • Bevege DI, Bowen GD (1975) Endogone strain and host plant differences in development of vesicular–arbuscular mycorrhizas. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London New York

    Google Scholar 

  • Bevege DI, Bowen GD, Skinner MF (1975) Comparative carbohydrate physiology of ecto– and endomycorrhizas. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London New York

    Google Scholar 

  • Billes G, Cortez J (1975) Étude de la production de polysaccharides bactÉriens au niveau de la rhizosphére de Festuca arundinacea. Soc Bot Fr Colloq Rhizosphere:41–45

    Google Scholar 

  • Bowen GD (1968) Phosphate uptake by mycorrhizas and uninfected roots of Pinus radiate in relation to root distribution. Proc 9th Int Cong Soil Sci 2: 219–228

    CAS  Google Scholar 

  • Bowen GD (1969) Nutrient status effects on loss of amides and amino acids from pine roots. Plant Soil 30: 139–142

    CAS  Google Scholar 

  • Bowen GD (1973) Mineral nutrition in Ectomycorrhizae. In: Marks GC, Kozlowski TT (eds) Ectomycorrhizae. Academic Press, London New York

    Google Scholar 

  • Bowen GD (1978) Dysfunction and shortfalls in symbiotic response. In: Horsfall JD, Cowling EB (eds) Plant disease - an advanced treatise, vol III. Academic Press, London New York

    Google Scholar 

  • Bowen GD (1979) Integrated and experimental approaches to study the growth of organisms around root and seeds. In: Schippers B, Gams W (eds) Soil–borne pathogens. Academic Press, London New York

    Google Scholar 

  • Bowen GD (1980) Mycorrhizal roles in tropical plants and ecosystems. In: Mikola P (ed) Tropical mycorrhiza research. Oxford Univ Press, Oxford

    Google Scholar 

  • Bowen GD, Foster RC (1978) Dynamics of microbial colonisation of plant roots.

    Google Scholar 

  • Broughton WJ, John CK (eds) Soil microbiology and plant nutrition. Univ Malaya Press, Malaya

    Google Scholar 

  • Bowen GD, Rovira AD (1961a) Plant growth in irradiated soil. Nature (London) 211: 665–666

    Google Scholar 

  • Bowen GD, Rovira AD (1961b) Effects of microorganisms on plant growth. I. Development of roots and root hairs in sand and agar. Plant Soil 15: 166–188

    Google Scholar 

  • Bowen GD, Rovira AD (1966) Microbial factor in short-term uptake studies with plant roots. Nature 211: 655–666

    Google Scholar 

  • Bowen GD, Rovira AD (1969) The influence of microorganisms on growth and metabolism of plant roots. In: Whittington WJ (ed) Root growth. Butterworths, London

    Google Scholar 

  • Bowen GD, Rovira AD (1976) Microbial colonization of plant roots. Annu Rev Phytopathol 14: 121–144

    Google Scholar 

  • Bowen GD, Smith SE (1981) The effects of mycorrhizas on nitrogen uptake by plants. In: Clark FE, Rosswall T (eds) Nitrogen cycling in terrestrial ecosystems. Ecol Bull (Stockholm)

    Google Scholar 

  • Bowen GD, Theodorou C (1973) Studies on phosphate uptake by mycorrhizas. Proc 14th IUFRO Congr, Munich

    Google Scholar 

  • Bowen GD, Theodorou C (1973) Growth of ectomycorrhizal fungi around seeds and roots. In: Marks GC, Kozlowski TT (eds) Ectomycorrhizae: their ecology and physiology. Academic Press, London New York

    Google Scholar 

  • Bowen GD, Theodorou C (1979) Interactions between bacteria and ectomycorrhizal fungi. Soil Biol Biochem 11: 119–126

    Google Scholar 

  • Bowen GD, Skinner MF, Bevege DC (1974) Zinc uptake by ecto-and endo-mycorrhizas and uninfected roots of conifers. Soil Biol Biochem 6: 141–144

    CAS  Google Scholar 

  • Bowen GD, Bevege DI, Mosse B (1975) Phosphate physiology of vesicular–arbuscular mycorrhizas. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London New York

    Google Scholar 

  • Breisch H (1974) Contribution à l’étude du rôle des exudats racinaires dans les processes d’aggrégation des sols. Thèse Doct Spéc Univ Nancy

    Google Scholar 

  • Brown ME (1972) Plant growth substances produced by microorganisms of soil and rhizosphere. J Appl Bact 35: 443–451

    CAS  Google Scholar 

  • Brown ME (1974) Seed and root bacterization. Annu Rev Phytopathol 12: 181–197

    CAS  Google Scholar 

  • Brown ME (1976) Microbial manipulation and plant performance. In: Skinner FA, Carr JG (eds) Microbiology in agriculture fisheries and food. Soc Appl Bacteriol Symp Academic Press, London New York

    Google Scholar 

  • Brown ME, Jackson RM, Burlington AK (1968) Effects on tomato plants, Lycopersicon esculentum, by seed or root treatment with gibberellic acid and indolyl–3–acetic acid. J Exp Bot 19: 544–552

    CAS  Google Scholar 

  • Cagle GD, Pflster RM, Vela GR (1972) Improved staining of extracellular polymers for electron microscopy. Appl Microbiol 24: 477–487

    PubMed  CAS  Google Scholar 

  • Callow J A, Capaccio LCM, Parish G, Tinker PB (1978) Detection and estimation of polyphosphate in vesicular–arbuscular mycorrhizas. New Phytol 80: 125–134

    CAS  Google Scholar 

  • Campbell R, Rovira AD (1973) A study of the rhizosphere by scanning electron microscopy. Soil Biol Biochem 5: 747–752

    Google Scholar 

  • Chan ECS, Katznelson H (1961) Growth interactions of Arthrobacter globiformis and Pseudomonas sp. in relation to the rhizosphere effect. Can J Microbiol 7: 759–767

    PubMed  CAS  Google Scholar 

  • Chilvers GA, Pry or LD (1965) The structure of eucalypt mycorrhizas. Aust J Bot 13: 245–259

    Google Scholar 

  • Cooper KM, Tinker PB (1978) Transfer and translocation of nutrients in vesiculararbuscular mycorrhizas II. Uptake and translocation of phosphorus, zinc and sulphur. New Phytol 81: 43–52

    Google Scholar 

  • Cox G, Tinker PB (1976) Translocation and transfer of nutrients in vesicular arbuscular mycorrhizas. I. The arbuscule and phosphorus transfer: a quantitative ultrastructure study. New Phytol 77: 371–378

    CAS  Google Scholar 

  • Cox G, Sanders FE, Tinker PB, Wild JA (1975) Ultrastructural evidence relating to host–endophyte transfer in a vesicular–arbuscular mycorrhiza. In: Sanders FE, Mosse

    Google Scholar 

  • B, Tinker PB (eds) Endomycorrhizas. Academic Press, London New York Cress WA, Throneberry AO, Londsey DL (1979) Kinetics of phosphorus absorption by mycorrhizal and nonmycorrhizal tomato roots. Plant Physiol 64: 484–487

    Google Scholar 

  • Crush JR (1974) Plant growth responses to vesicular–arbuscular mycorrhizas. VII. Growth and nodulation of some herbage legumes. New Phytol 73: 743–749

    CAS  Google Scholar 

  • Crush JR (1976) Endomycorrhizas and legume growth in some soils of the Mackenzie Basin, Canterbury, New Zealand. NZ J Agric Res 19: 473–476

    Google Scholar 

  • Darbyshire JF, Greaves MP (1970) An improved method for the study of the interrelationships of soil microorganisms and plant roots. Soil Biol Biochem 2: 63–71

    CAS  Google Scholar 

  • Dart PJ (1971) Scanning electron microscopy of plant roots. J Exp Bot 22: 163–168

    Google Scholar 

  • Dart PJ, Day JM (1975) Non–symbiotic nitrogen fixation in soil. In: Walker N (ed)

    Google Scholar 

  • Soil microbiology. Butterworth, London

    Google Scholar 

  • Dart PJ, Mercer FV (1964) The legume rhizosphere. Arch Mikrobiol 47: 344–378

    Google Scholar 

  • Dawes CJ, Bowler E (1959) Light and electron microscope studies of the cell wall structure of the root hairs of Raphanus sativus. Am J Bot 46: 561–565

    Google Scholar 

  • Döbereiner J (1974) Nitrogen–fixing bacteria in the rhizosphere. In: Quispel A (ed) The biology of nitrogen fixation. Elsevier/North–Holland, Biomedical Press, Amsterdam New York

    Google Scholar 

  • Döbereiner J, Day JM (1975) Associative symbiosis in tropical grasses: characterization of microorganisms and dinitrogen fixation sites. In: Proc Int Symp N2 fixation. Interdisciplinary discussions. Pullman, Washington State Univ

    Google Scholar 

  • Döbereiner J, Day JM, Dart PJ (1972) Nitrogenase activity and oxygen sensitivity of the Paspalum notatum–Azotobacter paspali association. J Gen Microbiol 71: 103–116

    Google Scholar 

  • Duff RB, Webley DM, Scott RO (1963) Solubilization of minerals and related materials by 2–Betagluconic acid–producing bacteria. Soil Sci 95: 105–114

    CAS  Google Scholar 

  • Elliott LF, Gilmour CM, Cochran VL, Coby C, Bennett D (1979) Influence of tillage and residues on wheat root microflora and root colonization by nitrogen–fixing bacteria. In: Harley JL, Scott-Russell R (eds) The soil–root interface. Academic Press, London New York

    Google Scholar 

  • Foster RC (1962) Cell wall structure and growth. PhD thesis, Univ Leeds, England

    Google Scholar 

  • Foster RC (1978) Ultramicromorphology of some South Australian Soils. In: Emerson WW, Bond RD, Dexter AR (eds). Modifications of soil structure. Wiley and Sons, New York

    Google Scholar 

  • Foster RC, Marks GC (1967) Observations on the mycorrhizae of forest trees. II. The rhizosphere of Pinus radiata D. Don. Aust J Biol Sci 20: 915–926

    Google Scholar 

  • Foster RC, Marks GC (1973) Structure, morphogenesis and ultrastructure of ectomycorrhizae. In: Marks GC, Kozlowski TT (eds) Ectomycorrhizae. Academic Press, London New York

    Google Scholar 

  • Foster RC, Rovira AD (1973) The rhizosphere of wheat roots studied by electron microscopy. Bull Ecol Res Commun (Stockholm) 17: 93–95

    Google Scholar 

  • Foster RC, Rovira AD (1976) Ultrastructure of wheat rhizosphere. New Phytol 76: 343–352

    Google Scholar 

  • Foster RC, Rovira AD (1978) The ultrastructure of the rhizosphere of Trifolium subterraneum L. In: Loutit MW, Miles JAR (eds) Microbial ecology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Gadgil RL, Gadgil PD (1975) Suppression of litter decomposition by mycorrhizal roots of Pirns radiata. NZ J For Sei 5: 33–41

    Google Scholar 

  • Gerdemann JW (1975) Vesicular–arbuscular mycorrhizae. In: Torrey JG, Clarkson DT (eds) The development and function of roots. Academic Press, London New York

    Google Scholar 

  • Gerretson FC (1948) The influence of microorganisms on the phosphate intake by the plant. Plant Soil 1: 207–230

    Google Scholar 

  • Gianinazzi S, Gianinazzi–Pearson Y, Dexheimer J (1979) Enzymatic studies on the metabolism of vesicular–arbuscular mycorrhiza. III. Ultrastructural localization of acid and alkaline phosphatase in onion roots infected by Glomus mosseae (Nicol. and Gerd ). New Phytol 82: 127–132

    Google Scholar 

  • Gianinazzi–Pearson A, Gianinazzi S (1978) Enzymatic studies on the metabolism of vesicular arbuscular mycorrhiza. II. Soluble alkaline phosphatase specific to mycorrhizal infection in onion roots. Physiol Plant Pathol 12: 45–53

    Google Scholar 

  • Gilmore AE (1971) The influence of endotrophic mycorrhizae on the growth of peach seedlings. J Am Soc Hort Sei 96: 35–38

    Google Scholar 

  • Gray TRG (1967) Stereoscan electron microscopy of soil microorganisms. Science 155: 1668–1670

    PubMed  CAS  Google Scholar 

  • Greaves MP, Darbyshire JF (1972) The ultrastructure of the mucilaginous layer of plant roots. Soil Biol Biochem 4: 443–449

    Google Scholar 

  • Hale MG, Moore LD, Griffin GJ (1979) Root exudates and exudation. In: Dommergues YR, Krupa SV (eds) Interactions between non–pathogenic soil micro–organisms and plants. Elsevier, North Holland Biomedical Press, Amsterdam New York

    Google Scholar 

  • Harley JL (1969) The biology of mycorrhiza. Hill, London

    Google Scholar 

  • Hatch AB (1937) The physical basis of mycotrophy in the genus Pinus. Black Rock For Bull 6: 1–168

    Google Scholar 

  • Hattingh MJ, Gray LE, Gerdemann JW (1973) Uptake and translocation of 32P–labelled phosphate to onion roots by mycorrhizal fungi. Soil Sei 116: 383–387

    CAS  Google Scholar 

  • Hayman DS (1974) Plant growth responses to vesicular–arbuscular mycorrhiza. VI Effect of light and temperature. New Phytol 73: 71–80

    Google Scholar 

  • Hayman DS (1975) Phosphorus cycling by soil microorganisms and plant roots. In: Walker N (ed) Soil microbiology. Butterworth, London

    Google Scholar 

  • Hayman DS, Mosse B (1972) Plant growth responses to vesicular–arbuscular mycorrhizas. IV. Increased intake of labile P from soil. New Phytol 71: 41–47

    Google Scholar 

  • Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiet der Bodenmikrobiologie und unter besonderer Berücksichtigung der Gründüngung und Brache. Arb Dtsch Landwirtsch Ber 98: 59–78

    Google Scholar 

  • Jenny H, Grossenbacher KA (1963) Root soil boundary zone as seen in the electron microscope. Proc Soil Soc Am 27: 273–277

    Google Scholar 

  • Jones PCT, Mollison JE (1948) A technique for the quantitative estimation of soil microorganisms.

    Google Scholar 

  • J Gen Microbiol 2:54–69

    Google Scholar 

  • Katznelson H, Rouatt JW (1957) Manometric studies with rhizosphere and non–rhizosphere soil. Can J Microbiol 3: 673–678

    PubMed  CAS  Google Scholar 

  • Katznelson H, Lochhead AG, Timonin MJ (1948) Soil microorganisms and the rhizosphere. Bot Rev 14: 543–587

    Google Scholar 

  • Katznelson H, Rouatt JW, Payne TMB (1954) Liberation of amino acids by plant roots in relation to desiccation. Nature 174: 1110–1111

    PubMed  CAS  Google Scholar 

  • Katznelson H, Rouatt JW, Payne TMB (1955) The liberation of amino acids and reducing compounds by plant roots. Plant Soil 7: 35–48

    CAS  Google Scholar 

  • Kinden DA, Brown MF (1975) Electron microscopy of vesicular–arbuscular mycorrhizas of yellow poplar. II. Intercellular hyphae and vesicles. Can J Microbiol 21: 1768–1780

    Google Scholar 

  • Kleinschmidt GD, Gerdemann JW (1972) Stunting of citrus seedlings in fumigated nursery soils related to the absence of ectomycorrhizas. Phytopathology 62: 1447–1453

    Google Scholar 

  • Knowles R (1977) The significance of asymbiotic dinitrogen fixation in bacteria. In: Hardy RWF, Gibson AH (eds) A treatise on dinitrogen fixation, sect I V: Agronomy and ecology. Wiley and Sons, New York

    Google Scholar 

  • Krupa S, Fries N (1971) Studies on the ectomycorrhizae of pine. I. Production of volatile organic compounds. Can J Bot 49: 1425–1431

    Google Scholar 

  • Lamb RJ, Richards BN (1971) Effect of mycorrhizal fungi on the growth and nutrient status of slash and radiata pine seedlings. Aust For 35: 1–7

    CAS  Google Scholar 

  • Lamont BB (1972) “Proteoid” roots in the legume Viminaria juncea. Search 3:91–92

    Google Scholar 

  • Lamont BB, McComb AJ (1974) Soil microorganisms and the formation of proteoid roots. Aust J Bot 22: 681–688

    Google Scholar 

  • Leech JH, Mollenhauer HH, Whaley WG (1963) Ultrastructural changes in the root apex. Symp Soc Exp Biol 17: 74–84

    PubMed  CAS  Google Scholar 

  • Leiser AT (1968) A mucilaginous root sheath in Ericaceae. Am J Bot 55: 392–398

    Google Scholar 

  • Leppard GG (1974) Rhizoplane fibrils in wheat: demonstration and derivation. Science 185: 1066–1067

    PubMed  CAS  Google Scholar 

  • Leppard GG, Ramamoorthy S (1975) The aggregation of wheat rhizoplane fibrils and the accumulation of soil–bound cations. Can J Bot 53: 1729–1735

    Google Scholar 

  • Lewis DA, Harley JL (1965) Carbohydrate physiology of mycorrhizal roots of beech. Movement of sugars between host and fungus. New Phytol 64: 256–259

    Google Scholar 

  • Ling–Lee M, Chilvers GA, Ashford AE (1975) Polyphosphate in three different kinds of tree mycorrhiza. New Phytol 75: 551–554

    Google Scholar 

  • Lochhead AG (1940) Qualitative studies of soil microorganisms. III. Influence of plant growth on the character of the bacterial flora. Can J Res Sec C 18: 42–58

    Google Scholar 

  • Lochhead AG, Chase FE (1943) Qualitative studies of soil microorganisms. V. Nutritional requirements of the predominant bacterial flora. Soil Sci 55: 185–195

    Google Scholar 

  • Loutit MW (1968) Soil microorganisms and molybdenum concentration in plants. Trans 9th Int Congr Soil Sci 3: 491–498

    CAS  Google Scholar 

  • Loutit MW, Hillas J, Spears GFS (1972) Studies on rhizosphere microorganisms and molybdenum concentration in plants. II Comparison of isolates from the rhizosphere of plants grown in two soils under the same conditions. Soil Biol Biochem 4: 267–270

    Google Scholar 

  • Malajczuk N, Bowen GD (1974) Proteoid roots are microbially induced. Nature 251: 316–317

    CAS  Google Scholar 

  • Martin JK (1975) 14C–labelled material leached from the rhizosphere of plants supplied continuously with 14C02. Soil Biol Biochem 7:395–399

    Google Scholar 

  • Martin JK (1977) Factors influencing the loss of organic carbon from wheat roots. Soil Biol Biochem 9: 1–9

    CAS  Google Scholar 

  • Melin E, Nilsson H (1950) Transfer of radioactive phosphorus to pine seedlings by means of mycorrhizal hyphae. Physiol Plant 3: 88–92

    Google Scholar 

  • Melin E, Nilsson H (1952) Transport of labelled nitrogen from an ammonium source to pine seedlings through mycorrhizal mycelium. Svensk Bot Tidskr 46: 281–285

    CAS  Google Scholar 

  • Melin E, Nilsson H (1955) Ca45 used as an indicator of transport of cations to pine seedlings by means of mycorrhizal mycelia. Svensk Bot Tidskr 49: 119–122

    Google Scholar 

  • Menge J A, Labanauskas CK, Johnson ELV, Piatt RG (1978) Partial substitution of mycorrhizal fungi for phosphorus fertilization in the greenhouse culture of citrus. Soil Sci Soc Am 42: 926–930

    CAS  Google Scholar 

  • Mishustin EN, Naumova AN (1962) Bacterial fertilizers: their effectiveness and mode of action. Mikrobiologiya 31: 543–555

    Google Scholar 

  • Moawad M (1979) Ecophysiology of v. a. mycorrhiza in the tropics. In: Harley JL, Russell RS (eds) The soil–root interface. Academic Press, London New York

    Google Scholar 

  • Mollenhauer HH, Morre DJ (1966) Golgi apparatus and plant secretion. Annu Rev Plant Physiol 17: 27–46

    Google Scholar 

  • Morrison TM (1963) Uptake of sulphur by excised beech mycorrhizas. New Phytol 62: 44–49

    Google Scholar 

  • Mosse B (1972) The influence of soil type and Endogone strain on the growth of mycorrhizal plants in phosphate deficient soils. Rev Ecol Biol Sol 9: 529–537

    CAS  Google Scholar 

  • Mosse B (1973) Plant growth responses to vesicular–arbuscular mycorrhiza. IV. In soil given additional phosphate. New Phytol 72: 127–136

    Google Scholar 

  • Mosse B (1977) Plant growth responses to vesicular–arbuscular mycorrhiza. X. Responses of stylosanthes and maize to inoculation in unsterile soils. New Phytol 78: 277–288

    Google Scholar 

  • Mosse B, Powell CW, Hayman DW (1976) Plant growth responses to vesicular–arbuscular mycorrhiza. IX. Interactions between v. a. mycorrhiza, rock phosphate and symbiotic nitrogen fixation. New Phytol 76: 331–342

    Google Scholar 

  • Nambiar EKS (1976) The uptake of zinc–65 by oats in relation to soil water content and root growth. Aust J Soil Res 14: 67–74

    CAS  Google Scholar 

  • Newman EI, Bowen HJ (1974) Patterns of distribution of bacteria on root surfaces. Soil Biol Biochem 6: 205–209

    Google Scholar 

  • Newman EI, Watson A (1977) Microbial abundance in the rhizosphere. A computer model. Plant Soil 48: 17–56

    Google Scholar 

  • Norkrans B (1950) Studies in growth and cellulolytic enzymes of Tricholoma with special reference to mycorrhiza formation. Symb Bot Upsal 11 (1): 1–126

    Google Scholar 

  • Northcote DH, Pickett–Heaps JD (1966) A function of the Golgi apparatus in polysaccharide synthesis and transport in the root cap cells of wheat. Biochem J 98: 159–167

    PubMed  CAS  Google Scholar 

  • Nye PH, Tinker PB (1977) Solute movement in the soil–root system. Blackwell, Oxford

    Google Scholar 

  • Old KM, Nicholson TH (1975) Electron microscopical studies of the microflora of roots of sand dune grasses. New Phytol 74: 51–58

    Google Scholar 

  • Parker CA (1957) Non–symbiotic nitrogen–fixing bacteria in soil. III. Total nitrogen changes in a field soil. J Soil Sei 8: 48–59

    CAS  Google Scholar 

  • Pearson V, Read DJ (1973) The biology of mycorrhiza in the Ericaceae. II. The transport of carbon and phosphorus by the endophyte and the mycorrhiza. New Phytol 72: 1325–1331

    Google Scholar 

  • Preston RD (1974) Physical biology of plant cell walls. Chapman and Hall, London

    Google Scholar 

  • Purneil HM (1960) Studies of the family Proteaceae. I. Anatomy and morphology of the roots of some Victorian species. Aust J Bot 8: 38–50

    Google Scholar 

  • Ratnayake M, Leonard RT, Menge JA (1978) Root exudation in relation to the supply of phosphorus and its possible relevance to mycorrhizal formation. New Phytol 81: 543–552

    CAS  Google Scholar 

  • Raven JA, Smith FA (1976) Nitrogen assimilation and transport in vascular land plants in relation to intracellular pH regulation. New Phytol 76: 415–431

    CAS  Google Scholar 

  • Raven JA, Smith SE, Smith FA (1978) Ammonium assimilation and the role of mycorrhizas in climax communities in Scotland. Trans Bot Soc Edinburgh 43: 27–35

    Google Scholar 

  • Read DJ (1974) Pezizella ericae sp. nov. the perfect state of a typical mycorrhizal endophyte of Ericaceae. Trans Br Mycol Soc 63:381–383

    Google Scholar 

  • Read DJ, Stribley DP (1973) Effect of mycorrhizal infection on nitrogen and phosphorus nutrition of Ericaceous plants. Nature 244: 81–82

    CAS  Google Scholar 

  • Reuszer HW (1949) A method for determining the carbon dioxide production of sterile and non–sterile roots. Soil Sei Soc Am Proc 14: 175–179

    Google Scholar 

  • Reuszer HW (1962) Axenic culture in the determination of root functions and the interrelationships of microorganisms. Soil Sei 93: 56–61

    Google Scholar 

  • Rhodes. LH, Gerdemann JW (1975) Phosphate uptake zones of mycorrhizal and nonmycorrhizal onions. New Phytol 75: 555–561

    Google Scholar 

  • Rice EL (1974) Allelopathy. Academic Press, London New York

    Google Scholar 

  • Ridge EH, Rovira AD (1968) Microbial inoculation of wheat. Trans 9th Int Congr Soil Sei 3: 473–481

    Google Scholar 

  • Rovira AD (1956) A study of the developments of the root surface microflora during the initial stages of plant growth. J Appl Bacteriol 19: 72–79

    Google Scholar 

  • Rovira AD (1959) Root excretions in relation to the rhizosphere effect. IV. The influence of plant species, age of plant, light, temperature and calcium nutrition on exudation. Plant Soil 11: 53–64

    CAS  Google Scholar 

  • Rovira AD ( 1965 a) Plant root exudates and their influence upon soil microorganisms. In: Baker KE, Snyder WC (eds) Ecology of soil–borne plant pathogens. Berkeley Univ

    Google Scholar 

  • Rovira AD ( 1965 b) Effects of Azotobacter, Bacillus and Clostridium on the growth of wheat. In: Macura J, Vancura V (eds) Plant microbe relationships. Czech Acad Sei, Prague

    Google Scholar 

  • Rovira AD (1969) Plant root exudates. Bot Rev 35: 35–57

    CAS  Google Scholar 

  • Rovira AD, Bowen GD (1969) Phosphate incorporation by sterile and non–sterile roots. Aust J Biol Sei 19: 1167–1169

    Google Scholar 

  • Rovira AD, Campbell R (1974) Scanning electron microscopy of microorganisms on the roots of wheat. Microb Ecol 1: 15–23

    Google Scholar 

  • Rovira AD, Davey CB (1974) Biology of the rhizosphere. In: Carson EW (ed) The plant root and its environment. Univ Press, Charlottesville, Virg

    Google Scholar 

  • Rovira AD, Newman EI, Bowen HJ, Campbell R (1974) Quantitative assessment of the rhizoplane microflora by direct microscopy. Soil Biol Biochem 6: 211–216

    Google Scholar 

  • Rovira AD, Foster RC, Martin JK (1979) Note on terminology: Origin, nature and nomenclature of the organic materials in the rhizosphere. In: Harley JL, Scott-Russell R (eds) The soil–root interface. Academic Press, London New York

    Google Scholar 

  • Samtsevich SA (1965) Active excretions of plant roots and their significance. Sov Plant Physiol 12: 731–740

    Google Scholar 

  • Sanders FE, Tinker PB (1973) Phosphate flow into mycorrhizal roots. Pestic Sei 4: 385–395

    CAS  Google Scholar 

  • Sanders FE, Mosse B, Tinker PB (1975) Endomycorrhizas. Academic Press, London New York

    Google Scholar 

  • Sanders FE, Tinker PB, Black RLB, Palmerley SM (1977) The development of endomycorrhizal root systems. I. Spread of infection and growth–promoting effects with four species of vesicular–arbuscular endophyte. New Phytol 78: 257–268

    Google Scholar 

  • Schank SC, Smith RL, Weiser GC, Bouton JH, Quesenberry KH, Tyler ME, Milam JR, Littell RC (1979) Fluorescent antibody technique to identify Azospirillum brasilense associated with roots of grasses. Soil Biol Biochem 11: 287–296

    Google Scholar 

  • Schenk NC, Kinloch RA, Dickson DW (1975) Interaction of endomycorrhizal fungi and root–knot nematode on soybean. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas. Academic Press, London New York

    Google Scholar 

  • Schippers B, Vuurde van JWL (1978) Studies of microbial colonization of wheat roots and the manipulation of the rhizosphere microflora. In: Loutit MW, Miles JAR (eds) Microbial ecology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Schönbeck F (1979) Endomycorrhiza in relation to plant diseases. In: Schippers B, Gams W (eds) Soil–borne plant pathogens. Academic Press, London New York

    Google Scholar 

  • Schoknecht JD, Hattingh MT (1976) X–ray microanalysis of elements in cells of v. a. mycorrhizal and non–mycorrhizal onions. Mycologia 68: 296–304

    Google Scholar 

  • Schwartz F (1883) Die Wurzelhaare der Pflanzen. Untersuch Bot Inst Tübingen 1: 135–188

    Google Scholar 

  • Scott FM, Hamner KC, Baker E, Bowler F (1958) Electron microscope studies of the epidermis of Allium cepa. Am J Bot 45: 449–461

    Google Scholar 

  • Setterfleld G, Bayley ST (1957) Studies on the mechanism of deposition and extension of primary cell walls. Can J Bot 35: 435–444

    Google Scholar 

  • Shamoot S, McDonald L, Bartholemew MV (1960) Rhizodeposition of organic debris in soil. Soil Sei Am Proc 32: 817–820

    Google Scholar 

  • Skinner MF, Bowen GD (1974 a) The uptake and translocation of phosphate by mycelial strands of pine mycorrhizas. Soil Biol Biochem 6:53–56

    Google Scholar 

  • Skinner MF, Bowen GD (1974b) The penetration of soil by mycelial strands of pine mycorrhizas. Soil Biol Biochem 6: 57–61

    Google Scholar 

  • Smiley RW (1974) Rhizosphere pH as influenced by plants, soils, and nitrogen fertilizers. Proc Soil Sei Soc Am 38: 795–799

    CAS  Google Scholar 

  • Smith SE, Nicholas DJD, Smith FA (1979) Effect of early mycorrhizal infection on nodulation and nitrogen fixation in Trifolium subterraneum L. Aust J Plant Physiol 6: 305–316

    CAS  Google Scholar 

  • Sperber JI (1958) The incidence of apatite–solubilizing organisms in the rhizosphere and soil. Aust J Agric Res 9: 778–781

    CAS  Google Scholar 

  • Starkey RL (1939) Some influence of the development of higher plants upon the microorganisms in the soil. VI. Microscopic examination of the rhizosphere. Soil Sei 45: 207–209

    Google Scholar 

  • Stribley DP, Read DJ (1974) The biology of mycorrhiza in the Ericaceae. IV. The effect of mycorrhizal infection on the uptake of1 5N from labelled soil by Vaccinium macrocarpon Ait. New Phytol 73: 1149–1155

    Google Scholar 

  • Stribley DP, Read DJ (1975) Some nutritional aspects of the biology of ericaceous mycorrhizae. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizae. Academic Press, London New York

    Google Scholar 

  • Stribley DP, Read DJ (1976) The biology of mycorrhiza in the Ericaceae. VI. The effects of mycorrhizal infection and concentration of ammonium nitrogen on growth of cranberry (Vaccinium macrocarpon Ait.) in sand culture. New Phytol 77: 63–72

    CAS  Google Scholar 

  • Stribley DP, Reid DJ, Hunt R (1975) The biology of mycorrhiza in the Ericaceae V. The effects of mycorrhizal infection, soil type and partial soil–sterilization (by gamma irradiation) on the growth of cranberry (Vaccinium macrocarpon Ait.). New Phytol 75: 119–130

    CAS  Google Scholar 

  • Sutton JC, Sheppard BR (1976) Aggregation of sand dune soil by endomycorrhizal fungi. Can J Bot 54: 326–333

    Google Scholar 

  • Theodorou C, Bowen GD (1970) Mycorrhizal responses of radiata pine in glasshouse and in field experiments with different fungi. Aust For 34: 183–191

    Google Scholar 

  • Theron J J (1966) The mineralization of nitrogen in soils under grass. S Afr J Agric Sci 6: 155–164

    Google Scholar 

  • Timonin MI (1946) Microflora of the rhizosphere in relation to the manganese–deficiency disease in oats. Soil Sci Soc Am Proc 11: 284–292

    Google Scholar 

  • Tisdall JM, Oades JM (1979) Stabilization of soil aggregates by the root systems of rye grass. Aust J Soil Res 17: 429–441

    Google Scholar 

  • Trinick MJ (1970) Rhizobium interactions with soil microorganisms. PhD thesis Univ Washington WA

    Google Scholar 

  • Trinick M J (1977) Vesicular–arbuscular infection and soil phosphorus utilization in Lupinus spp. New Phytol 78: 297–304

    CAS  Google Scholar 

  • Trolldenier G (1965) Fluoreszenmikroskopisché Untersuchung von Mikroorganismenkulturen in der Rhizosphâre. Z Bakteriol Parasitenkd Infekt Hyg III 119: 256–259

    CAS  Google Scholar 

  • Vancura V (1964) Root exudates of plants. I. Analysis of root exudates of barley and wheat in their initial phases of growth. Plant Soil 21: 231–248

    Google Scholar 

  • Vuurde van JWL, Elenbass PEM (1978) Use of fluorochromes for direct observation of microorganisms associated with wheat roots. Can J Microbiol 24: 1272–1275

    PubMed  Google Scholar 

  • Warembourg FR (1975) Le dégagement de C02 dans la rhizosphère des plantes. Soc Bot Fr Colloq Rhizosphere 122: 77–87

    Google Scholar 

  • Warembourg FR, Billes G (1979) Estimating carbon transfers in the rhizosphere. In: Harley JL, Scott-Russell R (eds) The soil–root interface. Academic Press, London New York

    Google Scholar 

  • Webley DM, Duff RB, Bacon JSD, Farmer VC (1965) A study of polysaccharide–producing organisms occurring in the root region of certain pasture grasses. J Soil Sci 16: 149–157

    CAS  Google Scholar 

  • Welte E, Trolldenier G (1965) Effect of soil microflora and seed microflora on the growth of plants. In: Macura J, Vancura V (eds) Plant microbe relationships. Czech Acad Sci, Prague

    Google Scholar 

  • Woldendorp JW (1963) The influence of living plants on denitriflcation. Meded Landbhoogesch Wageningen 63 (13): 1–100

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag Berlin-Heidelberg

About this chapter

Cite this chapter

Rovira, A.D., Bowen, G.D., Foster, R.C. (1983). The Significance of Rhizosphere Microflora and Mycorrhizas in Plant Nutrition. In: Läuchli, A., Bieleski, R.L. (eds) Inorganic Plant Nutrition. Encyclopedia of Plant Physiology, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-68885-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-68885-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-68887-4

  • Online ISBN: 978-3-642-68885-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation