Fish Parasites as Biological Indicators in a Changing World: Can We Monitor Environmental Impact and Climate Change?

  • Chapter
  • First Online:
Progress in Parasitology

Part of the book series: Parasitology Research Monographs ((Parasitology Res. Monogr.,volume 2))

  • 2427 Accesses

Abstract

Global warming scenarios combined with political and public awareness have led to increasing funding and research efforts on the measurement and prediction of effects of a changing world on the ecosystems. Fish parasites represent a major part of aquatic biodiversity, and consequently become affected either directly through the environment or indirectly through their respective hosts. On the basis of a conservative estimate of an average of 3–4 fish parasites in each existing fish species alone and a current number of 31,400 described fish species, we can estimate the existence of up to 120,000 fish parasite species, including both protozoans and metazoans. Combined with a number of life cycle stages that may infect all aquatic hosts and organs, this vast biodiversity represents a widely neglected tool for a variety of ecology-based applications. Studies have demonstrated that fish parasites can serve as biological indicator organisms to illustrate the ecology of their infected hosts, including feeding, migration and population structure. Parasite metrics have been connected to specific environmental conditions, and they can indicate different pollutants such as heavy metal concentrations, industrial and sewage pollution, and also eutrophication. Most recently, parasite infections have been connected to anthropogenic impact and environmental change also in marine habitats. This book chapter summarizes the use of fish parasites as biological indicators, and discusses their potential and the requirements in the utilization of fish parasites as biological indicators of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Athanassopoulou F, Ragias V (1998) Disease investigations on wild fish from a polluted lake in northern Greece. Bull Eur Ass Fish Pathol 18:105–108

    Google Scholar 

  • Bagge AM, Poulin R, Valtonen ET (2004) Fish population size, and not density, as the determining factor of parasite infection: a case study. Parasitology 128:305–313

    PubMed  CAS  Google Scholar 

  • Baruš V, Jarkovský J, Prokeš M (2007) Philometra ovata (Nematoda: Philometroidea): a potential sentinel species of heavy metal accumulation. Parasitol Res 100:929–933

    PubMed  Google Scholar 

  • Baum JK, Worm B (2009) Cascading top-down effects of changing oceanic predator abundances. J Anim Ecol. doi:10.1111/j.1365-2656.2009.01531.x

  • Bayoumy EM, Osman HAM, El-Bana LF, Hassanain MA (2008) Monogenean parasites as bioindicators for heavy metal status in some Egyptian Red Sea fishes. Global Vet 2:117–122

    Google Scholar 

  • Boje J, Riget F, Køie M (1997) Helminth parasites as biological tags in population studies of Greenland halibut (Reinhardtius hippoglossoides (Walbaum)), in the north-west Atlantic. ICES J Mar Sci 54:886–895

    Google Scholar 

  • Bray RA, Littlewood DTJ, Herniou EA, Williams B, Henderson RE (1999) Digenean parasites of deep-sea teleosts: a review and case studies of intrageneric phylogenies. Parasitology 119:S125–S145

    PubMed  Google Scholar 

  • Bush AO, Lafferty KH, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 83:575–583

    PubMed  CAS  Google Scholar 

  • Caira JN (1990) Metazoan parasites as indicators of elasmobranch biology. NOAA Tech Rep NMFS 90:71–96

    Google Scholar 

  • Cattadori IM, Haydon DT, Hudson PJ (2005) Parasites and climate synchronize red grouse populations. Nature 433:737–741

    PubMed  CAS  Google Scholar 

  • Charters RA, Lester RJG, Buckworth RC, Newman SJ, Ovenden JR, Broderick D, Kravchuk O, Ballagh A, Welch DJ (2010) The stock structure of grey mackerel Scomberomorus semifasciatus in Australia as inferred from its parasite fauna. Fisher Res 101:94–99

    Google Scholar 

  • Diamant A, Banet A, Paperna I, von Westernhagen H, Broeg K, Kruener G, Koerting W, Zander S (1999) The use of fish metabolic, pathological and parasitological indices in pollution monitoring. II The Red Sea and Mediterranean. Helgol Mar Res 53:195–208

    Google Scholar 

  • Esch GW, Gibbons W, Bourque JE (1975) An analysis of the relationship between stress and parasitism. Am Midl Nat 93:339–353

    Google Scholar 

  • Esch GW, Hazen TC, Dimock RV, Gibbons W (1976) Thermal effluent and the epizootiology of the ciliate Epistylis and the bacterium Aeromonas in association with centrachid fish. Trans Am Micro Soc 95:687–693

    Google Scholar 

  • Froese R, Pauly D (2010) FishBase. World Wide Web electronic publication. www.Fishbase.org, version (01/2010)

  • Galli P, Crosa G, Mariniello L, Ortis M, D’Amelio S (2001) Water quality as a determinant of the composition of fish parasite communities. Hydrobiologia 452:173–179

    Google Scholar 

  • Gheorghiu C, Marcogliese DJ, Scott ME (2006) Concentration dependent effects of waterborne zinc on population dynamics of Gyrodactylus turnbulli (Monogenea) on isolated guppies (Poecilia reticulata). Parasitology 132:225–232

    Google Scholar 

  • Gheorghiu C, Cable J, Marcogliese DJ, Scott ME (2007) Effects of waterborne zinc on reproduction, survival and morphometrics of Gyrodactylus turnbulli (Monogenea) on guppies (Poecilia reticulata). Int J Parasitol 37:375–381

    PubMed  CAS  Google Scholar 

  • Gibson DI (1972) Flounder parasites as biological tags. J Fish Biol 4:1–9

    Google Scholar 

  • Grabda J (1974) The dynamics of the nematode larvae, Anisakis simplex (Rud.) invasion in the south-western Baltic herring (Clupea harengus L.). Acta Ichthyolog Piscator 4:3–21

    Google Scholar 

  • Hartmann J, Nümann W (1977) Percids of lake constance, a lake undergoing eutrophication. J Fish Res Bd Can 34:1670–1677

    Google Scholar 

  • Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162 doi:10.1126/science.1063699

    Google Scholar 

  • Hechinger RF, Lafferty KD, Huspeni TC, Brooks A, Kuris AM (2007) Can parasites be indicators of free-living diversity? Relationships between species richness and the abundance of larval trematodes and of local fishes and benthos. Oecologia 151:82–92

    PubMed  Google Scholar 

  • Herrington WC, Bearse HM, Firth FE (1939) Observations on the life history, occurrence and distribution of the redfish parasite Sphyrion lumpi. U.S Bur Fish Spec Rep No. 5:1–18

    Google Scholar 

  • Hudson PJ, Dobson AP, Lafferty KD (2006) Is a healthy ecosystem one that is rich in parasites? Trends Ecol Evol 21:381–385

    PubMed  Google Scholar 

  • Hutchings JA, Baum JK (2005) Measuring marine fish biodiversity: temporal changes in abundance, life history and demography. Philos Trans R Soc Lond B 360:315–338

    Google Scholar 

  • Jeney Z, Valtonen ET, Jeney G, Jokinen EI (2002) Effect of pulp and paper mill effluent (BKME) on physiological parameters of roach (Rutilus rutilus) infected by the digenean Rhipidocotyle fennica. Folia Parasit 49:103–108

    Google Scholar 

  • Jirsa F, Leodolter-Dvorak M, Krachler R, Frank C (2008) Heavy metals in the nase, Chondrostoma nasus (L. 1758), and its intestinal parasite Caryophyllaeus laticeps (Pallas 1781) from Austrian rivers: Bioindicative aspects. Arch Environ Contam Toxicol. doi:10.1007/s00244-008-9154-1

  • Kabata Z, McFarlane GA, Whitaker DJ (1987) Trematoda of sablefish, Anoplopoma fimbria (Pallas, 1811), as possible biological tags for stock identification. Can J Zool 66:195–200

    Google Scholar 

  • Kennedy CR (1997) Long-term and seasonal changes in composition and richness of intestinal helminth communities in eels Anguilla anguilla of an isolated English river. Folia Parasit 44:267–273

    CAS  Google Scholar 

  • Kennedy CR, Shears PC, Shears JA (2001) Long-term dynamics of Ligula intestinalis and roach Rutilus rutilus: a study of three epizootic cycles over thirty-one years. Parasitology 123:257–269

    Google Scholar 

  • Kennedy CR, Wyatt RJ, Starr K (1994) The decline and natural recovery of an unmanaged coarse fishery in relation to changes in land use and attendant eutrophication. In: Cowes IG (ed) Rehabilitation of freshwater fisheries. Blackwell, Oxford, pp 366–375

    Google Scholar 

  • Kesting V, Zander CD (2000) Alteration of the metazoan parasite faunas in the brackish Schlei Fjord (Northern Germany, Baltic Sea). Int Rev Hydrobiol 85:325–340

    Google Scholar 

  • Khan RA (1987) Crude oil and parasites of fish. Parasitol Tod 3:99–100

    CAS  Google Scholar 

  • Khan RA (1990) Parasitism in marine fish after chronic exposure to petroleum hydrocarbons in the laboratory and to the Exxon Valdez oil spill. Bull Environ Contam Toxicol 44:759–763

    PubMed  CAS  Google Scholar 

  • Khan RA, Kiceniuk J (1983) Effects of crude oils on the gastrointestinal parasites of two species of marine fish. J Wildl Dis 19:253–258

    PubMed  CAS  Google Scholar 

  • Khan RA, Kiceniuk J (1988) Effect of Petroleum Aromatic Hydrocarbons on monogeneids parasitising Atlantic cod, Gadus morhua L. Bull Environ Contam Toxicol 41:94–100

    PubMed  CAS  Google Scholar 

  • Khan RA, Thulin J (1991) Influence of pollution on parasites of aquatic animals. Adv Parasit 30:201–239

    CAS  Google Scholar 

  • Khan RA, Tuck C (1995) Parasites as biological indicators of stocks of Atlantic cod (Gadus morhua) off Newfoundland, Canada. Can J Fish Aquat Sci 52(suppl 1):195–201

    Google Scholar 

  • Khan RA, Baker DE, Williams-Ryan K, Hooper RG (1993) Influence of crude oil and pulp and paper mill effluent on mixed infections of Trichodina cottidarium and T. saintjohnsi (Ciliophora) parasitising Myoxocephalus octodecemspinosus and M. scorpius. Can J Zool 72:247–251

    Google Scholar 

  • Klein B (1926) Ergebnisse mit einer Silbermethode bei Ciliaten. Arch Protistenkd 56:243–279

    CAS  Google Scholar 

  • Klein B (1958) The “dry” silver method and its proper use. J Protozool 5:99–103

    CAS  Google Scholar 

  • Klimpel S, Palm HW (2011) Anisakid nematode (Ascaridoidea) life cycles and distribution: Increasing zoonotic potential in the time of climate change? In: H. Mehlhorn (ed.) Progress in Parasitology, Parasitology Research Monographs, Springer Verlag

    Google Scholar 

  • Klimpel S, Seehagen A, Palm HW, Rosenthal H (2001) Deep-water metazoan fish parasites of the world. Logos Verlag, Berlin

    Google Scholar 

  • Klimpel S, Palm HW, Seehagen A (2003) Metazoan parasites and food composition of juvenile Etmopterus spinax (L., 1758) (Dalatiidae, Squaliformes) from the Norwegian Deep. Parasitol Res 89:245–251

    PubMed  Google Scholar 

  • Klimpel S, Palm HW, Rückert S, Piatkowski U (2004) The life cycle of Anisakis simplex in the Norwegian Deep (northern North Sea). Parasitol Res 94:1–9

    PubMed  Google Scholar 

  • Klimpel S, Palm HW, Busch MW, Kellermanns E, Rückert S (2006a) Fish parasites in the Arctic deep-sea: poor diversity in pelagial fish species vs. heavy parasite load in a demersal fish. Deep Sea Res Part I 53:1167–1181

    Google Scholar 

  • Klimpel S, Rückert S, Piatkowski U, Palm HW, Hanel R (2006b) Diet and metazoan parasites of silver scabbard fish, Lepidopus caudatus, from the Great Meteor Seamount (North Atlantic). Mar Ecol Prog Ser 315:249–257

    Google Scholar 

  • Klimpel S, Busch MW, Kellermanns E, Kleinertz S, Palm HW (2009) Metazoan deep-sea fish parasites. Acta Biologica Benrodis, Suppl. 11, Verlag Natur & Wissenschaft, Solingen

    Google Scholar 

  • Klimpel S, Busch MW, Kuhn T, Rohde A, Palm HW (2010) The Anisakis simplex complex off the South Shetland Islands (Antarctica): endemic populations versus introduction through migratory hosts. Mar Ecol Prog Ser 403:1–11

    CAS  Google Scholar 

  • Klöser H, Plötz J, Palm HW, Bartsch A, Hubold G (1992) Adjustment of anisakid nematode life cycles to the high Antarctic food web as shown by Contracaecum radiatum and C. osculatum in the Weddell Sea. Ant Sci 4:171–178

    Google Scholar 

  • Lafferty KD (1997) Environmental parasitology: what can parasites tell us about human impacts on the environment? Parasitol Today 13:251–255

    PubMed  CAS  Google Scholar 

  • Lafferty KD (2008) Ecosystem consequences of fish parasites. J Fish Biol 73:2083–2093

    Google Scholar 

  • Lafferty KD, Kuris AM (2005) Parasitism and environmental disturbances. In: Thomas F, Renaud F, Guégan J-F (eds) Parasitism & ecosystems. Oxford University Press, Oxford, pp 113–123

    Google Scholar 

  • Lafferty KD, Shaw JC, Kuris AM (2008) Reef fishes have higher parasite richness at unfished Palmyra Atoll compared to fished Kiritimati Island. Ecohealth 5:338–345

    PubMed  Google Scholar 

  • Landsberg JH, Blakesley BA, Reese RO, McRae G, Forstchen PR (1998) Parasites of fish as indicators of environmental stress. Env Monit Assess 51:211–232

    Google Scholar 

  • Latama G (2006) Metazoan parasites from the narrow-barred Spanish mackerel, Scomberomorus commerson (Lacepède, 1800) around Sulawesi waters. Dissertation, Bogor Agricultural University, Bogor (In Indonesian)

    Google Scholar 

  • Lester RJG (1990) Reappraisal of the use of parasites for stock identification. Aust J Mar Freshw Res 41:855–864

    Google Scholar 

  • Lester RJG, MacKenzie K (2009) The use and abuse of parasites as stock markers for fish. Fisher Res 97:1–2

    Google Scholar 

  • Lester RJG, Thompson C, Moss H, Barker SC (2001) Movement and stock structure of the narrow-barred Spanish mackerel as indicated by parasites. J Fish Biol 59:833–842

    Google Scholar 

  • Lühe M (1910) Parasitische Plattwuermer. II: Cestodes. Die Süsswasserfauna Deutschlands. Eine Exkursionsfauna, Jena, pp 1–153

    Google Scholar 

  • MacKenzie K (1983) Parasites as biological tags in fish population studies. Adv Appl Biol 7:251–331

    Google Scholar 

  • MacKenzie K (1985) The use of parasites as biological tags in population studies of herring (Clupea harengus L.) in the North Sea and to north and west of Scotland. J Int Counc Explor Sea 42:33–64

    Google Scholar 

  • MacKenzie K (1987) Long-term changes in the prevalence of two helminth parasites (Cestoda: Trypanorhyncha) infecting marine fish. J Fish Biol 31:83–87

    Google Scholar 

  • MacKenzie K (1990) Cestode parasites as biological tags for mackerel (Scomber scombrus L.) in the northeast Atlantic. J Int Counc Explor Sea 46:155–166

    Google Scholar 

  • MacKenzie K (1999) Parasites as pollution indicators in marine ecosystems: a proposed early warning system. Mar Poll Bull 38:955–959

    CAS  Google Scholar 

  • MacKenzie K (2002) Parasites as biological tags in fish population studies. An update. Parasitology 124:S153–S163

    PubMed  Google Scholar 

  • MacKenzie K, Abaunza P (1998) Parasites as biological tags for stock discimination of marine fish: a guide to procedures and methods. Fish Res 38:45–56

    Google Scholar 

  • MacKenzie K, Williams HH, Williams B, McVicar AH, Siddall RI (1995) Parasites as indicators of water quality and the potential use of helminth transmission in marine pollution studies. Adv Parasitol 35:86–245

    Google Scholar 

  • Magurran AE (1988) Ecological diversity and its measurement. Croom Helm, London

    Google Scholar 

  • Marcogliese DJ (2005) Parasites of the superorganism: Are they indicators of ecosystem health? Int J Parasitol 35:705–716

    PubMed  Google Scholar 

  • Marcogliese DJ (2008) The impact of climate change on the parasites and infectious diseases of aquatic animals. Rev Sci Tech 27:467–484

    PubMed  CAS  Google Scholar 

  • Marcogliese DJ, Cone DK (1997) Parasite communities as indicators of ecosystem stress. Parassitologia 39:27–232

    Google Scholar 

  • Margolis L (1982) Pacific salmon and their parasites. A century of study. Bull Can Soc Zool 13:7–11

    Google Scholar 

  • Margolis L, Arthur JR (1979) Synopsis of the parasites of fishes of Canada. Bull Fish Res Bd Can 199:1–269

    Google Scholar 

  • McDonald TE, Margolis L (1995) Synopsis of the parasites of fishes of Canada: Supplement (1978–1993). Can Spec Publ Fish Aquat Sci 122:1–265

    Google Scholar 

  • Möller H (1987) Pollution and parasitism in the aquatic environment. Int J Parasitol 17:353–361

    PubMed  Google Scholar 

  • Moser M (1991) Parasites as biological tags. Parasitol Tod 7:182–185

    CAS  Google Scholar 

  • Moser M, Cowen K (1991) The effects of periodic eutrophication on parasitism and stock identification of Trematomus bernacchii (Pisces: Nototheniidae) in McMurdo Sound, Antarctica. J Parasitol 77:551–556

    PubMed  CAS  Google Scholar 

  • Moser M, Hsieh J (1992) Biological tags for stock separation in Pacific herring Clupea harengus pallasi in California. J Parasitol 78:54–60

    PubMed  CAS  Google Scholar 

  • Mouritsen KN, Poulin R (2002) Parasitism, climate oscillations and the structure of natural communities. Oikos 97:462–468

    Google Scholar 

  • Mouritsen KN, Tompkins DM, Poulin R (2005) Climate warming may cause a parasite-induced collapse in coastal amphipod populations. Oecologia 146:476–483

    PubMed  Google Scholar 

  • Ogut H, Palm HW (2005) Seasonal dynamics of Trichodina spp. on whiting (Merlangius merlangus) in relation to organic pollution on the eastern Black Sea coast of Turkey. Parasitol Res 96:149–153

    PubMed  Google Scholar 

  • Olson PD, Caira JN, Jensen K, Overstreet RM, Palm HW, Beveridge I (2010) Evolution of the trypanorhynch tapeworms: Parasite phylogeny supports independent lineages of sharks and rays. Int J Parasitol 40:223–242

    PubMed  CAS  Google Scholar 

  • Oros M, Hanzelová V (2009) Re-establishment of the fish parasite fauna in the Tisa River system (Slovakia) after a catastrophic pollution event. Parasitol Res 104:1497–1506

    PubMed  Google Scholar 

  • Overstreet RM (1997) Parasitological data as monitors of environmental health. Parassitologia 39:169–175

    PubMed  CAS  Google Scholar 

  • Overstreet RM, Hawkins WE, Deardorff TL (1996) The western mosquitofish as an environmental sentinel: parasites and histological lesions. In: Servos MR, Munkttrick KR, Carey JH, van der Kraak GJ (eds) Environmental fate and effects on pulp and paper mill effluents. St. Lucie Press, Delray Beach, Florida, pp 495–509

    Google Scholar 

  • Palm HW (1999) Ecology of Pseudoterranova decipiens (Krabbe, 1878) (Nematoda: Anisakidae) from Antarctic waters. Parasitol Res 85:638–646

    PubMed  CAS  Google Scholar 

  • Palm HW (2000) Trypanorhynch cestodes from Indonesian coastal waters (East Indian Ocean). Folia Parasitol 47:123–134

    PubMed  CAS  Google Scholar 

  • Palm HW (2004) The Trypanorhyncha Diesing, 1863. PKSPL-IPB, Bogor

    Google Scholar 

  • Palm HW (2007) The concept of cummulative evolution in marine fish parasites. Proceedings of the IVth international workshop on theoretical and marine parasitology, AtlantNIRO, Kaliningrad, 21–26 May 2007, pp 164–170

    Google Scholar 

  • Palm HW (2008) Surface ultrastructure of the elasmobranchia parasitizing Grillotiella exilis and Pseudonybelinia odontacantha (Trypanorhyncha, Cestoda). Zoomorphology 127:249–258

    Google Scholar 

  • Palm HW, Caira J (2008) Host specificity of adult versus larval cestodes of the elasmobranch tapeworm order Trypanorhyncha. Int J Parasitol 38:381–388

    PubMed  Google Scholar 

  • Palm HW, Dobberstein RC (1999) Occurrence of trichodinid ciliates (Peritricha: Urceolariidae) in the Kiel Fjord, Baltic Sea, and its possible use as a biological indicator. Parasitol Res 85:726–732

    PubMed  CAS  Google Scholar 

  • Palm HW, Klimpel S (2007) Evolution of the parasitic life in the ocean. Trends Parasitol 23:10–12

    PubMed  Google Scholar 

  • Palm HW, Klimpel S (2008) Metazoan fish parasites of Macrourus berglax Lacepède, 1801 and other rattails in the North Atlantic: Exploration of the deep-sea from the continental shelf. Deep Sea Res Part II 55:236–242

    Google Scholar 

  • Palm HW, Overstreet RM (2000) Otobothrium cysticum (Cestoda: Trypanorhyncha) from the muscle of butterfishes (Stromateidae). Parasitol Res 86:41–53

    PubMed  CAS  Google Scholar 

  • Palm HW, Rückert S (2009) A new approach to visualize ecosystem health by using parasites. Parasitol Res 105:539–553

    PubMed  CAS  Google Scholar 

  • Palm HW, Schröder P (2001) Cestode parasites from the elasmobranchs Heptranchias perlo (Bonnaterre, 1788) and Deania spp. Jordan et Snyder, 1902 from the Great Meteorbank, central East-Atlantic. Aquat Liv Res 14:137–144

    Google Scholar 

  • Palm HW, Reimann N, Spindler M, Plötz J (1998) The role of the rock cod Notothenia coriiceps in the life cycle of Antarctic parasites. Pol Biol 19:399–406

    Google Scholar 

  • Palm HW, Klimpel S, Bucher C (1999) Checklist of metazoan fish parasites of German coastal waters. Ber Inst Meereskd Nr 307:1–148

    Google Scholar 

  • Palm HW, Klimpel S, Walter T (2007) Demersal fish parasite fauna around the South Shetland Islands: High species richness and low host specificity in deep Antarctic waters. Pol Biol 30:1513–1522

    Google Scholar 

  • Palm HW, Damriyasa IM, Linda L, Oka IBM (2008) Molecular genoty** of Anisakis Dujardin, 1845 (Nematoda: Ascaridoidea: Anisakidae) larvae from marine fish of Balinese and Javanese waters, Indonesia. Helminthologia 45:3–12

    CAS  Google Scholar 

  • Palm HW, Waeschenbach A, Olson P, Littlewood T (2009) Molecular phylogeny and evolution of the Trypanorhyncha Diesing, 1863. Mol Phylogenet Evol 52:351–367

    PubMed  CAS  Google Scholar 

  • Palm HW, Kleinertz S, Rückert S (2011) Parasite diversity as an indicator of environmental change? An example from tropical grouper (Epinephelus fuscoguttatus) mariculture in Indonesia. Parasitology. (Suppl.) doi:10.1017/50031182011000011

    Google Scholar 

  • Paperna I, Overstreet RM (1981) Parasites and diseases of mullets (Mugilidae). In: Oren OH (ed) Agriculture of grey mullets. Cambridge University Press, Great Britain, pp 411–493

    Google Scholar 

  • Pascual S, Hochberg FG (1996) Marine parasites as biological tags of cephalopods hosts. Parasitol. Today 12:324–327

    Google Scholar 

  • Pech D, Vidal-Martínez VM, Aguirre-Macedo ML, Gold-Bouchot G, Herrera-Silveira J, Zapata-Pérez O, Marcogliese DJ (2009) The checkered puffer (Spheroides testudineus) and its helminths as bioindicators of chemical pollution in Yucatan coastal lagoons. Sci Total Environ 407:2315–2324

    PubMed  CAS  Google Scholar 

  • Petersen F, Palm HW, Möller H, Cuzi MA (1993) Flesh parasites of fish from central Philippine waters. Dis Aquat Org 15:81–86

    Google Scholar 

  • Pettersen RA, Vøllestad LA, Flodmark LEW, Poléo ABS (2006) Effects of aqueous aluminium on four fish ectoparasites. Sci Total Environ 369:129–138

    PubMed  CAS  Google Scholar 

  • Poulin R (2007) The structure of parasite communities in fish hosts: ecology meets geography and climate. Parassitologia 49:169–172

    PubMed  CAS  Google Scholar 

  • Poulin R, Mouritsen KN (2006) Climate change, parasitism and the structure of intertidal ecosystems. J Helminthol 80:183–191

    PubMed  CAS  Google Scholar 

  • Reimer LW (1995) Parasites especially of piscean hosts as indicators of the eutrophication in the Baltic Sea. Appl Parasitol 36:124–135

    Google Scholar 

  • Riemann F (1988) Nematoda. In: Higgins RP, Thiel H (eds) Introduction to the study of meiofauna. Smithsonian, Washington, DC, pp 293–301

    Google Scholar 

  • Rohde K (2002) Ecology and biogeography of marine parasites. Adv Mar Biol 43:1–86

    PubMed  Google Scholar 

  • Rokicki J (1983) Ectoparasites of the hakes Merluccius merluccius capensis (Castelnau) and Merluccius merluccius paradoxus (Frank) as an aid to host systematics. ICSEAF 1983 (Part I). Coll Sci Pap Int Comm SE Atl Fish, 10:167170, doi:10.1017/S0031182011000011

  • Rückert S, Hagen W, Yuniar AT, Palm HW (2009a) Metazoan parasites of fishes and their potential use as biological indicators in the Segara Anakan Lagoon, Indonesia. Reg Environ Change 9:315–328

    Google Scholar 

  • Rückert S, Klimpel S, Al-Quraishy S, Mehlhorn H, Palm HW (2009b) Transmission of fish parasites into grouper mariculture (Serranidae: Epinephelus coioides (Hamilton, 1822)) in Lampung Bay, Indonesia. Parasitol Res 104:523–532

    PubMed  Google Scholar 

  • Rückert S, Klimpel S, Palm HW (2010) Parasites of cultured and wild grouper (Epinephelus fuscoguttatus) in Lampung Bay, Indonesia. Aquaculture Research 41:1158–1169, doi:10.1111/j.1365-2109.2009.02403.x

  • Ruus A, Skaare JU, Ingebrigtsen K (2001) Accumulation of the lipophilic environmental contaminant lindane in metacercariae of Bucephaloides gracilescens (Trematoda, Bucephalidae) in the central nervous system of bullrout Myoxocephalus scorpius. Dis Aquat Organ 48:75–77

    PubMed  CAS  Google Scholar 

  • Sasal P, Mouillot D, Fichez R, Chifflet S, Kulbicki M (2007) The use of fish parasites as biological indicators of anthropogenic influences in coral-reef lagoons: A case study of Apogonidae parasites in New-Caledonia. Mar Poll Bull 54:1697–1706

    CAS  Google Scholar 

  • Sharpe DMT, Hendry AP (2009) Life history change in commercially exploited fish stocks: an analysis of trends across studies. Evol Appl 2:260–275

    Google Scholar 

  • Shulman SS (1957) Material on the parasitofauna of lampreys from the basins of the Baltic and the White Seas. Isvestiya gosud nauchnovatel´skogo issled Inst Ozern Techn rybnogo khozyajstva 42:287–303, Translated from the Russian by the Israel program for Scientific Tanslations, No. 105, 1961

    Google Scholar 

  • Skinner RH (1982) The interrelation of water quality, gill parasites, and gill pathology of some fishes from South Biscayne Bay, Florida. Fisher Bull 80:269–280

    Google Scholar 

  • Sures B (2003) Accumulation of heavy metals by intestinal helminths in fish: an overview and perspective. Parasitol 126:53–60

    Google Scholar 

  • Sures B (2004) Environmental parasitology: relevancy of parasites in monitoring environmental pollution. Trends Parasitol 20:170–177

    PubMed  CAS  Google Scholar 

  • Sures B, Reimann N (2003) Analysis of trace metals in the Antarctic host-parasite system Notothenia coriiceps and Aspersentis megarhynchus (Acanthocephala) caught at King George Island, South Shetland Islands. Pol Biol 26:680–686

    Google Scholar 

  • Sures B, Siddall R (2003) Pomphorhynchus laevis (Palaeacanthocephala) in the intestine of chub (Leuciscus cephalus) as an indicator of metal pollution. Int J Parasitol 33:65–70

    PubMed  CAS  Google Scholar 

  • Sures B, Taraschewski H (1995) Cadmium concentrations in two adult acanthocephalans, Pomphorhynchus laevis and Acanthocephalus lucii, as compared with their fish hosts and cadmium and lead levels in larvae of A. lucii as compared with their crustacean host. Parasitol Res 81:494–497

    PubMed  CAS  Google Scholar 

  • Sures B, Taraschewski H, Jackwerth E (1994) Lead accumulation in Pomphorhynchus laevis and its host. J Parasitol 80:355–357

    PubMed  CAS  Google Scholar 

  • Sures B, Taraschewski H, Rokicki J (1997) Lead and cadmium content of two cestodes, Monobothrium wageneri and Bothriocephalus scorpii, and their fish hosts. Parasitol Res 83:618–623

    PubMed  CAS  Google Scholar 

  • Tekin-Özan S, Kir I (2005) Comparative study on the accumulation of heavy metals in different organs of tench (Tinca tinca L. 1758) and plerocercoids of its parasite Ligula intestinalis. Parasitol Res 97:156–159

    PubMed  Google Scholar 

  • Vidal-Martínez VM, Pech D, Sures B, Purucker ST, Poulin R (2010) Can parasites really reveal environmental impact? Trends Parasitol 26:44–51

    PubMed  Google Scholar 

  • Voigt MOC (1993) Protozoan ectocommensals of toadfish and soldier crab as indicators of organic pollution in the Brisbane River estuary, Queensland, Australia. Ph.D. thesis, University of Queensland, Brisbane

    Google Scholar 

  • Williams HH, MacKenzie K (2003) Marine parasites as pollution indicators: an update. Parasitology 126:S27–S41

    PubMed  CAS  Google Scholar 

  • Williams HH, MacKenzie K, McCarthy AM (1992) Parasites as biological indicators of the population biology, migrations, diet, and phylogenetics of fish. Rev Fish Biol Fish 2:144–176

    Google Scholar 

  • **nghua L (1987) Factors regulating trematodes and cestodes in fish. Arch Hydrobiol 28:381–387

    Google Scholar 

  • Yeomans WE, Chubb JC, Sweeting RA (1997) Use of protozoan communities for pollution monitoring. Parassitologia 39:201–212

    PubMed  CAS  Google Scholar 

  • Zander CD, Kesting V (1996) The indicator properties of parasite communities (Teleostei, Gobiidae) from Kiel and Lübeck Bight. Appl Parasitol 37:186–204

    Google Scholar 

  • Zander CD, Kesting V (1998) Colonization and seasonality of goby (Gobiidae, Teleostei) parasites from the southwestern Baltic Sea. Parasitol Res 84:459–466

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I am thankful to the German Research Council (DFG PA 664/4–1 and 2), the German Academic Exchange Service (DAAD) and the German Federal Ministry for Education and Science (BMBF Grant Nos. 03F0391(471)A within the framework of the joint Indonesian-German research programme SPICE (Science for the Protection of Indonesian Coastal Marine Ecosystems)) who supported parts of the funding for the presented results. Dr. R. Bray, The Natural History Museum London, provided helpful comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry W. Palm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Palm, H.W. (2011). Fish Parasites as Biological Indicators in a Changing World: Can We Monitor Environmental Impact and Climate Change?. In: Mehlhorn, H. (eds) Progress in Parasitology. Parasitology Research Monographs, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21396-0_12

Download citation

Publish with us

Policies and ethics

Navigation