Decision Making as Optimization in Multi-robot Teams

  • Conference paper
Distributed Computing and Internet Technology (ICDCIT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7154))

Abstract

A key challenge in multi-robot teaming research is determining how to properly enable robots to make decisions on actions they should take to contribute to the overall system objective. This article discusses how many forms of decision making in multi-robot teams can be formulated as optimization problems. In particular, we examine the common multi-robot capabilities of task allocation, path planning, formation generation, and target tracking/observation, showing how each can be represented as optimization problems. Of course, globally optimal solutions to such formulations are not possible, as it is well-known that such problems are intractable. However, many researchers have successfully built solutions that are approximations to the global problems, which work well in practice. While we do not argue that all decision making in multi-robot systems should be based on optimization formulations, it is instructive to study when this technique is appropriate. Future development of new approximation algorithms to well-known global optimization problems can therefore have an important positive impact for many applications in multi-robot systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beard, R.W., McLain, T.W., Goodrich, M.: Coordinated target assignment and intercept for unmanned air vehicles. In: Proceedings of IEEE International Conference on Robotics and Automation. IEEE (2002)

    Google Scholar 

  2. Belta, C., Kumar, V.: Abstraction and control for groups of robots. IEEE Transactions on Robotics 20(5), 865–875 (2004)

    Article  Google Scholar 

  3. Bennewitz, M., Burgard, W., Thrun, S.: Optimizing schedules for prioritized path planning of multi-robot systems. In: Proceedings of IEEE International Conference on Robotics and Automation, ICRA 2001, vol. 1, pp. 271–276 (2001)

    Google Scholar 

  4. Bertsekas, D.: The auction algorithm for assignment and other network flow problems: A tutorial. Interfaces, 133–149 (1990)

    Google Scholar 

  5. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge Univ. Pr. (2004)

    Google Scholar 

  6. Browning, B., Bruce, J., Bowling, M., Veloso, M.: STP: Skills, tactics and plays for multi-robot control in adversarial environments. IEEE Journal of Control and Systems Engineering 219, 33–52 (2005)

    Google Scholar 

  7. Chvatal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research, 233–235 (1979)

    Google Scholar 

  8. Derenick, J., Spletzer, J.: Convex optimization strategies for coordinating large-scale robot formations. IEEE Transactions on Robotics 23(6), 1252–1259 (2007)

    Article  MATH  Google Scholar 

  9. Dias, M., Zlot, R., Kalra, N., Stentz, A.: Market-based multirobot coordination: A survey and analysis. Proceedings of the IEEE 94(7), 1257–1270 (2006)

    Article  Google Scholar 

  10. Erdmann, M., Lozano-Perez, T.: On multiple moving objects. Algorithmica 2, 477–521 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fax, J.A., Murray, R.M.: Information flow and cooperative control of vehicle formations. IEEE Transactions on Automatic Control 49(9) (2004)

    Google Scholar 

  12. Ge, S.S., Fua, C.H.: Queues and artificial potential trenches for multirobot formations. IEEE Transactions on Robotics 21(4), 646–656 (2005)

    Article  Google Scholar 

  13. Gerkey, B., Mataric, M.J.: A formal analysis and taxonomy of task allocation in multi-robot systems. International Journal of Robotics Research 23(9), 939–954 (2004)

    Article  Google Scholar 

  14. Guo, Y., Parker, L.E.: A distributed and optimal motion planning approach for multiple mobile robots. In: Proceedings of IEEE International Conference on Robotics and Automation (2002)

    Google Scholar 

  15. Hoffman, K., Padberg, M.: Solving airline crew scheduling problems by branch-and-cut. Management Science, 657–682 (1993)

    Google Scholar 

  16. Kant, K., Zucker, S.W.: Toward efficient trajectory planning: the path-velocity decomposition. The International Journal of Robotics Research 5(3), 72–89 (1986)

    Article  Google Scholar 

  17. Kitano, H., Kuniyoshi, Y., Noda, I., Asada, M., Matsubara, H., Osawa, E.: Robocup: A challenge problem for AI. AI Magazine 18(1), 73–85 (1997)

    Google Scholar 

  18. Klusch, M., Gerber, A.: Dynamic coalition formation among rational agents. IEEE Intelligent Systems 17(3), 42–47 (2002)

    Article  Google Scholar 

  19. Kolling, A., Carpin, S.: Multirobot cooperation for surveillance of multiple moving targets – a new behavioral approach. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1311–1316. IEEE (2006)

    Google Scholar 

  20. Kube, C.R., Zhang, H.: Collective robotics: From social insects to robots. Adaptive Behavior 2(2), 189–219 (1993)

    Article  Google Scholar 

  21. Kuhn, H.: The hungarian method for the assignment problem. Naval research logistics quarterly 2(1-2), 83–97 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  22. Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Norwell (1991)

    Book  MATH  Google Scholar 

  23. LaValle, S.M.: Planning Algorithms. Cambridge University Press (2006)

    Google Scholar 

  24. LaValle, S.M., Gonzalez-Banos, H.H., Becker, C., Latombe, J.C.: Motion strategies for maintaining visibility of a moving target. In: Proceedings of the 1997 IEEE International Conference on Robotics and Automation, pp. 731–736. IEEE (1997)

    Google Scholar 

  25. Luke, S., Sullivan, K., Panait, L., Balan, G.: Tunably decentralized algorithms for cooperative target observation. In: Proceedings of the Fourth International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 911–917. ACM Press (2005)

    Google Scholar 

  26. Mataric, M., Nilsson, M., Simsarian, K.: Cooperative multi-robot box pushing. In: Proceedings of IEEE International Conference on Intelligent Robots and Systems (IROS), pp. 556–561 (1995)

    Google Scholar 

  27. McLurkin, J.: Stupid robot tricks: Behavior-based distributed algorithm library for programming swarms of robots. M.S. Thesis, Massachusetts Institute of Technology (2004)

    Google Scholar 

  28. Michael, N., Zavlanos, M., Kumar, V., Pappas, G.: Distributed multi-robot task assignment and formation control. In: IEEE International Conference on Robotics and Automation, ICRA 2008, pp. 128–133 (2008)

    Google Scholar 

  29. Nemhauser, G., Wolsey, L.: Integer and combinatorial optimization, vol. 18. Wiley, New York (1988)

    MATH  Google Scholar 

  30. Parker, L.E.: ALLIANCE: An architecture for fault-tolerant multi-robot cooperation. IEEE Transactions on Robotics and Automation 14(2), 220–240 (1998)

    Article  MathSciNet  Google Scholar 

  31. Parker, L.E.: Distributed algorithms for multi-robot observation of multiple moving targets. Autonomous Robots 12(3), 231–255 (2002)

    Article  MATH  Google Scholar 

  32. Parker, L.E.: Chapter 40: Multiple mobile robot systems. In: Siciliano, B., Khatib, O. (eds.) Springer Handbook of Robotics. Springer, Heidelberg (2008)

    Google Scholar 

  33. Parker, L.E.: Distributed intelligence: Overview of the field and its application to multi-robot systems. Journal of Physical Agents 2(1), 5–14 (2008)

    MathSciNet  Google Scholar 

  34. Parker, L.E., Tang, F.: Building multi-robot coalitions through automated task solution synthesis. Proceedings of the IEEE, special issue on Multi-Robot Systems 94(7), 1289–1305 (2006)

    Google Scholar 

  35. Parker, L.: Path planning and motion coordination in multiple mobile robot teams. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and System Science. Springer, Heidelberg (2009)

    Google Scholar 

  36. Sandholm, T., Larson, K., Andersson, M., Shehory, O., Tohme, F.: Coalition structure generation with worst case guarantees. Artificial Intelligence 111(1-2), 209–238 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shehory, O.: Methods for task allocation via agent coalition formation. Artificial Intelligence 101(1-2), 165–200 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  38. Simmons, R., Singh, S., Hershberger, D., Ramos, J., Smith, T.: First results in the coordination of heterogeneous robots for large-scale assembly. In: Proc. of the ISER 2000 Seventh International Symposium on Experimental Robotics (2000)

    Google Scholar 

  39. Stentz, A.: Optimal and efficient path planning for unknown and dynamic environments. International Journal of Robotics and Automation 10, 89–100 (1993)

    Google Scholar 

  40. Sukhatme, G., Montgomery, J.F., Vaughan, R.T.: Experiments with cooperative aerial-ground robots. In: Balch, T., Parker, L.E. (eds.) Robot Teams: From Diversity to Polymorphism, pp. 345–368. A K Peters (2002)

    Google Scholar 

  41. Tabuada, P., Pappas, G., Lima, P.: Motion feasibility of multi-agent formations. IEEE Transactions on Robotics 21(3), 387–392 (2005)

    Article  Google Scholar 

  42. Vig, L., Adams, J.A.: Issues in multi-robot coalition formation. In: Parker, L.E., Schultz, A., Schneider, F. (eds.) Multi-Robot Systems. From Swarms to Intelligent Automata, vol. III. Kluwer (2005)

    Google Scholar 

  43. Vig, L., Adams, J.A.: Multi-robot coalition formation. IEEE Transactions on Robotics 22(4), 637–649 (2006)

    Article  MATH  Google Scholar 

  44. Weigel, T., Gutmann, J.S., Dietl, M., Kleiner, A., Nebel, B.: CS Freiburg: coordinating robots for successful soccer playing. IEEE Transactions on Robotics and Automation 5(18), 685–699 (2002)

    Article  Google Scholar 

  45. Wurman, P., D’Andrea, R., Mountz, M.: Coordinating hundreds of cooperative, autonomous vehicles in warehouses. AI Magazine 29(1), 9 (2008)

    Google Scholar 

  46. Zhang, Y., Parker, L.: Iq-asymtre: Synthesizing coalition formation and execution for tightly-coupled multirobot tasks. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5595–5602 (2010)

    Google Scholar 

  47. Zlot, R., Stentz, A.: Complex task allocation for multiple robots. In: Proceedings of IEEE International Conference on Robotics and Automation (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Parker, L.E. (2012). Decision Making as Optimization in Multi-robot Teams. In: Ramanujam, R., Ramaswamy, S. (eds) Distributed Computing and Internet Technology. ICDCIT 2012. Lecture Notes in Computer Science, vol 7154. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-28073-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-28073-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-28072-6

  • Online ISBN: 978-3-642-28073-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation