Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 222))

  • 8863 Accesses

Abstract

TRPM5 is a Ca2+-activated cation channel that mediates signaling in taste and other chemosensory cells. Within taste cells, TRPM5 is the final element in a signaling cascade that starts with the activation of G protein-coupled receptors by bitter, sweet, or umami taste molecules and that requires the enzyme PLCĪ²2. PLCĪ²2 breaks down PIP2 into DAG and IP3, and the ensuing release of Ca2+ from intracellular stores activates TRPM5. Since its initial discovery in the taste system, TRPM5 has been found to be distributed in sparse chemosensory cells located throughout the digestive track, in the respiratory system, and in the olfactory system. It is also found in pancreatic islets, where it contributes to insulin secretion. This review highlights recent work on the mechanisms of the activation of the TRPM5 channel and its regulation by voltage, phosphoinositides, temperature, and pH. The distribution of the channel in the body and its functional contribution to various sensory and nonsensory processes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akabas MH, Dodd J, Al-Awqati Q (1988) A bitter substance induces a rise in intracellular calcium in a subpopulation of rat taste cells. Science 242(4881):1047ā€“1050

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Ashcroft FM, Rorsman P (1989) Electrophysiology of the pancreatic beta-cell. Prog Biophys Mol Biol 54(2):87ā€“143

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Ashcroft FM, Harrison DE, Ashcroft SJ (1984) Glucose induces closure of single potassium channels in isolated rat pancreatic beta-cells. Nature 312(5993):446ā€“448

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Bernhardt SJ, Naim M, Zehavi U, Lindemann B (1996) Changes in IP3 and cytosolic Ca2+ in response to sugars and non-sugar sweeteners in transduction of sweet taste in the rat. J Physiol 490(Pt 2):325ā€“336

    PubMed CentralĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Bezencon C, Furholz A, Raymond F, Mansourian R, Metairon S, Le Coutre J, Damak S (2008) Murine intestinal cells expressing Trpm5 are mostly brush cells and express markers of neuronal and inflammatory cells. J Comp Neurol 509(5):514ā€“525. doi:10.1002/cne.21768

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Brixel LR, Monteilh-Zoller MK, Ingenbrandt CS, Fleig A, Penner R, Enklaar T, Zabel BU, Prawitt D (2010) TRPM5 regulates glucose-stimulated insulin secretion. Pflugers Arch 460(1):69ā€“76

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Clapham DE (2003) TRP channels as cellular sensors. Nature 426(6966):517ā€“524

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Clapp TR, Stone LM, Margolskee RF, Kinnamon SC (2001) Immunocytochemical evidence for co-expression of Type III IP3 receptor with signaling components of bitter taste transduction. BMC Neurosci 2:6

    ArticleĀ  PubMed CentralĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Clapp TR, Medler KF, Damak S, Margolskee RF, Kinnamon SC (2006) Mouse taste cells with G protein-coupled taste receptors lack voltage-gated calcium channels and SNAP-25. BMC Biol 4:7

    ArticleĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Colsoul B, Schraenen A, Lemaire K, Quintens R, Van Lommel L, Segal A, Owsianik G, Talavera K, Voets T, Margolskee RF, Kokrashvili Z, Gilon P, Nilius B, Schuit FC, Vennekens R (2010) Loss of high-frequency glucose-induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in Trpm5-/- mice. Proc Natl Acad Sci USA 107(11):5208ā€“5213

    ArticleĀ  PubMed CentralĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Colsoul B, Vennekens R, Nilius B (2011) Transient receptor potential cation channels in pancreatic beta cells. Rev Physiol Biochem Pharmacol 161:87ā€“110. doi:10.1007.112.2011.2

    PubMedĀ  Google ScholarĀ 

  • Cook DL, Hales CN (1984) Intracellular ATP directly blocks K+ channels in pancreatic B-cells. Nature 311(5983):271ā€“273

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Dehkordi O, Rose JE, Fatemi M, Allard JS, Balan KV, Young JK, Fatima S, Millis RM, Jayam-Trouth A (2012) Neuronal expression of bitter taste receptors and downstream signaling molecules in the rat brainstem. Brain Res 1475:1ā€“10

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Enklaar T, Esswein M, Oswald M, Hilbert K, Winterpacht A, Higgins M, Zabel B, Prawitt D (2000) Mtr1, a novel biallelically expressed gene in the center of the mouse distal chromosome 7 imprinting cluster, is a member of the Trp gene family. Genomics 67(2):179ā€“187

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Gilon P, Shepherd RM, Henquin JC (1993) Oscillations of secretion driven by oscillations of cytoplasmic Ca2+ as evidences in single pancreatic islets. J Biol Chem 268(30):22265ā€“22268

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Hansen A, Finger TE (2008) Is TrpM5 a reliable marker for chemosensory cells? Multiple types of microvillous cells in the main olfactory epithelium of mice. BMC Neurosci 9:115, 1471-2202-9-115 [pii]

    ArticleĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Hille B (2001) Ionic channels of excitable membranes. Sinauer Associates Inc., Sunderland, MA

    Google ScholarĀ 

  • Hofmann T, Chubanov V, Gudermann T, Montell C (2003) TRPM5 is a voltage-modulated and Ca(2+)-activated monovalent selective cation channel. Curr Biol 13(13):1153ā€“1158

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Huang YA, Roper SD (2010) Intracellular Ca2+ and TRPM5-mediated membrane depolarization produce ATP secretion from taste receptor cells. J Physiol 588(Pt 13):2343ā€“2350. doi:10.1113/jphysiol.2010.191106, jphysiol.2010.191106 [pii]

    ArticleĀ  PubMed CentralĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Huang L, Shanker YG, Dubauskaite J, Zheng JZ, Yan W, Rosenzweig S, Spielman AI, Max M, Margolskee RF (1999) Ggamma13 colocalizes with gustducin in taste receptor cells and mediates IP3 responses to bitter denatonium. Nat Neurosci 2(12):1055ā€“1062

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Hwang PM, Verma A, Bredt DS, Snyder SH (1990) Localization of phosphatidylinositol signaling components in rat taste cells: role in bitter taste transduction. Proc Natl Acad Sci USA 87(19):7395ā€“7399

    ArticleĀ  PubMed CentralĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Jiang Y, Ruta V, Chen J, Lee A, MacKinnon R (2003) The principle of gating charge movement in a voltage-dependent Kā€‰+ā€‰channel. Nature 423(6935):42ā€“48

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kaske S, Krasteva G, Konig P, Kummer W, Hofmann T, Gudermann T, Chubanov V (2007) TRPM5, a taste-signaling transient receptor potential ion-channel, is a ubiquitous signaling component in chemosensory cells. BMC Neurosci 8:49, 1471-2202-8-49 [pii]

    ArticleĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Ketterer C, Mussig K, Heni M, Dudziak K, Randrianarisoa E, Wagner R, Machicao F, Stefan N, Holst JJ, Fritsche A, Haring HU, Staiger H (2011) Genetic variation within the TRPM5 locus associates with prediabetic phenotypes in subjects at increased risk for type 2 diabetes. Metabolism 60(9):1325ā€“1333. doi:10.1016/j.metabol.2011.02.002, S0026-0495(11)00033-3 [pii]

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Kim YS, Kang E, Makino Y, Park S, Shin JH, Song H, Launay P, Linden DJ (2012) Characterizing the conductance underlying depolarization-induced slow current in cerebellar Purkinje cells. J Neurophysiol 109(4):1174ā€“1181, jn.01168.2011 [pii]

    ArticleĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Kokrashvili Z, Rodriguez D, Yevshayeva V, Zhou H, Margolskee RF, Mosinger B (2009) Release of endogenous opioids from duodenal enteroendocrine cells requires Trpm5. Gastroenterology 137(2):598ā€“606, 606.e591ā€“592

    ArticleĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP (2002) TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell 109(3):397ā€“407

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Liman ER (2010) A TRP channel contributes to insulin secretion by pancreatic beta-cells. Islets 2(5):331ā€“333, 12973 [pii]

    ArticleĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Liman ER, Corey DP, Dulac C (1999) TRP2: a candidate transduction channel for mammalian pheromone sensory signaling. Proc Natl Acad Sci USA 96(10):5791ā€“5796

    ArticleĀ  PubMed CentralĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lin W, Margolskee R, Donnert G, Hell SW, Restrepo D (2007) Olfactory neurons expressing transient receptor potential channel M5 (TRPM5) are involved in sensing semiochemicals. Proc Natl Acad Sci USA 104(7):2471ā€“2476

    ArticleĀ  PubMed CentralĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lin W, Ezekwe EA Jr, Zhao Z, Liman ER, Restrepo D (2008a) TRPM5-expressing microvillous cells in the main olfactory epithelium. BMC Neurosci 9:114

    ArticleĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Lin W, Ogura T, Margolskee RF, Finger TE, Restrepo D (2008b) TRPM5-expressing solitary chemosensory cells respond to odorous irritants. J Neurophysiol 99(3):1451ā€“1460

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Lindemann B (2001) Receptors and transduction in taste. Nature 413(6852):219ā€“225

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Liu D, Liman ER (2003) Intracellular Ca2+ and the phospholipid PIP2 regulate the taste transduction ion channel TRPM5. Proc Natl Acad Sci USA 100(25):15160ā€“15165

    ArticleĀ  PubMed CentralĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Liu D, Zhang Z, Liman ER (2005) Extracellular acid block and acid-enhanced inactivation of the Ca2+-activated cation channel TRPM5 involve residues in the S3-S4 and S5-S6 extracellular domains. J Biol Chem 280(21):20691ā€“20699

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Liu P, Shah BP, Croasdell S, Gilbertson TA (2011) Transient receptor potential channel type M5 is essential for fat taste. J Neurosci 31(23):8634ā€“8642. doi:10.1523/JNEUROSCI.6273-10.2011, 31/23/8634 [pii]

    ArticleĀ  PubMed CentralĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Margolskee RF (2002) Molecular mechanisms of bitter and sweet taste transduction. J Biol Chem 277(1):1ā€“4

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416(6876):52ā€“58

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Mitrovic S, Nogueira C, Cantero-Recasens G, Kiefer K, Fernandez-Fernandez JM, Popoff JF, Casano L, Bard FA, Gomez R, Valverde MA, Malhotra V (2013) TRPM5-mediated calcium uptake regulates mucin secretion from human colon goblet cells. Elife 2:e00658. doi:10.7554/eLife.0065800658 [pii]

    ArticleĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Montell C, Birnbaumer L, Flockerzi V (2002) The TRP channels, a remarkably functional family. Cell 108(5):595ā€“598

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Nilius B, Prenen J, Droogmans G, Voets T, Vennekens R, Freichel M, Wissenbach U, Flockerzi V (2003) Voltage dependence of the Ca2+-activated cation channel TRPM4. J Biol Chem 278(33):30813ā€“30820

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Nilius B, Prenen J, Janssens A, Voets T, Droogmans G (2004) Decavanadate modulates gating of TRPM4 cation channels. J Physiol 560(Pt 3):753ā€“765

    ArticleĀ  PubMed CentralĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Nilius B, Prenen J, Janssens A, Owsianik G, Wang C, Zhu MX, Voets T (2005a) The selectivity filter of the cation channel TRPM4. J Biol Chem 280(24):22899ā€“22906

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Nilius B, Talavera K, Owsianik G, Prenen J, Droogmans G, Voets T (2005b) Gating of TRP channels: a voltage connection? J Physiol 567(Pt 1):35ā€“44. doi:10.1113/jphysiol.2005.088377

    ArticleĀ  PubMed CentralĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Ogura T, Mackay-Sim A, Kinnamon SC (1997) Bitter taste transduction of denatonium in the mudpuppy Necturus maculosus. J Neurosci 17(10):3580ā€“3587

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Ogura T, Margolskee RF, Kinnamon SC (2002) Taste receptor cell responses to the bitter stimulus denatonium involve Ca2+ influx via store-operated channels. J Neurophysiol 87(6):3152ā€“3155

    PubMedĀ  CASĀ  Google ScholarĀ 

  • Oike H, Wakamori M, Mori Y, Nakanishi H, Taguchi R, Misaka T, Matsumoto I, Abe K (2006) Arachidonic acid can function as a signaling modulator by activating the TRPM5 cation channel in taste receptor cells. Biochim Biophys Acta 1761(9):1078ā€“1084

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Oka Y, Butnaru M, von Buchholtz L, Ryba NJ, Zuker CS (2013) High salt recruits aversive taste pathways. Nature 494(7438):472ā€“475. doi:10.1038/nature11905, nature11905 [pii]

    ArticleĀ  PubMed CentralĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Owsianik G, Talavera K, Voets T, Nilius B (2006) Permeation and selectivity of TRP channels. Annu Rev Physiol 68:685ā€“717. doi:10.1146/annurev.physiol.68.040204.101406

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Palmer RK, Atwal K, Bakaj I, Carlucci-Derbyshire S, Buber MT, Cerne R, Cortes RY, Devantier HR, Jorgensen V, Pawlyk A, Lee SP, Sprous DG, Zhang Z, Bryant R (2010) Triphenylphosphine oxide is a potent and selective inhibitor of the transient receptor potential melastatin-5 ion channel. Assay Drug Dev Technol 8(6):703ā€“713. doi:10.1089/adt.2010.0334

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Peier AM, Moqrich A, Hergarden AC, Reeve AJ, Andersson DA, Story GM, Earley TJ, Dragoni I, McIntyre P, Bevan S, Patapoutian A (2002) A TRP channel that senses cold stimuli and menthol. Cell 108(5):705ā€“715

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Perez CA, Huang L, Rong M, Kozak JA, Preuss AK, Zhang H, Max M, Margolskee RF (2002) A transient receptor potential channel expressed in taste receptor cells. Nat Neurosci 5(11):1169ā€“1176. doi:10.1038/nn952, nn952 [pii]

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Prawitt D, Enklaar T, Klemm G, Gartner B, Spangenberg C, Winterpacht A, Higgins M, Pelletier J, Zabel B (2000) Identification and characterization of MTR1, a novel gene with homology to melastatin (MLSN1) and the trp gene family located in the BWS-WT2 critical region on chromosome 11p15.5 and showing allele-specific expression. Hum Mol Genet 9(2):203ā€“216

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Prawitt D, Monteilh-Zoller MK, Brixel L, Spangenberg C, Zabel B, Fleig A, Penner R (2003) TRPM5 is a transient Ca2+-activated cation channel responding to rapid changes in [Ca2+]i. Proc Natl Acad Sci USA 100(25):15166ā€“15171

    ArticleĀ  PubMed CentralĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Ren Z, Rhyu MR, Phan TH, Mummalaneni S, Murthy KS, Grider JR, Desimone JA, Lyall V (2013) TRPM5-dependent amiloride- and benzamil-insensitive NaCl chorda tympani taste nerve response. Am J Physiol Gastrointest Liver Physiol 305(1):G106ā€“G117. doi:10.1152/ajpgi.00053.2013, ajpgi.00053.2013 [pii]

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Rohacs T, Lopes CM, Michailidis I, Logothetis DE (2005) PI(4,5)P(2) regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 8(5):626ā€“634

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Shah BP, Liu P, Yu T, Hansen DR, Gilbertson TA (2011) TRPM5 is critical for linoleic acid-induced CCK secretion from the enteroendocrine cell line, STC-1. Am J Physiol Cell Physiol 302(1):C210ā€“C219. doi:10.1152/ajpcell.00209.2011, ajpcell.00209.2011 [pii]

    ArticleĀ  PubMed CentralĀ  PubMedĀ  Google ScholarĀ 

  • Sturgess NC, Hales CN, Ashford ML (1987) Calcium and ATP regulate the activity of a non-selective cation channel in a rat insulinoma cell line. Pflugers Arch 409(6):607ā€“615

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Suh BC, Hille B (2005) Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr Opin Neurobiol 15(3):370ā€“378

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Talavera K, Yasumatsu K, Voets T, Droogmans G, Shigemura N, Ninomiya Y, Margolskee RF, Nilius B (2005) Heat activation of TRPM5 underlies thermal sensitivity of sweet taste. Nature 438(7070):1022ā€“1025

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Talavera K, Yasumatsu K, Yoshida R, Margolskee RF, Voets T, Ninomiya Y, Nilius B (2008) The taste transduction channel TRPM5 is a locus for bitter-sweet taste interactions. FASEB J 22(5):1343ā€“1355

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Ullrich ND, Voets T, Prenen J, Vennekens R, Talavera K, Droogmans G, Nilius B (2005) Comparison of functional properties of the Ca2+-activated cation channels TRPM4 and TRPM5 from mice. Cell Calcium 37(3):267ā€“278

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Vennekens R, Olausson J, Meissner M, Bloch W, Mathar I, Philipp SE, Schmitz F, Weissgerber P, Nilius B, Flockerzi V, Freichel M (2007) Increased IgE-dependent mast cell activation and anaphylactic responses in mice lacking the calcium-activated nonselective cation channel TRPM4. Nat Immunol 8(3):312ā€“320

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B (2004) The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430(7001):748ā€“754

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Wellman GC, Nelson MT (2003) Signaling between SR and plasmalemma in smooth muscle: sparks and the activation of Ca2+-sensitive ion channels. Cell Calcium 34(3):211ā€“229

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Wong GT, Gannon KS, Margolskee RF (1996) Transduction of bitter and sweet taste by gustducin. Nature 381(6585):796ā€“800

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJ (2003) Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112(3):293ā€“301, S0092867403000710 [pii]

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Zhang Z, Okawa H, Wang Y, Liman ER (2005) Phosphatidylinositol 4,5-Bisphosphate Rescues TRPM4 Channels from Desensitization. J Biol Chem 280(47):39185ā€“39192

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Zhang Z, Zhao Z, Margolskee R, Liman E (2007) The transduction channel TRPM5 is gated by intracellular calcium in taste cells. J Neurosci 27(21):5777ā€“5786

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

Download references

Acknowledgments

Support was provided by the National Institutes of Health, grants R01 DC004564-12 and R21DC012747-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily R. Liman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liman, E.R. (2014). TRPM5. In: Nilius, B., Flockerzi, V. (eds) Mammalian Transient Receptor Potential (TRP) Cation Channels. Handbook of Experimental Pharmacology, vol 222. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54215-2_19

Download citation

Publish with us

Policies and ethics

Navigation