Reducing Higher-Order Theorem Proving to a Sequence of SAT Problems

  • Conference paper
Automated Deduction – CADE-23 (CADE 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6803))

Included in the following conference series:

Abstract

We describe a complete theorem proving procedure for higher-order logic that uses SAT-solving to do much of the heavy lifting. The theoretical basis for the procedure is a complete, cut-free, ground refutation calculus that incorporates a restriction on instantiations. The refined nature of the calculus makes it conceivable that one can search in the ground calculus itself, obtaining a complete procedure without resorting to meta-variables and a higher-order lifting lemma. Once one commits to searching in a ground calculus, a natural next step is to consider ground formulas as propositional literals and the rules of the calculus as propositional clauses relating the literals. With this view in mind, we describe a theorem proving procedure that primarily generates relevant formulas along with their corresponding propositional clauses. The procedure terminates when the set of propositional clauses is unsatisfiable. We prove soundness and completeness of the procedure. The procedure has been implemented in a new higher-order theorem prover, Satallax, which makes use of the SAT-solver MiniSat. We also describe the implementation and give some experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andrews, P.B., Bishop, M., Brown, C.E.: System description: TPS: A theorem proving system for type theory. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 164–169. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  2. Andrews, P.B., Brown, C.E.: TPS: A hybrid automatic-interactive system for develo** proofs. Journal of Applied Logic 4(4), 367–395 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Backes, J., Brown, C.E.: Analytic Tableaux for Higher-Order Logic with Choice. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 76–90. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Benzmüller, C.E., Paulson, L.C., Theiss, F., Fietzke, A.: LEO-II - A cooperative automatic theorem prover for classical higher-order logic. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 162–170. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Brown, C.E., Smolka, G.: Analytic tableaux for simple type theory and its first-order fragment. Logical Methods in Computer Science 6(2) (June 2010)

    Google Scholar 

  6. Eén, N., Sörensson, N.: An extensible sat-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 333–336. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic (System description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  8. Pfenning, F., Schürmann, C.: Algorithms for equality and unification in the presence of notational definitions. In: Altenkirch, T., Naraschewski, W., Reus, B. (eds.) TYPES 1998. LNCS, vol. 1657, pp. 179–193. Springer, Heidelberg (1999)

    Google Scholar 

  9. Smullyan, R.M.: A unifying principle in quantification theory. Proceedings of the National Academy of Sciences, U.S.A 49, 828–832 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  10. Sutcliffe, G.: The 5th IJCAR Automated Theorem Proving System Competition - CASC-J5. AI Communications 24(1), 75–89 (2011)

    MathSciNet  Google Scholar 

  11. Sutcliffe, G., Benzmüller, C.: Automated Reasoning in Higher-Order Logic using the TPTP THF Infrastructure. Journal of Formalized Reasoning 3(1), 1–27 (2010)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brown, C.E. (2011). Reducing Higher-Order Theorem Proving to a Sequence of SAT Problems. In: Bjørner, N., Sofronie-Stokkermans, V. (eds) Automated Deduction – CADE-23. CADE 2011. Lecture Notes in Computer Science(), vol 6803. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22438-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22438-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22437-9

  • Online ISBN: 978-3-642-22438-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation