Fast Rendezvous on a Cycle by Agents with Different Speeds

  • Conference paper
Distributed Computing and Networking (ICDCN 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8314))

Included in the following conference series:

Abstract

The difference between the speed of the actions of different processes is typically considered as an obstacle that makes the achievement of cooperative goals more difficult. In this work, we aim to highlight potential benefits of such asynchrony phenomena to tasks involving symmetry breaking. Specifically, in this paper, identical (except for their speeds) mobile agents are placed at arbitrary locations on a (continuous) cycle of length n and use their speed difference in order to rendezvous fast. We normalize the speed of the slower agent to be 1, and fix the speed of the faster agent to be some c > 1. (An agent does not know whether it is the slower agent or the faster one.) The straightforward distributed-race (DR) algorithm is the one in which both agents simply start walking until rendezvous is achieved. It is easy to show that, in the worst case, the rendezvous time of DR is n/(c − 1). Note that in the interesting case, where c is very close to 1 (e.g., c = 1 + 1/n k), this bound becomes huge. Our first result is a lower bound showing that, up to a multiplicative factor of 2, this bound is unavoidable, even in a model that allows agents to leave arbitrary marks (the white board model), even assuming sense of direction, and even assuming n and c are known to agents. That is, we show that under such assumptions, the rendezvous time of any algorithm is at least \(\frac{n}{2(c-1)}\) if c ≤ 3 and slightly larger (specifically, \(\frac{n}{c+1}\)) if c > 3. We then manage to construct an algorithm that precisely matches the lower bound for the case c ≤ 2, and almost matches it when c > 2. Moreover, our algorithm performs under weaker assumptions than those stated above, as it does not assume sense of direction, and it allows agents to leave only a single mark (a pebble) and only at the place where they start the execution. Finally, we investigate the setting in which no marks can be used at all, and show tight bounds for c ≤ 2, and almost tight bounds for c > 2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 49.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alpern, S.: Rendezvous Search: A Personal Perspective. LSE Research Report, CDAM-2000-05, London School of Economics (2000)

    Google Scholar 

  2. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous. Kluwer Academic Publishers (2003)

    Google Scholar 

  3. Angluin, D.: Local and global properties in networks of processors. In: ACM STOC 1980, pp. 82–93 (1980)

    Google Scholar 

  4. Attiya, H., Gorbach, A., Moran, S.: Computing in Totally Anonymous Asynchronous Shared Memory Systems. Information and Computation 173(2), 162–183 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the plane. Inform. and Comput. 106(2), 234–252 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an asynchronous environment. Journal of the ACM 37(3), 524–548 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bampas, E., Czyzowicz, J., Gąsieniec, L., Ilcinkas, D., Labourel, A.: Almost Optimal Asynchronous Rendezvous in Infinite Multidimensional Grids. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 297–311. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Barriére, L., Flocchini, P., Fraigniaud, P., Santoro, N.: Rendezvous and Election of Mobile Agents: Impact of Sense of Direction. Theory Comput. Syst. 40(2), 143–162 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. Baston, V., Gal, S.: Rendezvous search when marks are left at the starting points. Naval Research Logistics 48(8), 722–731 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bender, M.A., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble: Exploring and map** directed graphs. In: Proc. 30th ACM Symp. on Theory of Computing (STOC), pp. 269–287 (1998)

    Google Scholar 

  11. Blum, M., Kozen, D.: On the power of the compass (or, why mazes are easier to search than graphs). In: 19th Annual Symposium on Foundations of Computer Science (FOCS 1978), October 16-18 (1978)

    Google Scholar 

  12. Czyzowicz, J., Dobrev, S., Krizanc, D., Kranakis, E.: The Power of Tokens: Rendezvous and Symmetry Detection for Two Mobile Agents in a Ring. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 234–246. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Czyzowicz, J., Ilcinkas, D., Labourel, A., Pelc, A.: Asynchronous deterministic rendezvous in bounded terrains. Theor. Comput. Sci. 412(50), 6926–6937 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Communications of the ACM 17(11), 643–644 (1974)

    Article  MATH  Google Scholar 

  15. Dobrev, S., Flocchini, P., Prencipe, G., Santoro, N.: Multiple Agents RendezVous in a Ring in Spite of a Black Hole. In: Papatriantafilou, M., Hunel, P. (eds.) OPODIS 2003. LNCS, vol. 3144, pp. 34–46. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  16. Flocchini, P., Nayak, A., Schulz, A.: Cleaning an Arbitrary Regular Network with Mobile Agents. In: Chakraborty, G. (ed.) ICDCIT 2005. LNCS, vol. 3816, pp. 132–142. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Flocchini, P., Ilcinkas, D., Santoro, N.: ** Pong in Dangerous Graphs: Optimal Black Hole Search with Pebbles. Algorithmica 62(3-4), 1006–1033 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Flocchini, P., Kranakis, E., Krizanc, D., Santoro, N., Sawchuk, C.: Multiple Mobile Agent Rendezvous in a Ring. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 599–608. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Itai, A., Rodeh, M.: Symmetry Breaking in Distributive Networks. In: FOCS, pp. 150–158 (1981)

    Google Scholar 

  20. Korach, E., Kutten, S., Moran, S.: A Modular Technique for the Design of Efficient Distributed Leader Finding Algorithms. In: ACM PODC 1985, pp. 163–174 (1985)

    Google Scholar 

  21. Korman, A., Sereni, J.-S., Viennot, L.: Toward More Localized Local Algorithms: Removing Assumptions Concerning Global Knowledge. In: ACM PODC 2011, pp. 49–58 (2011)

    Google Scholar 

  22. Kranakis, E., Krizanc, D., Markou, E.: The Mobile Agent Rendezvous Problem in the Ring. Morgan & Claypool Publishers (2010)

    Google Scholar 

  23. Kranakis, E., Krizanc, D., Rajsbaum, S.: Mobile Agent Rendezvous: A Survey. In: Flocchini, P., Gąsieniec, L. (eds.) SIROCCO 2006. LNCS, vol. 4056, pp. 1–9. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. Kranakis, E., Santoro, N., Sawchuk, C.: Mobile Agent Rendezvous in a Ring. In: ICDCS 2003, pp. 592–599 (2003)

    Google Scholar 

  25. Suzuki, I., Yamashita, M.: Distributed Anonymous Mobile Robots: Formation of Geometric Patterns. SIAM J. Computing. 28(4), 1347–1363 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. Yamashita, M., Kameda, T.: Computing on an Anonymous Network. In: ACM PODC 1988, pp. 117–130 (1988)

    Google Scholar 

  27. Yu, X., Yung, M.: Agent Rendezvous: A Dynamic Symmetry-Breaking Problem. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 610–621. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feinerman, O., Korman, A., Kutten, S., Rodeh, Y. (2014). Fast Rendezvous on a Cycle by Agents with Different Speeds. In: Chatterjee, M., Cao, Jn., Kothapalli, K., Rajsbaum, S. (eds) Distributed Computing and Networking. ICDCN 2014. Lecture Notes in Computer Science, vol 8314. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-45249-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-45249-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-45248-2

  • Online ISBN: 978-3-642-45249-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation