Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 5))

Abstract

This article considers stabilized finite element and finite volume discretization techniques for systems of conservation laws. Using newly developed techniques in entropy symmetrization theory, simplified forms of the Galerkin least-squares (GLS) and the discontinuous Galerkin (DG) finite element method are developed and analyzed. The use of symmetrization variables yields numerical schemes which inherit global entropy stability properties of the PDE system. Detailed consideration is given to symmetrization of the Euler, Navier-Stokes, and magneto-hydrodynamic (MHD) equations. Numerous calculations are presented to evaluate the spatial accuracy and feature resolution capability of the simplified DG and GLS discretizations. Next, upwind finite volume methods are reviewed. Specifically considered are generalizations of Godunov’s method to high order accuracy and unstructured meshes. An important component of high order accurate Godunov methods is the spatial reconstruction operator. A number of reconstruction operators are reviewed based on Green-Gauss formulas as well as least-squares approximation. Several theoretical results using maximum principle analysis are presented for the upwind finite volume method. To assess the performance of the upwind finite volume technique, various numerical calculations in computational fluid dynamics are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 52.74
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. R. Abgrall. An essentially non-oscillatory reconstruction procedure on finite-element type meshes. Comp. Meth. Appl. Mech. Engrg., 116: 95–101, 1994.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. Abgrall. On essentially non-oscillatory schemes on unstructured meshes. J. Comp. Phys., 114: 45–58, 1995.

    Article  MathSciNet  Google Scholar 

  3. P. Arminjon and A. Dervieux. Construction of TVD-like artificial viscosities on two-dimensional arbitrary FEM grids. J. Comp. Phys., 106 (1): 176–198, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Balsara. Higher-order Godunov schemes for isothermal hydrodynamics. Astrophysical J., 420: 197–203, 1994.

    Article  Google Scholar 

  5. T. J. Barth. Some notes on shock resolving flux functions part 1: Stationary characteristics. Technical Report TM-101087, NASA Ames Research Center, Moffett Field, CA, May 1989.

    Google Scholar 

  6. T. J. Barth. Unstructured grids and finite-volume solvers for the Euler and Navier-Stokes equations, March 1991. von Karman Institute Lecture Series 1991–05.

    Google Scholar 

  7. T. J. Barth. Recent developments in high order k-exact reconstruction on unstructured meshes. Technical Report 93–0668, AIAA, Reno, NV, 1993.

    Google Scholar 

  8. T. J. Barth. Aspects of unstructured grids and finite-volume solvers for the Euler and Navier-Stokes equations, March 1994. von Karman Institute Lecture Series 1994–05.

    Google Scholar 

  9. T. J. Barth and D. C. Jespersen. The design and application of upwind schemes on unstructured meshes. Technical Report 89–0366, AIAA, Reno, NV, 1989.

    Google Scholar 

  10. F. Bassi and S. Rebay. High-order accurate discontinuous finite element solution of the 2D Euler equations. J. Comp. Phys., 138 (2): 251–285, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  11. K. Bey. A Runge-Kutta discontinuous finite element method for high speed flows. Technical Report 91–1575, AIAA, Honolulu, Hawaii, 1991.

    Google Scholar 

  12. M. Brio and C. C. Wu. An upwind differencing scheme for the equations of ideal magnetohydrodynamics. J. Comp. Phys., 75: 400–422, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Chiocchia. Exact solutions to transonic and supersonic flows. Technical Report AR-211, AGARD, 1985.

    Google Scholar 

  14. P. G. Ciarlet and P.-A. Raviart. The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. In A.K. Aziz, editor, The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations, pages 409–474, New York, 1972. Academic Press.

    Google Scholar 

  15. P. G. Ciarlet and P.-A. Raviart. Maximum principle and uniform convergence for the finite element method. Comp. Meth. Appl. Mech. Engrg., 2: 17–31, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Cockburn, S. Hou, and C.W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Math. Comp., 54: 545–581, 1990.

    MathSciNet  MATH  Google Scholar 

  17. B. Cockburn, S.Y. Lin, and C.W. Shu. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: One dimensional systems. J. Comp. Phys., 84: 90–113, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Cockburn and C.W. Shu. The Runge-Kutta discontinuous Galerkin method for conservation laws V: Multidimensional systems. Technical Report 201737, ICASE, NASA Langley R.C., 1997.

    Google Scholar 

  19. P. Collela and P. Woodward. The piecewise parabolic methods for gas-dynamical simulations. J. Comp. Phys., 54, 1984.

    Google Scholar 

  20. M. G. Crandall and A. Majda. Monotone difference approximations for scalar conservation laws. Math. Comp., 34: 1–21, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  21. B. Delaunay. Sur la sphére vide. Izvestia Akademii Nauk SSSR, 7 (6): 793–800, 1934.

    Google Scholar 

  22. J. Desideri and A. Dervieux. Compressible flow solvers using unstructured grids, March 1988. von Karman Institute Lecture Series 1988–05.

    Google Scholar 

  23. A. C. Galeâo and E. G. Dutra do Carmo. A consistent approximate upwind Petrov-Galerkin method for convection-dominated problems. Comput. Meth. Appl. Mech. Engrg., 68, 1989.

    Google Scholar 

  24. F. R. Gantmacher. Matrix Theory. Chelsea Publishing Company, New York, N.Y., 1959.

    Google Scholar 

  25. S. K. Godunov. A finite difference method for the numerical computation of discontinuous solutions of the equations of fluid dynamics. Mat. Sb., 47, 1959.

    Google Scholar 

  26. S. K. Godunov. An interesting class of quasilinear systems. Dokl. Akad. Nauk. SSSR, 139: 521–523, 1961.

    MathSciNet  Google Scholar 

  27. S. K. Godunov. The symmetric form of magnetohydrodynamics equation. Num. Meth. Mech. Cont. Media, 1: 26–34, 1972.

    Google Scholar 

  28. J. D. Goodman and R. J. Le Veque. On the accuracy of stable schemes for 2D conservation laws. Math. Comp., 45, 1985.

    Google Scholar 

  29. A. Harten. High resolution schemes for hyperbolic conservation laws. J. Comp. Phys., 49: 357–393, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Harten. On the symmetric form of systems of conservation laws with entropy. J. Comp. Phys., 49: 151–164, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Harten, J. M. Hyman, and P. D. Lax. On finite-difference approximations and entropy conditions for shocks. Comm. Pure and Appl. Math., 29: 297–322, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  32. A. Harten, S. Osher, B. Enquist, and S. Chakravarthy. Uniformly high-order accurate essentially nonoscillatory schemes III. J. Comp. Phys.,71(2):231–303, 1987.

    Article  Google Scholar 

  33. T. J. R. Hughes, L. P. Franca, and M. Mallet. A new finite element formulation for CFD: I. symmetric forms of the compressible Euler and Navier-Stokes equations and the second law of thermodynamics. Comp. Meth. Appl. Mech. Engrg., 54: 223–234, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  34. T. J. R. Hughes and M. Mallet. A new finite element formulation for CFD: III. the generalized streamline operator for multidimensional advective-diffusive systems. Comp. Meth. Appl. Mech. Engrg., 58: 305–328, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Jameson. Analysis and design of numerical schemes for gas dynamics. Technical Report TR 94–15, RIACS, NASA Ames R.C., Moffett Field, CA, 1995.

    Google Scholar 

  36. C. Johnson. Numerical Solution of Partial Differential Equations by the Finite Element Method. Cambridge University Press, Cambridge, 1987.

    MATH  Google Scholar 

  37. C. Johnson and J. Pitkäranta. An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comp., 46: 1–26, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  38. C. Johnson and A. Szepessy. Convergence of the shock-capturing streamline diffusion finite element methods for hyperbolic conservation laws. Math. Comp., 54: 107–129, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  39. D. Kröner, M. Rokyta, and M. Wierse. A Lax-Wendroff type theorem for upwind finite volume schemes in 2-d. East-West J. Numer. Math.,4(4):279–292, 1996.

    MathSciNet  MATH  Google Scholar 

  40. D. Kröner, S. Noelle, and M. Rokyta. Convergence of higher order upwind finite volume schemes on unstructured grids for scalar conservation laws in several space dimensions. Numer. Math., 71 (4): 527–560, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  41. C. Lawson. Properties of n-dimensional triangulations. CAGD, 3: 231–246, 1986.

    MATH  Google Scholar 

  42. P. D. Lax. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. SIAM, Philadelphia, Penn., 1973.

    Book  MATH  Google Scholar 

  43. C. R. Michel. Improved reconstruction schemes for the navier-stokes equations on unstructured meshes. Technical Report 94–0642, AIAA, 1994.

    Google Scholar 

  44. M. S. Mock. Systems of conservation laws of mixed type. J. Diff. Eqns., 37: 70–88, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  45. K. G. Powell. An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension). Technical Report 94–24, ICASE, NASA Langley R.C., 1994.

    Google Scholar 

  46. P. L. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys., 43, 1981.

    Google Scholar 

  47. P. L. Roe and D. S. Balsam. Notes on the eigensystem of magnetohydrodyamics. SIAM J. Appl. Math., 56 (1): 57–67, 1996.

    Article  MathSciNet  MATH  Google Scholar 

  48. D. Serre. Remarks about the discrete profiles of shock waves. Mat. Contemp., 11: 153–170, 1996.

    MathSciNet  MATH  Google Scholar 

  49. F. Shakib. Finite Element Analysis of the Compressible Euler and Navier-Stokes Equations. PhD thesis, Stanford University, Department of Mechanical Engineering, 1988.

    Google Scholar 

  50. S. Spekreijse. Multigrid Solution of the Steady Euler-Equations. PhD thesis, Centrum voor Wiskunde en Informatica, Amsterdam, 1987.

    Google Scholar 

  51. R. Struijs. An adaptive grid polygonal finite volume method for the compressible flow equations. Technical Report 89–1959-CP, AIAA, 1989.

    Google Scholar 

  52. R. Struijs. A Multi-Dimensional Upwind Discretization Method for the Euler Equations on Unstructured Grids. PhD thesis, T.U. Delf and the VKI Institute, 1994.

    Google Scholar 

  53. B. van Leer. Towards the ultimate conservative difference schemes V. a second order sequel to Godunov’s method. J. Comp. Phys., 32, 1979.

    Google Scholar 

  54. P. Vankeirsbilck. Algorithmic Developments for the Solution of Hyperbolic Conservation Laws on Adaptive Unstructured Grids. PhD thesis, Katholiek Universiteit van Leuven, 1993.

    Google Scholar 

  55. V. Venkatakrishnan. On the accuracy of limiters and convergence to steady state. Technical Report 93–0880, AIAA, Reno, NV, 1993.

    Google Scholar 

  56. P. Woodward and P. Colella. The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comp. Phys., 54: 115–173, 1984.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barth, T.J. (1999). Numerical Methods for Gasdynamic Systems on Unstructured Meshes. In: Kröner, D., Ohlberger, M., Rohde, C. (eds) An Introduction to Recent Developments in Theory and Numerics for Conservation Laws. Lecture Notes in Computational Science and Engineering, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-58535-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-58535-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-65081-2

  • Online ISBN: 978-3-642-58535-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation