Hierarchy Decomposition for Faster User Equilibria on Road Networks

  • Conference paper
Experimental Algorithms (SEA 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6630))

Included in the following conference series:

Abstract

The road traffic of an entire day for a certain region can be understood as a flow with sources and sinks on the road network. Traffic has the tendency to evade regularly clogged roads and other bottlenecks, especially with modern on-board navigation devices that are able to interpret traffic information. Assuming perfect knowledge for all drivers, one might suspect traffic to shape itself in a way such that all used routes between any two points on the road network have equal latency. Although these traffic patterns do not or very seldom occur in real life, they are a handy tool to predict the general traffic situation. For small networks, these patterns can be easily computed, but road networks that model entire countries are still a hurdle, because Dijkstra’s algorithm does not scale. Thus the known techniques have only been applied to either small networks or small extracts of a much larger network. We solve this problem for country sized road networks by combining a gradient descent method to the problem with current research on fast route planning by exploiting the special properties of a routing algorithm called Contraction Hierarchies. The computation of the gradient needs a large number of shortest paths computations on the same weighted graph, which means that the expense for preprocessing can be amortized if the number of shortest paths computations is sufficiently large. This leads to dramatic overall speedup compared to running Dijkstra for each demand pair. Also, our study shows the robustness of Contraction Hierarchies on road networks at equilibrium state.

Partially supported by DFG grant SA 933/5-1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bar-Gera, H.: Traffic assignment by paired alternative segments. Transportation Research Part B (2010)

    Google Scholar 

  2. Batz, V., Delling, D., Sanders, P., Vetter, C.: Time-Dependent Contraction Hierarchies. In: Proceedings of the 11th Workshop on Algorithm Engineering and Experiments (ALENEX 2009), pp. 97–105. SIAM, Philadelphia (2009)

    Chapter  Google Scholar 

  3. Bauer, R., Delling, D., Sanders, P., Schieferdecker, D., Schultes, D., Wagner, D.: Combining Hierarchical and Goal-Directed Speed-Up Techniques for Dijkstra’s Algorithm. In: ACM JEA special issue for WEA (2008)

    Google Scholar 

  4. Beckmann, M., McGuire, C.B., Winsten, C.B.: Studies in the economics of transportation. Yale University Press, New Haven (1959)

    Google Scholar 

  5. Branston, D.: Link capacity functions: A review. Transportation Research 10(4), 223–236 (1976)

    Article  Google Scholar 

  6. Brieter, K., Eicher, C.C., Haart, V., Vigl, M.: Mit dem navi sicher in den stau. ADAC Motorwelt 3, 56–59 (2010)

    Google Scholar 

  7. Bruynooghe, M., Gilbert, A., Sakarovitch, M.: Une methode d’affectation du trafic. In: Proc. 4th Internat. Sympos. Theory Road Traffic (1969)

    Google Scholar 

  8. Bureau of Public Roads: Traffic Assignment Manual. U.S. Dept. Of Commerce, Washingtion D.C (1964)

    Google Scholar 

  9. Davidson, K.B.: A flow travel time relationship for use in transportation planning. Proceedings of the Australian Road Research Board 3, 183–194 (1966)

    Google Scholar 

  10. Delling, D., Goldberg, A.V., Nowatzyk, A., Werneck, R.F.: Phast: Hardware-accelerated shortest path trees. In: 5th International Parallel and Distributed Processing Symposium, IPDPS 2011 (2011)

    Google Scholar 

  11. Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering Route Planning Algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  12. Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure nash equilibria. In: Proceedings of the Thirty-sixth Annual ACM Symposium on Theory of Computing, STOC 2004, pp. 604–612. ACM, New York (2004)

    Chapter  Google Scholar 

  13. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: Faster and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Gentile, G.: Linear user cost equilibrium: a new algorithm for traffic assignment. submitted for publication in Transportation Research B (2010)

    Google Scholar 

  15. Jayakrishnan, R., Tsai, W.T., Prashker, J.N., Rajadhyaksha, S.: A faster path-based algorithm for traffic assignment. Transportation Research Record (1994)

    Google Scholar 

  16. Kieritz, T., Luxen, D., Sanders, P., Vetter, C.: Distributed time-dependent contraction hierarchies. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 83–93. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Kirschner, M., Schengbier, P., Tscheuschner, T.: Speed-up techniques for the selfish step algorithm in network congestion games. In: Vahrenhold, J. (ed.) SEA 2009. LNCS, vol. 5526, pp. 173–184. Springer, Heidelberg (2009)

    Google Scholar 

  18. Marguerite, F., Wolfe, P.: An algorithm for quadratic programming. Naval Research Logistics Quaterly 3, 95–110 (1956)

    Article  MathSciNet  Google Scholar 

  19. Murchland, J.: Road network traffic distribution in equilibrium. Mathematical Models in the Social Sciences (1979)

    Google Scholar 

  20. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V. (eds.): Algorithmic Game Theory. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  21. Patriksson, M.: The Traffic Assignment Problem: Models and Methods. VSP, Utrecht, The Netherlands (1994)

    Google Scholar 

  22. Project OSRM, http://project-osrm.org

  23. Ramming, S.M.: Network Knowledge and Route Choice. Ph.D. thesis, Massachusetts Institute of Technology (February 2002)

    Google Scholar 

  24. Rosenthal, R.W.: The network equilibrium problem in integers. Networks 3, 53–59 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  25. Roughgarden, T.: Selfish Routing and the Price of Anarchy. MIT Press, Cambridge (2005)

    MATH  Google Scholar 

  26. Sheffi, Y.: Urban Transportation Networks: Equlibrium Analysis with Mathematical Programming. Prentice-Hall, Inc., Englewood Cliffs (1982)

    Google Scholar 

  27. Spiess, H.: Technical Note–Conical Volume-Delay Functions. Transportation Science 24(2), 153–158 (1990)

    Article  Google Scholar 

  28. Sugiyama, Y., Fukui, M., Kikuchi, M., Hasebe, K., Nakayama, A., Nishinari, K., Ichi Tadaki, S., Yukawa, S.: Traffic jams without bottlenecks – experimental evidence for the physical mechanism of the formation of a jam. New Journal of Physics 10(3), 033001 (2008)

    Article  Google Scholar 

  29. Unknown Authors: TMC-Stauumfahrung:Verkehrsprobleme durch Stauverlagerungen? Tech. rep., ADAC e.V (2010)

    Google Scholar 

  30. Vetter, C.: Fast and Exact Mobile Navigation with OpenStreetMap Data. Master’s thesis, Karlsruhe Institute of Technology (2010)

    Google Scholar 

  31. Wardrop, J.G.: Some theoretical aspects of road traffic research. Proceedings of the Institute of Civil Engineers 1, 325–378 (1952)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Luxen, D., Sanders, P. (2011). Hierarchy Decomposition for Faster User Equilibria on Road Networks. In: Pardalos, P.M., Rebennack, S. (eds) Experimental Algorithms. SEA 2011. Lecture Notes in Computer Science, vol 6630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20662-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20662-7_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20661-0

  • Online ISBN: 978-3-642-20662-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation