Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 129))

Abstract

The molecular mechanisms by which drugs bind to and regulate G-proteincoupled receptors (GPCR) remains a major unsolved problem for modern molecular biologists, biochemists and structural biologists. Ideally, we would like to ultimately define drug binding at the atomic level. An ideal molecular model would also be able to demonstrate why it is that agonists activate receptors while antagonists, which may or may not bind in overlap** domains, do not activate receptors. A perfect molecular explanation of drug action would elucidate the molecular determinants responsible for cellular regulation processes (e.g. desensitization, internalization and downregulation). At the present time, there are no verifiable models which elucidate these properties for any G-protein-coupled receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
EUR 9.99
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 49.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Albinsson A, Eriksson E, Andersson G (1990) Amperozide-effect on prolactin release in the rat. Pharmacol Toxicol 66: 49–51

    Article  PubMed  CAS  Google Scholar 

  • Axelsson R, Nilsson A, Christensson E, Bjork A (1991) Effects of amperozide in schizophrenia: an open study of a potent 5-HT2 receptor antagonist. Psychophar- macology (Berl) 104: 287–292

    Article  CAS  Google Scholar 

  • Baldwin JM (1993) The probable arrangement of the helices in G protein-coupled receptors. EMBO J 12: 1693–1703

    PubMed  CAS  Google Scholar 

  • Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three- dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci 25: 366–428

    Article  CAS  Google Scholar 

  • Barker EL, Westphal RS, Schmidt D, Sanders-Bush E (1994) Constitutively active 5- hydroxytryptamine2C receptors reveal novel inverse agonist activity of receptor ligands. J Biol Chem 269: 11687–11690

    PubMed  CAS  Google Scholar 

  • Branchek T, Adham N, Macchi M, Kao H-T, Hartig PR (1990) [3H]-DOB (4- bromo-25-dimethoxyphenylisopropylamine) and [3H]-ketanserin label two affinity states of the cloned human 5-hydroxytryptamine2 receptor. Mol Pharmacol 38: 604–609

    PubMed  CAS  Google Scholar 

  • Brunello N, Chuang D-M, Costa E (1982) Different synaptic location of mianserin and imipramine binding sites. Science 215: 1112–1115

    Article  PubMed  CAS  Google Scholar 

  • Burris KD, Breeding M, Sanders-Bush E (1991) (+)Lysergic acid diethylamide, but not its nonhallucinogenic congeners, is a potent serotonin 5HT1c receptor agonist. J Pharmacol Exp Ther 258: 891–896

    PubMed  CAS  Google Scholar 

  • Canton H, Verriele L, Colpaert FC (1990) Binding of typical and atypical antipsychotics to 5-HT1C and 5-HT2 sites: clozapine potently interacts with 5-HT1C sites. Eur J Pharmacol 191: 93–96

    Article  PubMed  CAS  Google Scholar 

  • Choudhary S, Craigo S, Roth BL (1992) Identification of domains which modify serotonin receptor pharmacology. Soc Neurosci Abstr 18: 100.9

    Google Scholar 

  • Choudhary MS, Craigo S, Roth BL (1993) A single point mutation (Phe340->Leu340) of a conserved phenylalanine abolishes 4-[125I]-iodo-(25-dimethoxy)phe- nylisopropylamine and [3H]-mesulergine but not [3H]-ketanserin binding to 5- hydroxytryptamine2 receptors. Mol Pharmacol 43: 755–763

    PubMed  CAS  Google Scholar 

  • Choudhary MS, Sachs N, Uluer A, Glennon RB, Westkaemper RA, Roth BL (1995) Differential ergoline and ergopeptine binding to 5-hydroxytryptamine2A (5- HT2A) receptors: ergolines require an aromatic residue at position 340 for high affinity binding. Mol Pharmacol 47: 450–457

    PubMed  CAS  Google Scholar 

  • Christensson E, Bjork A (1990) Amperozide: a new pharmacological approach in the treatment of schizophrenia. Pharmacol Toxicol 66: 5–7

    Article  PubMed  CAS  Google Scholar 

  • Cohen ML, Fuller RW, Wiley KS (1981) Evidence for 5-HT2 receptors mediating contraction in vascular smooth muscle. J Pharmacol Exp Ther 218: 421–425

    PubMed  CAS  Google Scholar 

  • Evardsen O, Sylte I, Dahl SG (1992) Molecular dynamics of serotonin and ritanserin interacting with 5-HT2 receptor. Mol Brain Res 14: 166–178

    Article  Google Scholar 

  • Fatemi SH, Meltzer HY, Roth BL (1996) Interaction of atypical antipsychotic drugs with non-dopaminergic systems. Csernansky JH (ed) Antipsychotic drugs. Springer, Berlin Heidelberg New York (Handbook of experimental pharmacology) PP 77–115

    Chapter  Google Scholar 

  • Fersht AR (1988) Relationships between apparent binding energies measured in site- directed mutagenesis experiments and energetics of binding and catalysis. Biochemistry 27: 1577–1580

    Article  PubMed  CAS  Google Scholar 

  • Fersht AR, Leatherbarrow RJ, Wells TNC (1987) Structure-activity relationships in engineered proteins: analysis of use of binding energy by linear free energy relationships. Biochemistry 26: 6030–6038

    Article  PubMed  CAS  Google Scholar 

  • Glennon RA (1990) Do classical hallucinogens act as 5-HT2 agonists or antagonists? Neuropsychopharmacology 3: 509–517

    PubMed  CAS  Google Scholar 

  • Glennon RA, Dukat M (1993) 5-HT receptor ligands — update 1992. Curr Drugs, pp 1–45

    Google Scholar 

  • Glennon RA, Young R, Rosencrans JA (1983) Antagonism of the effects of the hallucinogen DOM, and the purported 5-HT agonist quipazine by 5-HT2 antagonists. Eur J Pharmacol 91: 189–193

    Article  PubMed  CAS  Google Scholar 

  • Glennon RA, Titler M, McKenney JD (1984) Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci 35: 2505–2511

    Article  PubMed  CAS  Google Scholar 

  • Grotewiel MS, Chu H, Sanders-Bush E (1994) m-Chlorophenylpiperazine and m- trifluoromethylphenylpiperazine are partial agonists at cloned 5-HT2A receptors expressed in fibroblasts. J Pharmacol Exp Ther 271: 1122–1126

    PubMed  CAS  Google Scholar 

  • Henderson R, Baldwin J, Ceska TH, Zemlin F, Beckmann E, Downing K (1990) Model for the structure of bacteriorhodopsin based on high resolution electron cryomicroscopy. J Mol Biol 213: 899–929

    Article  PubMed  CAS  Google Scholar 

  • Hibert MF, Trumpp-Kallmeyer S, Bruinvels A, Hoflack J (1991) Three-dimensional models of neurotransmitter G-binding protein-coupled receptors. Mol Pharmacol 40: 8–15

    PubMed  CAS  Google Scholar 

  • Höltje HD, Briem H (1991) Theoretical determination of the putative receptor- bound conformations of 5-HT2 receptor agonists. Quant Struct Activ Relat 10: 193–197

    Article  Google Scholar 

  • Höltje HD, Jendretzki UW (1995) Construction of a detailed serotoninergic 5-HTsA receptor mode. Arch Pharm 328: 577–584

    Article  Google Scholar 

  • Ismaiel AM, De Los Angeles J, Teitler M, Ingher S, Glennon RA (1993) Antagonism of 1-(3,5-dimethoxy-4-methylphenyl)-2-aminopropane stimulus with a newly identified 5-HT2- versus 5-HT1C-selective antagonist. J Med Chem 36: 2519–2525

    Article  PubMed  CAS  Google Scholar 

  • Johnson MP, Loncharich RJ, Baez M, Nelson DL (1994) Species variations in transmembrane region V of the 5-hydroxytryptamine type 2A receptor alter the structure-activity relationship of certain ergolines and tryptamines. Mol Pharmacol 45: 277–286

    PubMed  CAS  Google Scholar 

  • Kao H-T, Adhan N, Olsen MA, Weinshank RL, Branchek TA, Hartig PR (1992) A single amino acid distinguishes human from rat 5-HT2 receptors. FEBS Lett 307: 324–326

    Article  PubMed  CAS  Google Scholar 

  • Kristianssen K, Edvardsen O, Dahl SG (1993) Molecular modelling of ketanserin and its interactions with the 5-HT2 receptor. Med Chem Res 3: 370–385

    Google Scholar 

  • Leonhardt S, Gorospe E, Hoffman BJ, Teitler M (1992) Molecular pharmacological differences in the interaction of serotonin with 5-hydroxytryptamine1C and 5- hydroxytryptamine2 receptors. Mol Pharmacol 42: 328–335

    PubMed  CAS  Google Scholar 

  • Leysen JE, Niemegeers CJE, Tollenaere JP, Laduron PM (1978) Serotonergic component of neuroleptic receptors. Nature 272: 168–171

    Article  PubMed  CAS  Google Scholar 

  • Leysen JE, Niemegeers CJE, van Nueten JM, Laduron PM (1982) [3H]-ketanserin (R 41 468) a selective 3H-ligand for serotonin2 receptor binding sites. Mol Pharmacol 21: 301–314

    PubMed  CAS  Google Scholar 

  • Leysen JE, Gommeren W, van Gompel P, Wynants J, Janssen PAJ (1987) Non- serotonergic [3H]-ketanserin binding sites in striatal membranes are associated with a dopac release system on dopaminergic nerve endings. Eur J Pharmacol 134: 373–375

    Article  PubMed  CAS  Google Scholar 

  • Leysen JE, Janssen PMF, Schotte A, Luyten WHML, Megens AAHP (1993) Interaction of antipsychotic drugs with neurotransmitter receptor sites in vitro and in vivo in relation to pharmacological and clinical effects: role of 5HT2 receptors. Psychopharmacology 112: S40-S54

    Article  PubMed  CAS  Google Scholar 

  • Lowe DM, Winter G, Fersht AR (1987) Structure-activity relationships in engineered proteins: characterization of disrupted deletions in the alpha-ammonium group binding site of tyrosyl-tRNA synthetase. Biochemistry 26: 6038–6043

    Article  PubMed  CAS  Google Scholar 

  • Luo XZ, Hang D, Weinstein H (1994) Ligand-induced domain motion in the activation mechanism of a G-protein-coupled receptor. Protein Eng 7: 1441–1448

    Article  PubMed  CAS  Google Scholar 

  • Maes M, Meltzer HY (1995) The serotonin hypothesis of major depression. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the 4th generation of progress. Raven Press, New York, pp 933–944

    Google Scholar 

  • Meltzer HY, Matsubara S, Lee J-C (1989) Classification of typical and atypical antipsychotic drugs on the basis of dopamine D-1, D-2 and serotonin2 pKi values. J Pharmacol Exp Ther 251: 238–246

    PubMed  CAS  Google Scholar 

  • Moereels H, Janssen PAJ (1993) Molecular modelling of G-protein coupled receptors: going step by step. Med Chem Res 3: 335–343

    CAS  Google Scholar 

  • Monsma FJ, Shen Y, Ward RP, Hamblin MW, Sibley DR (1993) Cloning and expression of a novel serotonin receptor with high affinity for tricyclic psychotropic drugs. Mol Pharmacol 43: 320–327

    PubMed  CAS  Google Scholar 

  • Nash JF, Roth BL, Brodkin JD, Nichols DE, Gudelsky GA (1994) Effect of the R(-) and S(+) isomers of MDA and MDMA on phosphatidylinositol turnover in cultured cells expressing 5-HT2A or 5-HT2C receptors. Neurosci Lett 177: 111–115

    Article  PubMed  CAS  Google Scholar 

  • Nelson DL (1993) The serotonin2 (5-HT2) subfamily of receptors: pharmacological considerations. Med Chem Res 3: 306–316

    CAS  Google Scholar 

  • Nichols DE, Glennon RA (1984) Medicinal chemistry and structure-activity relationships of hallucinogens. In: Jacobs BL (ed) Hallucinogens: neurochemical behavioral and clinical perspectives. Raven, New York, pp 95–142

    Google Scholar 

  • Palvimaki EP, Roth BL, Majasuo H, Laakso A, Kuoppamaki M, Syvlanti E, Hietala J (1996) Interactions of selective serotonin reuptake inhibitors with the serotonin 5- HT2C receptor. Psychopharmacology 126: 234–240

    Article  PubMed  CAS  Google Scholar 

  • Pardo L, Ballesteros J A, Osman R, Weinstein H (1992) On the use of the transmembrane domain of bacteriorhodopsin as a template for modelling the three- dimensional structure of guanine nucleotide-binding regulatory protein-coupled receptors. Proc Natl Acad Sci USA 89: 4009–4012

    Article  PubMed  CAS  Google Scholar 

  • Pehak EA, Meltzer HY, Yamamoto BK (1993) The atypical antipsychotic drug amperozide enhances rat cortical and striatal dopamine efflu. Eur J Pharmacol 240: 1993

    Google Scholar 

  • Peroutka SJ, Snyder SH (1980) Long-term antidepressant treatment decreases spiroperidol-labelled serotonin receptor binding. Science 210: 86–90 1980

    Article  Google Scholar 

  • Peroutka SJ, Lebovitz RM, Snyder SH (1981) Two distinct serotonin receptors with distinct physiological functions. Science 212: 827–829

    Article  PubMed  CAS  Google Scholar 

  • Roth BL, Meltzer HY (1995) Psychopharmacology: the 4th generation of progress. Raven, New York

    Google Scholar 

  • Roth BL, McLean S, Zhu X-Z, Chuang D-M (1987) Characterization of two [3H]- ketanserin recognition sites in rat striatum. J Neurochem 49: 1833–1838

    Article  PubMed  CAS  Google Scholar 

  • Roth BL, Ciaranello RD, Meltzer HY (1992) Binding of typical and atypical antipsychotic agents with transiently expressed 5-HT1C receptors. J Pharmacol Exp Ther 260: 1361–1365

    PubMed  CAS  Google Scholar 

  • Roth BL, Choudhary MS, Craigo S (1993) Mutagenesis of serotonin receptors: what does an analysis of many mutant serotonin receptors tell us? Med Chem Res 3: 407–418

    Google Scholar 

  • Roth BL, Craigo SC, Choudhary MS, Monsma FJ, Shen Y, Meltzer HY, Sibley DR (1994) Binding of typical and atypical antipsychotic agents to 5- hydroxytryptamine6 (5-HT6) and 5-hydroxytryptamine7 (5-HT7) receptors. J Pharmacol Exp Ther 256: 1403–1410

    Google Scholar 

  • Roth BL, Pekka-Palvimaki E, Berry SA, Khan N, Sachs N, Uluer A, Choudhary MS (1995a) 5-Hydroxytryptamine2A (5-HT2A) receptor desensitization can occur without down-regulation. J Pharmacol Exp Ther 275: 1638–1645

    PubMed  CAS  Google Scholar 

  • Roth BL, Tandra S, Burgess LH, Sibley DR, Meltzer HY (1995b) D4 dopamine receptor binding affinity does not distinguish between typical and atypical antipsychotic drugs. Psychopharmacology 120: 365–368

    Article  PubMed  CAS  Google Scholar 

  • Sanders-Bush E, Breeding M (1991) Choroid plexus epithelial cells in primary culture — a model of 5HT1C receptor activation by hallucinogenic drugs. Psychopharmacology 105: 340–346

    Article  PubMed  CAS  Google Scholar 

  • Sanders-Bush E, Burris KD, Knoth K (1988) Lysergic acid diethylamide and 2,5- dimethoxy-4-methylamphetamine are partial agonists at serotonin receptors linked to phosphoinositide hydrolysis. J Pharmacol Exp Ther 246: 924–928

    PubMed  CAS  Google Scholar 

  • Schertler GFX, Billa C, Henderson R (1993) Projection structure of rhodopsin. Nature 262: 770–772

    Article  Google Scholar 

  • Schertler GFX, Hargrave PA (1995) Projection structure of frog rhodopsin in two crystal forms. Proc Natl Acad Sci USA 92: 11578–11582

    Article  PubMed  CAS  Google Scholar 

  • Sealfon SC, Chi L, Ebersole BJ, Rodic V, Zhang D, Ballesteros JA, Weinstein H (1995) Related contribution of specific helix 2 and helix 7 residues to conformational activation of the serotonin 5-HT2A receptor. J Biol Chem 270: 16683–16688

    Article  PubMed  CAS  Google Scholar 

  • Segal MR, Youssif MY, Lyons RA, Titler M, Roth BL, Suba EA, Glennon RA (1990) A structure-affinity study of the binding of 4-substituted analogues of 1-(25- dimethoxyphenvl)-2-aminopropane at the 5-HT2 serotonin receptors. J Med Chem 33: 1032–1036

    Article  Google Scholar 

  • Serrano L, Bycroft M, Fersht AR (1991) Aromatic-aromatic interactions and protein stability: investigation by double mutant cycles. J Mol Biol 218: 465–475

    Article  PubMed  CAS  Google Scholar 

  • Shih JC, Gallaher T, Wang C-D, Chen K (1992) Site-directed mutagenesis of serotonin 5-HT2 receptors. J Chem Neuroanat 5: 218–282

    Article  Google Scholar 

  • Sorensen SM, Kehne JH, Fadayl EM, Humphreys TM, Ketteler HJ, Sullivan C, Taylor VL, Schmidt CJ (1993) Characterization of the 5-HT2 antagonist MDL 100907 as a putative atypical antipsychotic: behavioral, electrophysiological and neurochemical studies. J Pharmacol Exp Ther 266: 684–691

    PubMed  CAS  Google Scholar 

  • Strader CD, Candelore MR, Hill WS, Sigal IS, Dixon RAF (1989a) Identification of two serine residues involved in agonist activation of the beta-adrenergic receptor. J Biol Chem 264: 13572–13578

    PubMed  CAS  Google Scholar 

  • Strader CD, Sigal IS, Dixon RAF (1989b) Structural basis of beta-adrenergic receptor function. FASEB J 3: 1825–1831

    PubMed  CAS  Google Scholar 

  • Teitler M, Leonhardt S, Weisberg EL, Hoffman BJ (1990) 4-[125I]-(25- Dimethoxy)phenylisopropylamine and [3H]-ketanserin labeling of 5-hydrox- ytryptamine2 (5HT2) receptors in mammalian cells transfected with a rat 5HT2 cDNA: evidence for multiple states and not multiple 5HT2 receptor subtypes. Mol Pharmacol 38: 594–598

    PubMed  CAS  Google Scholar 

  • Trumpp-Kallmeyer S, Hoflack J, Bruinvels A, Hibert M (1992) Modeling of G-protein- coupled receptors: application to dopamine, adrenaline, serotonin, acetylcholine and mammalian opsin receptors. J Med Chem 35: 3448–3462

    Article  PubMed  CAS  Google Scholar 

  • Unger VM, Schertler GFX (1995) Low resolution structure of bovine rhodopsin determined by electron cryo-microscopy. Biophys J 68: 1776–1786

    Article  PubMed  CAS  Google Scholar 

  • Von Zastrow M, Kobilka B (1992) Ligand-regulated internalization and recycling of humand beta 2-adrenergic receptors between the plasma membrane and endosomes containing transferrin receptors. J Biol Chem 267: 3530–3538

    Google Scholar 

  • Wang C-D, Gallaher TK, Shih JC (1993) Site-directed mutagenesis of the serotonin 5- hydroxytryptamine2 receptor: identification of amino acids necessary for ligand binding and receptor activation. Mol Pharmacol 43: 931–940

    PubMed  CAS  Google Scholar 

  • Weinstein H, Zhang D (in press) Receptor models and ligand-induced responses. QSAR and molecular modeling: New insights for structure activity relations Prous Science, Barcelona pp 497–507

    Google Scholar 

  • Westkaemper RB, Glennon RA (1991) Approaches to molecular modeling studies and specific application to serotonin ligands and receptors. Pharmacol Biochem Behav 40: 1019–1031

    Article  PubMed  CAS  Google Scholar 

  • Westkaemper RB, Glennon RA (1993a) Molecular graphics models of members of the 5-HT2 subfamily: 5-HT2A, 5-HT2B, and 5-HT2C receptors. Med Chem Res 3: 317–334

    CAS  Google Scholar 

  • Westkaemper RB, Glennon RA (1993b) Molecular modelling of the interaction of LSD and other classical hallucinogens with 5-HT2 receptors. In: Lin G, Glennon RA (eds) NIDA research monograph, Classical Hallucinogens: An Update, 146: 263–283

    Google Scholar 

  • Westphal RS, Sanders-Bush E (1994) Reciprocal binding properties of 5-hydrox- ytryptamine type 2C receptor agonists and inverse agonsits. Mol Pharmacol 46: 937–942

    PubMed  CAS  Google Scholar 

  • Zhou W, Rodic V, Kitanovic S, Flanagan CA, Chi L, Weinstein H, Maayani S, Millar RP, Sealfon SC (1995) A locus of the gonadotropin-releasing hormone receptor that differentiates agonist and antagonist binding sites. J Biol Chem 270: 18853–18857

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roth, B.L., Hyde, E.G. (2000). Pharmacology of 5-HT2 Receptors. In: Baumgarten, H.G., Göthert, M. (eds) Serotoninergic Neurons and 5-HT Receptors in the CNS. Handbook of Experimental Pharmacology, vol 129. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-60921-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-60921-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-66715-5

  • Online ISBN: 978-3-642-60921-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation