Stellar Winds, Magnetic Fields and Disks

  • Chapter
The Environments of the Sun and the Stars

Part of the book series: Lecture Notes in Physics ((LNP,volume 857))

Abstract

All main sequence stars lose mass via stellar winds. The winds of cool stars like the sun are driven by gas pressure gradient. However, the winds of hot massive stars which tend to be luminous are driven by emitted by the star radiation pressure. Mass loss from such winds are significantly higher. In this article, I describe the nature of such radiatively driven winds and show how they interact with rotation and magnetic fields leading to stellar spindown and large-scale disk-like structures. In particular, I show that the overall degree to which the wind is influenced by the field depends largely on a single, dimensionless, “wind magnetic confinement parameter”, η \(({=} B_{\mathrm{eq}}^{2} R_{\ast}^{2}/{\dot{M}} v_{\infty})\), which characterizes the ratio between magnetic field energy density and kinetic energy density of the wind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This is closely related to the commonly used rotation parameter ωΩ/Ω crit, defined by the star’s angular rotating frequency Ω relative to the value this would have as the star approaches “critical” rotation, Ω c . The choice here more directly relates to the additional local speed needed to propel material into Keplerian orbit, and avoids some subtle assumptions (e.g. rigid-body rotation using a Roche potential for gravity) about how the global stellar envelope structure adjusts to approaching the critical rotation limit.

References

  1. Castor, J.I., Abbott, D.C., Klein, R.I.: Astrophys. J. 195, 157 (1975)

    Article  ADS  Google Scholar 

  2. Chapman, S., Zirin, H.: Smithson. Contrib. Astrophys. 2, 1 (1957)

    Article  ADS  Google Scholar 

  3. Conti, P.S., Ebbets, D.: Astrophys. J. 213, 438 (1977)

    Article  ADS  Google Scholar 

  4. Cranmer, S.R.: Ph.D. thesis (1996)

    Google Scholar 

  5. Feldmeier, A.: Astron. Astrophys. 299, 523 (1995)

    ADS  Google Scholar 

  6. Fukuda, I.: Publ. Astron. Soc. Pac. 94, 271 (1982)

    Article  ADS  Google Scholar 

  7. Gagné, M., Oksala, M.E., Cohen, D.H., et al.: Astrophys. J. 628, 986 (2005)

    Article  ADS  Google Scholar 

  8. Gayley, K.G.: Astrophys. J. 454, 410 (1995)

    Article  ADS  Google Scholar 

  9. Howarth, I.D., Smith, K.C.: Astrophys. J. 439, 431 (1995)

    Article  ADS  Google Scholar 

  10. Kaper, L., Henrichs, H.F., Nichols, J.S., Snoek, L.C., Volten, H., Zwarthoed, G.A.A.: Astron. Astrophys. Suppl. Ser. 116, 257 (1996)

    Article  ADS  Google Scholar 

  11. Long, K.S., White, R.L.: Astrophys. J. Lett. 239, L65 (1980)

    Article  ADS  Google Scholar 

  12. Lucy, L.B.: Astrophys. J. 255, 286 (1982)

    Article  ADS  Google Scholar 

  13. Mathias, P., Aerts, C., Briquet, M., De Cat, P., Cuypers, J., Van Winckel, H., Flanders, Le Contel, J.M.: Astron. Astrophys. 379, 905 (2001)

    Article  ADS  Google Scholar 

  14. Owocki, S.P.: Astrophys. Space Sci. 221, 3 (1994)

    Article  ADS  Google Scholar 

  15. Owocki, S.P., Castor, J.I., Rybicki, G.B.: Astrophys. J. 335, 914 (1988)

    Article  ADS  Google Scholar 

  16. Parker, E.N.: Astrophys. J. 128, 664 (1958)

    Article  ADS  Google Scholar 

  17. Priest, E.R., Hood, A.W.: Advances in Solar System Magnetohydrodynamics. Cambridge University Press, Cambridge (1991)

    Google Scholar 

  18. Sobolev, V.V.: Sov. Astron. 1, 332 (1957)

    ADS  Google Scholar 

  19. Spitzer, L. Jr.: Astrophys. J. 124, 20 (1956)

    Article  ADS  Google Scholar 

  20. Telting, J.H., Aerts, C., Mathias, P.: Astron. Astrophys. 322, 493 (1997)

    ADS  Google Scholar 

  21. Townsend, R.H.D., Owocki, S.P.: Mon. Not. R. Astron. Soc. 357, 251 (2005)

    Article  ADS  Google Scholar 

  22. ud-Doula, A., Townsend, R.H.D., Owocki, S.P.: Astrophys. J. Lett. 640, L191 (2006)

    Article  ADS  Google Scholar 

  23. ud-Doula, A., Owocki, S.P., Townsend, R.H.D.: Mon. Not. R. Astron. Soc. 385, 97 (2008)

    Article  ADS  Google Scholar 

  24. ud-Doula, A., Owocki, S.P., Townsend, R.H.D.: Mon. Not. R. Astron. Soc. 392, 1022 (2009)

    Article  ADS  Google Scholar 

  25. ud-Doula, A., Owocki, S.P.: Astrophys. J. 576, 413 (2002)

    Article  ADS  Google Scholar 

  26. Walborn, N.R.: Astrophys. J. Lett. 243, L37 (1981)

    Article  ADS  Google Scholar 

  27. Weber, E.J., Davis, L. Jr.: Astrophys. J. 148, 217 (1967)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author thanks CNRS for the invitation to the school devoted on the topic “From solar environment to stellar environment” held in Roscoff (F).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asif ud-Doula .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

ud-Doula, A. (2013). Stellar Winds, Magnetic Fields and Disks. In: Rozelot, JP., Neiner, C. (eds) The Environments of the Sun and the Stars. Lecture Notes in Physics, vol 857. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-30648-8_8

Download citation

Publish with us

Policies and ethics

Navigation