An Emergence Principle for Complex Systems

  • Conference paper
Complex Sciences (Complex 2009)

Abstract

From elementary system graph representation, systems are shown to belong to only three states: simple, complicated, and complex. First two have been studied over past centuries. Last one originates in existence of threshold above which components interaction overtakes outside interaction, leading to system self-organization which filters outer action, making it more robust with emergence of new behaviour not predictable from components study. The threshold value, expressed in terms of coupling system parameters, is verified to recovers limits found in a broad range of domains in Physics and Mathematics, giving explicit criterion for emergence in complex system. Application to man-made systems concentrates on the balance between relative system isolation when becoming complex and delegation of more “intelligence” in adequate frame between new augmented system state and supervising operator. Entering complexity state opens the possibility for the function to feedback onto the structure, ie to mimic technically the early invention of Nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pattee, H.H.: Hierarchy Theory, the Challenge of Complex Systems. Braziller, New York (1973); Galbraith, J.: Designing Complex Organisations. Addison-Wesley, Reading (1973); Hayek, F.A.: The Theory of Complex Phenomena. In: Bunge, M. (ed.) The Critical Approach to Science and Philosophy, pp. 332–349. Collier McMillan, London (1964); Trappler (ed.): Power, Autonomy, Utopia: New Approaches towards Complex Systems. Plenum Press, New York (1986); Dyke, C.: The Evolutionary Dynamics of Complex Systems. OUP, New York (1988); Funtowicz, S., Ravetz, J.: Emergent Complex Systems. Futures 26, 568–582 (1994); Haken, H.: Information and Self–Organization: a Macroscopic Approach to Complex Systems. Springer, Heidelberg 1988)

    Google Scholar 

  2. Cotsaftis, M.: What Makes a System Complex: an Approach to Self-Organization and Emergence, Survey talk ECCS, Dresden, Germany, October 6-8, 2007 (2007), http://www.arxiv/nl/07060440

  3. Laplace, P.S.: OEuvres Complètes, Part 6, Gauthiers−Villard, Paris (1878-1912); Lagrange J.L.: Mécanique Analytique, vol. I-II. Albert Blanchard, Paris (1788)

    Google Scholar 

  4. Aritotle: Physics, part I, chap. 9; Anderson P.W.: More is Different. Science 177, 393–396 (1972)

    Google Scholar 

  5. see reference [7] in ref [2] above

    Google Scholar 

  6. Prigogine, I., Nicolis, G.: Self−Organization in Non−Equilibrium Systems: From Dissipative Structures to Order through Fluctuations. J. Wiley and Sons, New−York (1977); Klimontovitch, Y.L.: Theory of Open Systems. Kluwer, Dordrecht (1995); Kleidon, A., Lorenz, R.D. (eds.): Non-equilibrium Thermodynamics and the Production of Entropy: Life, Earth, and Beyond. Springer, New−York (2005)

    Google Scholar 

  7. Kadomtsev, B.B.: Self−Organization and Transport in Tokamak Plasma, Plasma Phys. and Nucl. Fus., 34(13), 1931–1938 (1992); Biebricher, C.K., Nicolis, G., Schuster, P.: Self−Organization in the Physico−Chemical and Life Sciences, vol.16546, EU Report (1995); Schweitzer, F.: Multi−Agent Approach to the Self−Organization of Networks. In: Reed−Tsochas, F., Johnson, N.F., Efstathiou, J. (eds.) Understanding and Managing Complex Agent−Based Dynamical Networks. World Scientific, Singapore (2007); Ebeling, W., Schweitzer, F.: Self-Organization, Active Brownian Dynamics, and Biological Applications. Nova Acta Leopoldina NF 88(332), 169–188 (2003)

    Google Scholar 

  8. Strand, P.I.: Predictive Simulations of Transport in Tokamaks, PhD Thesis, Dept. of Electromagnetics, Chalmers Univ. of Technology (1999)

    Google Scholar 

  9. Zakharov, V.E., L’vov, V.S., Falkovich, G.: Kolmogorov Spectra of Turbulence. Springer, New−York (1992); Klimontovich, Y.L.: Turbulent Motion and Structure of Chaos. Kluwer, Dordrecht (1991); Frisch, U.: Turbulence. Cambridge Univ. Press, Mass (1995)

    Google Scholar 

  10. Cotsaftis, M.: Lectures on Advanced Dynamics, Taiwan Univ., Taipeh, R.O.C (1993)

    Google Scholar 

  11. Fromm, J.: The Emergence of Complexity. Kassel Univ. Press (2004); Johnson, S.: Emergence. Penguin Books, New–York (2001)

    Google Scholar 

  12. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self−Organization in Biological Systems. Princeton Univ. Press, Princeton (2002); Shen, W.-M., et al.: Hormone−Inspired Self−Organization and Distributed Control of Robotic Swarms. Autonomous Robots 17, 93–105 (2004); Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: from Natural to Artificial Systems. Oxford Univ. Press, New−York (1999)

    Google Scholar 

  13. Yates, F.E.(ed.) : Self−Organizing Systems: The Emergence of Order. Plenum Press (1987); Lewin, R.: Complexity−Life at the Edge of Chaos. Macmillan, Basingstoke (1993); Lerner, A.Y.(ed.) : Principles of Self−Organization. Mir, Moscow (1966); Nolfi, S., Floreano, D.: Evolutionary Robotics : the Biology, Intelligence and Technology of Self–Organizing Machines. The MIT Press, Cambridge (2000); Serra, R., Andretta, M., Compiani, M., Zanarini, G.: Introduction to the Physics of Complex Systems (the Mesoscopic Approach to Fluctuations, Nonlinearity and Self–Organization). Pergamon Press (1986)

    Google Scholar 

  14. Chandrasekhar, S.: Stochastic Problems in Physics and Astronomy. Rev. Mod. Phys. 15(1), 1–89 (1943); Risken, H.: The Fokker-Planck Equation, 2nd edn. Springer, Berlin (1996)

    Google Scholar 

  15. Grasman, J.: Asymptotic Methods for Relaxation Oscillations and Applications. Applied Math Sciences, vol. 63. Springer, New−York (1987)

    MATH  Google Scholar 

  16. Salamon, D.: The Kolmogorov–Arnold–Moser Theorem, ETH-Zürich (preprint) (1986); Arnold, V.I.: Mathematical Methods of Classical Mechanics, 2nd edn. Springer, Heidelberg (1989); Moser, J., Zehnder, E.: Lectures on Hamiltonian Systems. Lecture Notes, ITCP (1991)

    Google Scholar 

  17. Alliwood, K.T., Sauer, T.D., Yorke, J.A.: Chaos. An Introduction to Dynamical Systems. Springer, New–York (1997); Wiggins, S.: Chaotic Transport in Dynamical Systems. Springer, New−York (1991); Strogatz, S.H.: Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry, and Engineering. Addison−Wesley, Reading (1994); Magnitskii, N.A., Vasilevich, S.V.: New Methods for Chaotic Dynamics. World Scientific Series on Nonlinear Science, Ser.A, Singapore (2006); Sagdeev, R.Z., Usikov, D.A., Zaslavsky, G.M.: Nonlinear Physics; from Pendulum to Turbulence and Chaos. Harwood Academic, New−York (1988)

    Google Scholar 

  18. Poincaré, H.: Les Méthodes Nouvelles de la Mécanique Céleste, vol. 3. Gauthier−Villars, Paris (1892–1899); Arnold, V.I., Koslov, V.V., Neishtadt, A.I.: Dynamic Systems III : Mathematical Aspects of Classical and Celestial Mechanics. Springer, Berlin (1993); Broer, H.W., Huitema, G.B., Sevryuk, M.B.: Quasi−Periodicity in Families of Dynamical Systems: Order amidst Chaos, LNM, vol. 1645. Springer, New−York (1996); Katok, A., Hasselblatt, B.: Introduction to the Modern Theory of Dynamical Systems, Cambridge Univ. Press. Mass. (1996); Bogoliubov, N.N., Mitropolskii, Yu.A., Samoilenko, A.M.: Methods of Accelerated Convergence in Nonlinear Mechanics. Springer, Berlin (1976)

    Google Scholar 

  19. Chirikov, B.V.: Statistical Properties of a Nonlinear String. Sov. Phys. Dokl. 1, 30 (1966); A Universal Instability of Many Dimensional Oscillator System. Phys. Rept. 52, 263–279 (1979); Lichtenberg, A.J., Lieberman, M.A.: Regular and Chaotic Dynamics, 2nd edn. Springer, New−York (1992)

    Google Scholar 

  20. Hirsch, M., Pugh, C., Shub, M.: Invariant Manifolds. Lecture Notes in Math. vol. 583. Springer, Berlin (1977); Tabor, M.: Chaos and Integrability in Nonlinear Dynamics, an Introduction. Wiley and Sons, New−York (1989); Goriely, A.: Integrability and non Integrability of Dynamical Systems. World Sci. Publ., Singapore (2001)

    Google Scholar 

  21. Lefschetz, S.: Stability of Nonlinear Control Systems. Academic Press, New−York (1965); Dullerud, G.E., Paganini, F.: A Course in Robust Control Theory : a Convex Approach. Springer, New−York (2000); Leonov, A.A., Ponomarenko, I.V., Smirnova, V.B.: Frequency Domain Methods for Nonlinear Analysis : Theory and Applications. World Scientific Publ., Singapore (1996); Astrom, K.J.: Control of Complex Systems. Springer, Berlin (2000); Grigorenko, I.: Optimal Control and Forecasting of Complex Dynamical Systems. World Scientific, Singapore (2006); Ng, G.W.: Application of Neural Networks to Adaptive Control of Nonlinear Systems. Research Studies Press, London (1997); Emelyanov S.V., Burovoi, A., Levada, F.Y.: Control of Indefinite Nonlinear Dynamic Systems: Induced Internal Feedback. Springer, London (1998); Fradkov, A.L., Miroshnik, I.V., Nikiforov, V.O.: Nonlinear and Adaptive Control of Complex Systems. Kluwer Acad. Publ., Dordrecht (1999); Krstic, M., Kanellakopoulos, I., Kokotovic, P.V.: Nonlinear and Adaptive Control Design. J. Wiley and Sons, New-York (1995); Francis, B.A., Tanenbaum, A.R. (eds.) : Feedback Control, Nonlinear Systems and Complexity. Springer, New-York (1995); Solodovnikov, V.V., Tumarkin, V.I.: Complexity Theory and the Design of Control Systems, Theory and Methods of Systems Analysis, vol. 28. Nauka, Moscow (1990); Wang, L.X.: Adaptive Fuzzy Systems and Control. Prentice Hall, Englewwod Cliffs (1994)

    Google Scholar 

  22. Deimling, K.: Nonlinear Functional Analysis. Springer, Berlin (1985); Krasnoselskii, M.A.: Asymptotics of Nonlinearities and Operator Equations. Birkhauser, Boston (1995); Vainberg, M.M.: Variational Methods for the Study of Nonlinear Operators. Holden−Day, San Francisco (1964); Zeidler, E.: Nonlinear Functional Analysis and its Applications, vol. I-III-IV. Springer, New−York (1985-1986-1988); Bendat, J.S.: Nonlinear Systems Techniques and Applications. J. Wiley and Sons, New−York (1998); Bobylev, N.A., Burman, Y.M., Korovin, S.K.: Nonlinear Analysis and Applications. Walter de Gruyter, Berlin (1994); Bogaesvski, V.N., Povzner, A.: Algebraic Methods in Nonlinear Perturbation Theory. Springer, New−York (1991); Hale, J.K., Verduyn Lunel, S.M.: Theory of Functional Differential Equations. Springer, New-York (1993)

    Google Scholar 

  23. Amerio, L., Prouse, G.: Almost−Periodic Functions and Functional Equations. Van Nostrand-Reinhold, New−York (1971); Mazja, V.G.: Sobolev Spaces. Springer, New−York (1985); Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces. Marcel Dekker, New−York (1991)

    Google Scholar 

  24. Jiang, T.H.: Fixed−Point Theory. Springer, New−York (1985); Zeidler, E.: Nonlinear Functional Analysis and its Applications, vol. I. Springer, New−York (1986); Burton T.A.: Stability by Fixed Point Theory for Functional Differential Equations. Dover Publ., New−York (2006)

    Google Scholar 

  25. Cotsaftis, M.: Recent Advances in Control of Complex Systems, Survey Lecture. In: Proc. ESDA 1996, Montpellier, France, ASME, vol. I, p. 1 (1996); Cotsaftis, M.: Comportement et Contrôle des Systèmes Complexes, Diderot, Paris (1997); Cotsaftis, M.: Popov Criterion Revisited for Other Nonlinear Systems. In: Proc. ISIC 2003 (International Symposium on Intelligent Control), October 5-8, Houston, Texas (2003)

    Google Scholar 

  26. Cotsaftis, M.: A Passage to Complex Systems. In: Proc. CoSSoM 2006, Toulouse, France, September 24-27 (2006); to be published in Springer Series “Understanding Complex Systems”

    Google Scholar 

  27. Cotsaftis, M.: Beyond Mechatronics, Toward Global Machine Intelligence. In: Proc. ICMT 2005, Kuala–Lumpur, December 6-8 (2005); Kosko, B.: Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence. Prentice−Hall, Englewood Cliffs (1991)

    Google Scholar 

  28. Cotsaftis, M.: From Trajectory Control to Task Control – Emergence of Self Organization in Complex Systems. In: Aziz-Alaoui, M.A., Bertelle, C. (eds.) Emergent Properties in Natural and Artificial Dynamical Systems, pp. 3–22. Springer, Heidelberg (2006); also: On the Definition of Task Oriented Intelligent Control. In: Proc. ISIC 2002 Conf., Vancouver, October 27-30 (2002)

    Google Scholar 

  29. Cotsaftis, M.: Merging Information Technologies with Mechatronics – The Autonomous Intelligence Challenge. In: Proc. IEECON 2006, Paris, November 6-10 (2006)

    Google Scholar 

  30. Cotsaftis, M.: Robust Asymptotically Stable Control for Intelligent Unknown Mechatronic Systems. In: Proc. ICARCV 2006, Singapore, December 5-8 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Cotsaftis, M. (2009). An Emergence Principle for Complex Systems. In: Zhou, J. (eds) Complex Sciences. Complex 2009. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02466-5_110

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02466-5_110

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02465-8

  • Online ISBN: 978-3-642-02466-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation