Optimization of the Nested Monte-Carlo Algorithm on the Traveling Salesman Problem with Time Windows

  • Conference paper
Applications of Evolutionary Computation (EvoApplications 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6625))

Included in the following conference series:

  • 1691 Accesses

Abstract

The traveling salesman problem with time windows is known to be a really difficult benchmark for optimization algorithms. In this paper, we are interested in the minimization of the travel cost. To solve this problem, we propose to use the nested Monte-Carlo algorithm combined with a Self-Adaptation Evolution Strategy. We compare the efficiency of several fitness functions. We show that with our technique we can reach the state of the art solutions for a lot of problems in a short period of time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 49.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baker, E.: An exact algorithm for the time-constrained traveling salesman problem. Operations Research 31(5), 938–945 (1983)

    Article  MATH  Google Scholar 

  2. Beyer, H.-G.: The Theory of Evolution Strategies. Natural Computing Series. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  3. Beyer, H.-G., Sendhoff, B.: Covariance matrix adaptation revisited - the CMSA evolution strategy. In: Rudolph, G., Jansen, T., Lucas, S.M., Poloni, C., Beume, N. (eds.) Proceedings of PPSN, pp. 123–132 (2008)

    Google Scholar 

  4. Cazenave, T.: Nested Monte-Carlo search. In: IJCAI, pp. 456–461 (2009)

    Google Scholar 

  5. Christofides, N., Mingozzi, A., Toth, P.: State-space relaxation procedures for the computation of bounds to routing problems. Networks 11(2), 145–164 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dumas, Y., Desrosiers, J., Gelinas, E., Solomon, M.: An optimal algorithm for the traveling salesman problem with time windows. Operations Research 43(2), 367–371 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Focacci, F., Lodi, A., Milano, M.: A hybrid exact algorithm for the TSPTW. INFORMS Journal on Computing 14(4), 403–417 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gendreau, M., Hertz, A., Laporte, G., Stan, M.: A generalized insertion heuristic for the traveling salesman problem with time windows. Operations Research 46(3), 330–335 (1998)

    Article  MATH  Google Scholar 

  9. López-Ibáñez, M., Blum, C.: Beam-ACO for the travelling salesman problem with time windows. Computers & OR 37(9), 1570–1583 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Pesant, G., Gendreau, M., Potvin, J., Rousseau, J.: An exact constraint logic programming algorithm for the traveling salesman problem with time windows. Transportation Science 32(1), 12–29 (1998)

    Article  MATH  Google Scholar 

  11. Potvin, J., Bengio, S.: The vehicle routing problem with time windows part II: genetic search. INFORMS Journal on Computing 8(2), 165 (1996)

    Article  MATH  Google Scholar 

  12. Rechenberg, I.: Evolutionstrategie: Optimierung Technischer Systeme nach Prinzipien der Biologischen Evolution. Fromman-Holzboog Verlag, Stuttgart (1973)

    Google Scholar 

  13. Savelsbergh, M.: Local search in routing problems with time windows. Annals of Operations Research 4(1), 285–305 (1985)

    Article  MathSciNet  Google Scholar 

  14. Schwefel, H.-P.: Adaptive Mechanismen in der biologischen Evolution und ihr Einfluss auf die Evolutionsgeschwindigkeit. Interner Bericht der Arbeitsgruppe Bionik und Evolutionstechnik am Institut für Mess- und Regelungstechnik Re 215/3, Technische Universität Berlin, Juli (1974)

    Google Scholar 

  15. Solomon, M.: Algorithms for the vehicle routing and scheduling problems with time window constraints. Operations Research 35(2), 254–265 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Teytaud, F.: A new selection ratio for large population sizes. In: Applications of Evolutionary Computation, pp. 452–460 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rimmel, A., Teytaud, F., Cazenave, T. (2011). Optimization of the Nested Monte-Carlo Algorithm on the Traveling Salesman Problem with Time Windows. In: Di Chio, C., et al. Applications of Evolutionary Computation. EvoApplications 2011. Lecture Notes in Computer Science, vol 6625. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-20520-0_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-20520-0_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-20519-4

  • Online ISBN: 978-3-642-20520-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation