Continuous Pain Intensity Estimation from Facial Expressions

  • Conference paper
Advances in Visual Computing (ISVC 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7432))

Included in the following conference series:

  • 3084 Accesses

Abstract

Automatic pain recognition is an evolving research area with promising applications in health care. In this paper, we propose the first fully automatic approach to continuous pain intensity estimation from facial images. We first learn a set of independent regression functions for continuous pain intensity estimation using different shape (facial landmarks) and appearance (DCT and LBP) features, and then perform their late fusion. We show on the recently published UNBC-MacMaster Shoulder Pain Expression Archive Database that late fusion of the afore-mentioned features leads to better pain intensity estimation compared to feature-specific pain intensity estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Prkachin, K.M., Hughes, E., Schultz, I., Joy, P., Hunt, D.: Real-time assessment of pain behavior during clinical assessment of low back pain patients. Pain 95, 23–30 (2002)

    Article  Google Scholar 

  2. Williams, A.C.d.C.: Facial expression of pain: An evolutionary account. Behavioral and Brain Sciences 25, 439–455 (2002)

    Google Scholar 

  3. Brahnam, S., Chuang, C.F., Shih, F.Y., Slack, M.R.: Machine recognition and representation of neonatal facial displays of acute pain. Artificial Intelligence in Medicine 36, 211–222 (2006)

    Article  Google Scholar 

  4. Gholami, B., Haddad, W.M., Tannenbaum, A.R.: Agitation and pain assessment using digital imaging. In: Int’l Conf. of the Engineering in Medicine and Biology Society, IEEE, pp. 2176–2179 (2009)

    Google Scholar 

  5. Littlewort, G.C., Bartlett, M.S., Lee, K.: Automatic coding of facial expressions displayed during posed and genuine pain. Image and Vision Computing 27, 1797–1803 (2009)

    Article  Google Scholar 

  6. Lucey, P., Cohn, J., Prkachin, K., Solomon, P., Matthews, I.: Painful data: The UNBC-McMaster shoulder pain expression archive database. In: Int’l Conf. on Automatic Face & Gesture Recognition and Workshops, IEEE, pp. 57–64 (2011)

    Google Scholar 

  7. Lucey, P., Cohn, J.F., Prkachin, K.M., Solomon, P.E., Chew, S., Matthews, I.: Painful monitoring: Automatic pain monitoring using the UNBC-McMaster shoulder pain expression archive database. Image and Vision Computing 30, 197–205 (2012)

    Article  Google Scholar 

  8. Ekman, P., Friesen, W.V.: Facial action coding system: A technique for the measurement of facial movement (1978)

    Google Scholar 

  9. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. on Pattern Analysis and Machine Intelligence 24, 971–987 (2002)

    Article  Google Scholar 

  10. Ahmed, N., Natarajan, T., Rao, K.R.: Discrete Cosine Transform. IEEE Trans. on Computers C-23, 90–93 (1974)

    Google Scholar 

  11. Tip**, M.E.: Sparse Bayesian learning and the relevance vector machine. The Journal of Machine Learning Research 1, 211–244 (2001)

    MathSciNet  MATH  Google Scholar 

  12. Prkachin, K., Solomon, P.: The structure, reliability and validity of pain expression: Evidence from patients with shoulder pain. Pain 139, 267–274 (2008)

    Article  Google Scholar 

  13. Cootes, T., Edwards, G., Taylor, C.: Active appearance models. IEEE Trans. on Pattern Analysis and Machine Intelligence 23, 681–685 (2001)

    Article  Google Scholar 

  14. Wallace, G.K.: The JPEG still picture compression standard. Communications of the ACM 34, 30–44 (1991)

    Article  Google Scholar 

  15. Shan, C., Gong, S., McOwan, P.W.: Facial expression recognition based on Local Binary Patterns: A comprehensive study. Image and Vision Computing 27, 803–816 (2009)

    Article  Google Scholar 

  16. Rudovic, O., Pantic, M.: Shape-constrained Gaussian Process Regression for Facial-point-based Head-pose Normalization. In: Int’l Conf. on Computer Vision, IEEE, pp. 1495–1502 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kaltwang, S., Rudovic, O., Pantic, M. (2012). Continuous Pain Intensity Estimation from Facial Expressions. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2012. Lecture Notes in Computer Science, vol 7432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33191-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33191-6_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33190-9

  • Online ISBN: 978-3-642-33191-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation