9 Glomeromycota

  • Chapter
  • First Online:
Systematics and Evolution

Part of the book series: The Mycota ((MYCOTA,volume 7A))

Abstract

The monophyletic phylum Glomeromycota was erected in 2001. All members of the Glomeromycota form arbuscular mycorrhizae (AM) or, in one case, a symbiosis with cyanobacteria. The fungi are dependent on symbiotically derived carbohydrates delivered by their photoautotrophic symbiotic partners and represent a significant carbon sink in terrestrial ecosystems. In turn, AM fungi (AMF) provide large amounts of inorganic nutrients (mainly P) to the plants and thus are crucial for plant nutrition. Because the majority of land plants form AM, these fungi must be considered as integral components of plant life and are of great importance in terrestrial ecosystems. Nevertheless, knowledge about these economically and ecologically important fungi is still rudimentary in many respects, including their systematics and taxonomy. Here, the current state of glomeromycotan systematics is reviewed, which nowadays is largely based on molecular phylogenetic data. The numerous changes and revisions in AM fungal systematics from the last decade are presented in the context of the historical background and of their implications for ecology and evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    CAS  PubMed  Google Scholar 

  • Appoloni S, Lekberg Y, Tercek M, Zabinski C, Redecker D (2008) Molecular community analysis of arbuscular mycorrhizal fungi in roots from geothermal soils in Yellowstone National Park (USA). Microb Ecol 56:649–659

    PubMed  Google Scholar 

  • Azcon-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens—an overview of the mechanisms involved. Mycorrhiza 6:457–464

    Google Scholar 

  • Bécard G, Fortin JA (1988) Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218

    Google Scholar 

  • Bécard G, Pfeffer PE (1993) Status of nuclear division in arbuscular mycorrhizal fungi during in vitro development. Protoplasma 174:62–68

    Google Scholar 

  • Bécard G, Taylor LP, Douds DD, Pfeffer PE, Doner LW (1995) Flavonoids are not necessary plant signal compounds in arbuscular mycorrhizal symbioses. Mol Plant Microbe Interact 8:252–258

    Google Scholar 

  • Bentivenga SP, Morton JB (1996) Congruence of fatty acid methyl ester profiles and morphological characters of arbuscular mycorrhizal fungi in Gigasporaceae. Proc Natl Acad Sci USA 93:5659–5662

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berkeley M, Broome C (1873) Enumeration of the fungi of Ceylon. Part II. J Linn Soc Bot 14:29–140

    Google Scholar 

  • Besserer A, Puech-Pagès V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais J-C, Roux C, Bécard G, Séjalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:e226. doi:10.1371/journal.pbio.0040226

    PubMed Central  PubMed  Google Scholar 

  • Bidartondo MI, Redecker D, Hijri I, Wiemken A, Bruns TD, Domínguez L, Sérsic A, Leake JR, Read DJ (2002) Epiparasitic plants specialized on arbuscular mycorrhizal fungi. Nature 419:389–392

    CAS  PubMed  Google Scholar 

  • Bidartondo MI, Read DJ, Trappe JM, Merckx V, Ligrone R, Duckett JG (2011) The dawn of symbiosis between plants and fungi. Biol Lett 7:574–577

    PubMed Central  PubMed  Google Scholar 

  • Bonfante-Fasolo P, Grippiolo R (1982) Ultrastructural and cytochemical changes in the wall of a vesicular-arbuscular mycorrhizal fungus during symbiosis. Can J Bot 60:2303–2312

    Google Scholar 

  • Boon E, Zimmerman E, Lang BF, Hijri M (2010) Intra-isolate genome variation in arbuscular mycorrhizal fungi persists in the transcriptome. J Evol Biol 23:1519–1527

    CAS  PubMed  Google Scholar 

  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and develo** reliable means of diagnosis. Plant Soil 320:37–77

    CAS  Google Scholar 

  • Bunn RA, Zabinski CA (2003) Arbuscular mycorrhizae in thermal-influenced soils in Yellowstone National Park. West N Am Nat 63:409–415

    Google Scholar 

  • Clapp JP, Young JPW, Merryweather JW, Fitter AH (1995) Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytol 130:259–265

    Google Scholar 

  • Croll D, Giovannetti M, Koch AM, Sbrana C, Ehinger M, Lammers PJ, Sanders IR (2009) Nonself vegetative fusion and genetic exchange in the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol 181:924–937

    CAS  PubMed  Google Scholar 

  • Daniell TJ, Husband R, Fitter AH, Young JPW (2001) Molecular diversity of arbuscular mycorrhizal fungi colonizing arable crops. FEMS Microbiol Lett 36:203–209

    CAS  Google Scholar 

  • de la Providencia IE, de Souza FA, Fernández F, Delmas NS, Declerck S (2005) Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenic groups. New Phytol 165:261–271

    PubMed  Google Scholar 

  • Dickson S, Smith FA, Smith SE (2007) Structural differences in arbuscular mycorrhizal symbioses: more than 100 years after Gallaud, where next? Mycorrhiza 17:375–393

    CAS  PubMed  Google Scholar 

  • Dotzler N, Krings M, Taylor TN, Agerer R (2006) Germination shields in Scutellospora (Glomeromycota: Diversisporales, Gigasporaceae) from the 400 million-year-old Rhynie chert. Mycol Prog 5:178–184

    Google Scholar 

  • Dotzler N, Walker C, Krings M, Hass H, Kerp H, Taylor TN, Agerer R (2009) Acaulosporoid glomeromycotan spores with a germination shield from the 400-million-year-old Rhynie chert. Mycol Prog 8:9–18

    Google Scholar 

  • Frank A (1885) Über die auf Wurzelsymbiose beruhende Ernährung gewisser Bäume durch unterirdische Pilze. Ber Deut Bot Ges 3:128–145

    Google Scholar 

  • Gallaud I (1905) Études sur les mycorrhizes endotrophes. Rev Gén Bot 17:5–48, 66–83, 123–135, 223–239, 313–325, 425–433, 479–500

    Google Scholar 

  • Gange AC (1993) Translocation of mycorrhizal fungi by earthworms during early succession. Soil Biol Biochem 25:1021–1026

    Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    CAS  PubMed  Google Scholar 

  • Gehrig H, Schüßler A, Kluge M (1996) Geosiphon pyriforme, a fungus forming endocytobiosis with Nostoc (Cyanobacteria), is an ancestral member of the Glomales: evidence by SSU rRNA analysis. J Mol Evol 43:71–81

    CAS  PubMed  Google Scholar 

  • Genre A, Chabaud M, Faccio A, Barker DG, Bonfante P (2008) Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota. Plant Cell 20:1407–1420

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gerdemann JW (1955a) Wound-healing of hyphae in a phycomycetous mycorrhizal fungus. Mycologia 47:916–918

    Google Scholar 

  • Gerdemann JW (1955b) Relation of a large soil-borne spore to phycomycetous mycorrhizal infections. Mycologia 47:429–617

    Google Scholar 

  • Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244

    Google Scholar 

  • Gerdemann JW, Trappe JM (1974) Endogonaceae in the Pacific Northwest. Mycologia Memoir 5:1–76

    Google Scholar 

  • Gianinazzi S, Gollotte A, Binet M-N, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    PubMed  Google Scholar 

  • Giovannetti M, Sbrana C, Strani P, Agnolucci M, Rinaudo V, Avio L (2003) Genetic diversity of isolates of Glomus mosseae from different geographic areas detected by vegetative compatibility testing and biochemical and molecular analysis. Appl Environ Microbiol 69:616–624

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hall IR (1977) Species and mycorrhizal infections of New Zealand Endogonaceae. Trans Br Mycol Soc 68:341–356

    Google Scholar 

  • Hawksworth DL, Crous PW, Redhead SA, Reynolds DR, Samson RA, Seifert KA, Taylor JW, Samson RA, Abaci O, Asan A, Bai F, De Beer WZ, Begerow D, Boekhout T, Buzina W, Cai L, Cannon PF, Damm U, Daniel H, Demirel R, Van Diepeningen AD, Eberhardt U, Fell JW, Frisvad JC, Geml J, Glienke C, Groenwald M, Gueho-Kellermanne E, Hong S, Houbraken J, Huhndorf SM, Hyde KD, Johnston PR, Koljalg U, Kurtzman CP, Lagneau P, Levesque C, Liu X, Lombard L, Meyer W, Miller A, Minter DW, Najafzadeh MJ, Ozerskaya SM, Pennycook SR, Peterson SW, Pettersson OV, Quaedvlieg W, Robert VA, Ruibal C, Schnurer J, Schoers H, Slippers B, Spierenburg H, Taskin E, Thrane U, Uztan A, Varga J, Vasco A, Videira SI, De Vries RP, Weir BS, Yilmaz N, Yurkov A (2011) The Amsterdam declaration on fungal nomenclature. IMA Fungus 2:105–112

    PubMed Central  PubMed  Google Scholar 

  • Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web? Nature 394:431

    CAS  PubMed  Google Scholar 

  • Helgason T, Merryweather JW, Denison J, Wilson P, Young JPW, Fitter AH (2002) Selectivity and functional diversity in arbuscular mycorrhizas of co-occuring fungi and plants from a temperate deciduous woodland. J Ecol 90:371–384

    Google Scholar 

  • Helgason T, Watson IJ, Young JPW (2003) Phylogeny of the Glomerales and Diversisporales (Fungi: Glomeromycota) from actin and elongation factor 1-alpha sequences. FEMS Microbiol Lett 229:127–132

    CAS  PubMed  Google Scholar 

  • Hibbett DS, Ohman A, Glotzer D, Nuhn M, Kirk P, Nilsson RH (2011) Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences. Fung Biol Rev 25:38–47

    Google Scholar 

  • Hijri M, Redecker D, Macdonald-Comber Petetot JA, Voigt K, Wöstemeyer J, Sanders IR (2002) Identification and isolation of two Ascomycete fungi from spores of the arbuscular mycorrhizal fungus Scutellospora. Appl Environ Microbiol 68:4567–4573

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hijri I, Sykorova Z, Oehl F, Ineichen K, Mäder P, Wiemken A, Redecker D (2006) Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Mol Ecol 15:2277–2289

    CAS  PubMed  Google Scholar 

  • Jansa J, Mozafar A, Frossard E (2005) Phosphorus acquisition strategies within arbuscular mycorrhizal fungal community of a single field site. Plant Soil 276:163–176

    CAS  Google Scholar 

  • Janse JM (1897) Les endophytes radicaux de quelques plantes Javanaises. Annales du Jardin Botanique de Buitenzorg 14:53–212

    Google Scholar 

  • Jany JL, Pawlowska TE (2010) Multinucleate spores contribute to evolutionary longevity of asexual Glomeromycota. Am Nat 175:424–435

    PubMed  Google Scholar 

  • ** H, Pfeffer PE, Douds DD, Piotrowski E, Lammers PJ, Shachar-Hill Y (2005) The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. New Phytol 168:687–696

    CAS  PubMed  Google Scholar 

  • Kaonongbua W, Morton J, Bever JD (2010) Taxonomic revision transferring species in Kuklospora to Acaulospora (Glomeromycota) and a description of Acaulospora colliculosa sp. nov. from field collected spores. Mycologia 102:1497–1509

    CAS  PubMed  Google Scholar 

  • Klironomos JN, McCune J, Hart M, Neville J (2000) The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecol Lett 3:137–141

    Google Scholar 

  • Koch A, Kuhn G, Fontanillas P, Fumagalli L, Goudet J, Sanders IR (2004) High genetic variability and low local diversity in a population of arbuscular mycorrhizal fungi. Proc Natl Acad Sci USA 101:2369–2374

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koide R, Mosse B (2004) A history of research on arbuscular mycorrhiza. Mycorrhiza 14:145–163

    PubMed  Google Scholar 

  • Krüger M, Walker C, Schüßler A (2011) Acaulospora brasiliensis comb. nov. and Acaulospora alpina (Glomeromycota) from upland Scotland: morphology, molecular phylogeny and DNA-based detection in roots. Mycorrhiza 21:577–587

    PubMed  Google Scholar 

  • Krüger M, Krüger C, Walker C, Stockinger H, Schüßler A (2012) Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. New Phytol 193:970–984

    PubMed  Google Scholar 

  • Lee J, Young JPW (2009) The mitochondrial genome sequence of the arbuscular mycorrhizal fungus Glomus intraradices isolate 494 and implications for the phylogenetic placement of Glomus. New Phytol 183:200–211

    CAS  PubMed  Google Scholar 

  • LePage BA, Currah RS, Stockey RA, Rothwell GW (1997) Fossil ectomycorrhizae from the Middle Eocene. Am J Bot 84:410

    CAS  PubMed  Google Scholar 

  • Link HF (1809) Observationes in ordines plantarum naturales. Magazin für die neuesten Entdeckungen in der gesammten Naturkunde, Gesellschaft Naturforschender Freunde zu Berlin 3:3–42

    Google Scholar 

  • Liu Y, Steenkamp E, Brinkmann H, Forget L, Philippe H, Lang BF (2009) Phylogenomic analyses predict sistergroup relationship of nucleariids and Fungi and paraphyly of zygomycetes with significant support. BMC Evol Biol 9:272. doi:10.1186/1471-2148-9-272

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mangan SA, Adler GH (2002) Seasonal dispersal of arbuscular mycorrhizal fungi by spiny rats in a neotropical forest. Oecologia 131:587–597

    Google Scholar 

  • Marleau J, Dalpe Y, St-Arnaud M, Hijri M (2011) Spore development and nuclear inheritance in arbuscular mycorrhizal fungi. BMC Evol Biol 11:51

    PubMed Central  PubMed  Google Scholar 

  • Morton JB (1988) Taxonomy of VA mycorrhizal fungi: classification, nomenclature, and identification. Mycotaxon 32:267–324

    Google Scholar 

  • Morton JB (1995) Taxonomic and phylogenetic divergence among five Scutellospora species based on comparative developmental sequences. Mycologia 87:127–137

    Google Scholar 

  • Morton JB, Benny GL (1990) Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Gigasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon 37:471–491

    Google Scholar 

  • Morton JB, Msiska Z (2010) Phylogenies from genetic and morphological characters do not support a revision of Gigasporaceae (Glomeromycota) into four families and five genera. Mycorrhiza 7:483–496

    Google Scholar 

  • Morton JB, Redecker D (2001) Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia 93:181–195

    Google Scholar 

  • Morton JB, Bever JD, Pfleger FL (1997) Taxonomy of Acaulospora gerdemannii and Glomus leptotichum, synanamorphs of an arbuscular mycorrhizal fungus in Glomales. Mycol Res 101:625–631

    Google Scholar 

  • Mosse B (1953) Fructifications associated with mycorrhizal strawberry roots. Nature 171:974

    CAS  PubMed  Google Scholar 

  • Nägeli C (1842) Pilze im Innern von Zellen. Linnaea 16:278–285

    Google Scholar 

  • Nicolson TH, Gerdemann JW (1968) Mycorrhizal Endogone species. Mycologia 60:313–325

    Google Scholar 

  • Oehl F, Sieverding E (2004) Pacispora, a new vesicular arbuscular mycorrhizal fungal genus in the Glomeromycetes. J Appl Bot 78:72–82

    Google Scholar 

  • Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A (2003) Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Appl Environ Microbiol 69:2816–2824

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oehl F, de Souza FA, Sieverding E (2008) Revision of Scutellospora and description of five new genera and three new families in the arbuscular mycorrhiza-forming Glomeromycetes. Mycotaxon 106:311–360

    Google Scholar 

  • Öpik M, Moora M, Liira J, Zobel M (2006) Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol 94:778–790

    Google Scholar 

  • Öpik M, Moora M, Zobel M, Saks U, Wheatley R, Wright F, Daniell T (2008) High diversity of arbuscular mycorrhizal fungi in a boreal herb-rich coniferous forest. New Phytol 179:867–876

    PubMed  Google Scholar 

  • Palenzuela J, Ferrol N, Boller T, Azcon-Aguilar C, Oehl F (2008) Otospora bareai, a new fungal species in the Glomeromycetes from a dolomitic shrub land in Sierra de Baza National Park (Granada, Spain). Mycologia 100:296–305

    CAS  PubMed  Google Scholar 

  • Palenzuela J, Barea JM, Ferrol N, Azcon-Aguilar C, Oehl F (2010) Entrophospora nevadensis, a new arbuscular mycorrhizal fungus from Sierra Nevada National Park (southeastern Spain). Mycologia 102:624–632

    PubMed  Google Scholar 

  • Peyronel B (1923) Fructification de l’endophyte à arbuscules et à vesicules des mycorhizes endotrophes. Bull Soc Mycol 39:119–126

    Google Scholar 

  • Pirozynski KA, Malloch DW (1975) The origin of land plants: a matter of mycotrophism. BioSystems 6:153–164

    CAS  PubMed  Google Scholar 

  • Purin S, Morton J (2011) In situ analysis of anastomosis in representative genera of arbuscular mycorrhizal fungi. Mycorrhiza 21:505–514

    PubMed  Google Scholar 

  • Raab P, Brennwald A, Redecker D (2005) Mitochondrial large ribosomal subunit sequences are homogeneous within isolates of Glomus (arbuscular mycorrhizal fungi, Glomeromycota). Mycol Res 109:1315–1322

    CAS  PubMed  Google Scholar 

  • Redecker D, Raab P (2006) Phylogeny of the Glomeromycota (arbuscular mycorrhizal fungi): recent developments and new gene markers. Mycologia 98:885–895

    PubMed  Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000a) Glomalean fungi from the Ordovician. Science 289:1920–1921

    CAS  PubMed  Google Scholar 

  • Redecker D, Morton JB, Bruns TD (2000b) Ancestral lineages of arbuscular mycorrhizal fungi. Mol Phylogenet Evol 14:276–284

    CAS  PubMed  Google Scholar 

  • Redecker D, Raab P, Oehl F, Camacho FJ, Courtecuisse R (2007) A novel clade of sporocarp-forming species of glomeromycotan fungi in the Diversisporales lineage. Mycol Prog 6:35–44

    Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841–11843

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rodriguez A, Dougall T, Dodd JC, Clapp JP (2001) The large subunit ribosomal RNA genes of Entrophospora infrequens comprise sequences related to two different glomalean families. New Phytol 152:159–167

    CAS  Google Scholar 

  • Rosendahl S (2008) Communities, populations and individuals of arbuscular mycorrhizal fungi. New Phytol 178:253–265

    PubMed  Google Scholar 

  • Rubinstein CV, Gerrienne P, De La Puente GS, Astini RA, Steemans P (2010) Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana). New Phytol 188:365–369

    CAS  PubMed  Google Scholar 

  • Sanders IR, Croll D (2010) Arbuscular mycorrhiza: the challenge to understand the genetics of the fungal partner. Annu Rev Genet 44:271–292

    CAS  PubMed  Google Scholar 

  • Sanders IR, Alt M, Groppe K, Boller T, Wiemken A (1995) Identification of ribosomal DNA polymorphism among and within spores of the Glomales: application to studies on the genetic diversity of arbuscular mycorrhizal fungal communities. New Phytol 130:419–427

    CAS  Google Scholar 

  • Schlicht A (1889) Beitrag zur Kenntnis der Verbreitung und Bedeutung der Mycorhizen. Landwirtschaftliche Jahrbücher 18:478–506

    Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Bolchacova E, Voigt K, Chen W, Levesque CA, Crous PW, Fungal Barcoding Consortium (2012) The internal transcribed spacer (ITS) as a universal DNA barcode maker for fungi. Proc Natl Acad Sci USA 109(16):6241–6246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schüßler A (2012) The Geosiphon–Nostoc endosymbiosis and its role as a model for arbuscular mycorrhiza research. In: Hock B (ed) The Mycota IX—Fungal associations, 2nd edn. Springer, Berlin

    Google Scholar 

  • Schüßler A, Walker C (2010) The Glomeromycota: a species list with new families and new genera. Published in libraries at The Royal Botanic Garden Edinburgh, The Royal Botanic Garden Kew, Botanische Staatssammlung Munich, and Oregon State University. Electronic version freely available online at http://www.amf-phylogeny.com. ISBN-13:978-1466388048

  • Schüßler A, Walker C (2011) Evolution of the ‘plant-symbiotic’ fungal phylum, Glomeromycota. In: Pöggeler S, Wöstemeyer J (eds) Evolution of fungi and fungal-like organisms. Springer, Berlin, pp 163–185

    Google Scholar 

  • Schüßler A, Mollenhauer D, Schnepf E, Kluge M (1994) Geosiphon pyriforme, an endosymbiotic association of fungus and cyanobacteria: the spore structure resembles that of arbuscular mycorrhizal (AM) fungi. Bot Acta 107:36–45

    Google Scholar 

  • Schüßler A, Gehrig H, Schwarzott D, Walker C (2001a) Analysis of partial Glomales SSU rRNA gene sequences: implications for primer design and phylogeny. Mycol Res 105:5–15

    Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001b) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Google Scholar 

  • Schüßler A, Martin H, Cohen D, Fitz M, Wipf D (2006) Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi. Nature 444:933–936

    PubMed  Google Scholar 

  • Schwarzott D, Walker C, Schüßler A (2001) Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is non-monophyletic. Mol Phylogenet Evol 21:190–197

    CAS  PubMed  Google Scholar 

  • Simon L, Bousquet J, Levesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Smith SE, Dickson S, Smith FA (2001) Nutrient transfer in arbuscular mycorrhizas: how are fungal and plant processes integrated? Aust J Plant Physiol 28:683–694

    CAS  Google Scholar 

  • Sondergaard M, Laegaard S (1977) Vesicular-arbuscular mycorrhiza in some aquatic vascular plants. Nature 268:232–233

    Google Scholar 

  • Spain JL (2003) Emendation of Archaeospora and of its type species, Archaeospora trappei. Mycotaxon 87:109–112

    Google Scholar 

  • Stewart WN, Rothwell GW (1993) Paleobotany and the evolution of plants, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Stockinger H, Walker C, Schüßler A (2009) ‘Glomus intraradices DAOM197198’, a model fungus in arbuscular mycorrhiza research, is not Glomus intraradices. New Phytol 183:1176–1187

    PubMed  Google Scholar 

  • Stockinger H, Krüger M, Schüßler A (2010) DNA barcoding of arbuscular mycorrhizal fungi. New Phytol 187:461–474

    CAS  PubMed  Google Scholar 

  • Stürmer SL (2012) A history of the taxonomy and systematics of arbuscular mycorrhizal fungi belonging to the phylum Glomeromycota. Mycorrhiza 22:247–258

    PubMed  Google Scholar 

  • Stürmer SL, Morton JB (1999) Taxonomic reinterpretation of morphological characters in Acaulosporaceae based on developmental patterns. Mycologia 91:849–857

    Google Scholar 

  • Stutz JC, Morton JB (1996) Successive pot cultures reveal high species richness of arbuscular endomycorrhizal fungi in arid ecosystems. Can J Bot 74:1883–1889

    Google Scholar 

  • Sýkorová Z, Ineichen K, Wiemken A, Redecker D (2007) The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment. Mycorrhiza 18:1–14

    PubMed  Google Scholar 

  • Taylor JW, Geiser DM, Burt A, Koufopanou V (1999) The evolutionary biology and population genetics underlying fungal strain ty**. Clin Microbiol Rev 12:126–146

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tulasne LR, Tulasne C (1844) Fungi nonnulli hypogaei, novi v. minus cogniti auct. G Bot Ital 2:55–63

    Google Scholar 

  • Walker C (1983) Taxonomic concepts in the Endogonaceae: spore wall characteristics in species descriptions. Mycotaxon 18:443–455

    Google Scholar 

  • Walker C, Sanders FE (1986) Taxonomic concepts in the Endogonaceae: III. The separation of Scutellospora gen nov from Gigaspora Gerd and Trappe. Mycotaxon 27:169–182

    Google Scholar 

  • Walker C, Schüßler A (2004) Nomenclatural clarifications and new taxa in the Glomeromycota. Mycol Res 108:981–982

    Google Scholar 

  • Walker C, Blaszkowski J, Schwarzott D, Schüßler A (2004) Gerdemannia gen. nov., a genus separated from Glomus, and Gerdemanniaceae fam. nov., a new family in the Glomeromycota. Mycol Res 108:707–718

    CAS  PubMed  Google Scholar 

  • Walker C, Vestberg M, Demircik F, Stockinger H, Saito M, Sawaki H, Nishmura I, Schüßler A (2007) Molecular phylogeny and new taxa in the Archaeosporales (Glomeromycota): Ambispora fennica gen. sp nov., Ambisporaceae fam. nov., and emendation of Archaeospora and Archaeosporaceae. Mycol Res 111:137–153

    PubMed  Google Scholar 

  • Walley FL, Germida JJ (1996) Failure to decontaminate Glomus clarum NT4 spores is due to spore wall-associated bacteria. Mycorrhiza 6:43–49

    Google Scholar 

  • Wang B, Yeun LH, Xue J-Y, Liu Y, Ane J-M, Qiu Y-L (2010) Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytol 186:514–525

    PubMed  Google Scholar 

  • Young G (2008) What’s on the menu? Nat Rev Microbiol 6:499

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Redecker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Redecker, D., Schüßler, A. (2014). 9 Glomeromycota. In: McLaughlin, D., Spatafora, J. (eds) Systematics and Evolution. The Mycota, vol 7A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-55318-9_9

Download citation

Publish with us

Policies and ethics

Navigation