Molecular and Genomic Landscape of Peripheral T-Cell Lymphoma

  • Chapter
  • First Online:
T-Cell and NK-Cell Lymphomas

Part of the book series: Cancer Treatment and Research ((CTAR,volume 176))

Abstract

Peripheral T-cell lymphoma (PTCL) is an uncommon group of lymphoma covering a diverse spectrum of entities. Little was known regarding the molecular and genomic landscapes of these diseases until recently but the knowledge is still quite spotty with many rarer types of PTCL remain largely unexplored. In this chapter, the recent findings from gene expression profiling (GEP) studies, including profiling data on microRNA, where available, will be presented with emphasis on the implication on molecular diagnosis, prognostication, and the identification of new entities (PTCL-GATA3 and PTCL-TBX21) in the PTCL-NOS group. Recent studies using next-generation sequencing have unraveled the mutational landscape in a number of PTCL entities leading to a marked improvement in the understanding of their pathogenesis and biology. While many mutations are shared among PTCL entities, the frequency varies and certain mutations are quite unique to a specific entity. For example, TET2 is often mutated but this is particularly frequent (70-80%) in angioimmunoblastic T-cell lymphoma (AITL) and IDH2 R172 mutations appear to be unique for AITL. In general, chromatin modifiers and molecular components in the CD28/T-cell receptor signaling pathways are frequently mutated. The major findings will be summarized in this chapter correlating with GEP data and clinical features where appropriate. The mutational landscape of cutaneous T-cell lymphoma, specifically on mycosis fungoides and Sezary syndrome, will also be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rudiger T, Weisenburger DD, Anderson JR et al (2002) Peripheral T-cell lymphoma (excluding anaplastic large-cell lymphoma): results from the Non-Hodgkin’s Lymphoma Classification Project. Ann Oncol 13(1):140–149

    Article  CAS  PubMed  Google Scholar 

  2. Swerdlow SH, Campo E, Pileri SA et al (2016) The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 127(20):2375–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Swerdlow SH, Campo E, Harris NL et al (2008) WHO classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th edn

    Google Scholar 

  4. Bellei M, Chiattone CS, Luminari S et al (2012) T-cell lymphomas in South america and europe. Rev Bras Hematol Hemoter. 34(1):42–47

    Article  PubMed  PubMed Central  Google Scholar 

  5. Arora N, Manipadam MT, Nair S (2013) Frequency and distribution of lymphoma types in a tertiary care hospital in South India: analysis of 5115 cases using the World Health Organization 2008 classification and comparison with world literature. Leuk Lymphoma 54(5):1004–1011

    Article  PubMed  Google Scholar 

  6. Perry AM, Diebold J, Nathwani BN et al (2016) Non-Hodgkin lymphoma in the Far East: review of 730 cases from the international non-Hodgkin lymphoma classification project. Ann Hematol 95(2):245–251

    Article  PubMed  Google Scholar 

  7. International peripheral T-cell and natural killer/t-cell lymphoma study (2008) pathology findings and clinical outcomes. J Clin Oncol 26(25):4124–4130

    Article  Google Scholar 

  8. Perry AM, Diebold J, Nathwani BN et al (2016) Non-Hodgkin lymphoma in the develo** world: review of 4539 cases from the International Non-Hodgkin Lymphoma Classification Project. Haematologica 101(10):1244–1250

    Article  PubMed  PubMed Central  Google Scholar 

  9. Adams SV, Newcomb PA, Shustov AR (2016) Racial Patterns of Peripheral T-Cell Lymphoma Incidence and Survival in the United States. J Clin Oncol 34(9):963–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang. SS, Vose. JM (2103) Epidemiology and Prognosis of T-Cell Lymphoma. Springer Science, New York

    Google Scholar 

  11. Iqbal J, Wright G, Wang C et al (2014) Gene expression signatures delineate biological and prognostic subgroups in peripheral T-cell lymphoma. Blood 123(19):2915–2923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Iqbal J, Weisenburger DD, Greiner TC et al (2010) Molecular signatures to improve diagnosis in peripheral T-cell lymphoma and prognostication in angioimmunoblastic T-cell lymphoma. Blood 115(5):1026–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iqbal J, Weisenburger DD, Chowdhury A et al (2011) Natural killer cell lymphoma shares strikingly similar molecular features with a group of non-hepatosplenic gammadelta T-cell lymphoma and is highly sensitive to a novel aurora kinase A inhibitor in vitro. Leukemia 25(2):348–358

    Article  CAS  PubMed  Google Scholar 

  14. Xu B, Liu P (2014) No survival improvement for patients with angioimmunoblastic T-cell lymphoma over the past two decades: a population-based study of 1207 cases. PLoS ONE 9(3):e92585

    Article  PubMed  PubMed Central  Google Scholar 

  15. Croziera JA,, Shera T, Yangb D et al (2015) Persistent disparities among patients with T-cell Non-Hodgkin Lymphomas and B-cell Diffuse Large Cell Lymphomas over 40 years: a seer database review. Clin Lymphoma Myeloma Leukemia

    Google Scholar 

  16. Briski R, Feldman AL, Bailey NG et al (2014) The role of front-line anthracycline-containing chemotherapy regimens in peripheral T-cell lymphomas. Blood Cancer J. 4:e214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Swerdlow SH, Elias Campo, Harris NL et al (2017) WHO classification of Tumours of the Haematopoitic and Lymphoid Tissues. Lyon, IARC Press, France

    Google Scholar 

  18. Germain RN (2002) T-cell development and the CD4-CD8 lineage decision. Nat Rev Immunol 2(5):309–322

    Article  CAS  PubMed  Google Scholar 

  19. Martin CH, Aifantis I, Scimone ML et al (2003) Efficient thymic immigration of B220+ lymphoid-restricted bone marrow cells with T precursor potential. Nat Immunol 4(9):866–873

    Article  CAS  PubMed  Google Scholar 

  20. Poltorak M, Meinert I, Stone JC, Schraven B, Simeoni L (2014) Sos1 regulates sustained TCR-mediated Erk activation. Eur J Immunol 44(5):1535–1540

    Article  CAS  PubMed  Google Scholar 

  21. Filipp D, Zhang J, Leung BL et al (2003) Regulation of Fyn through translocation of activated Lck into lipid rafts. J Exp Med 197(9):1221–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sugie K, Jeon MS, Grey HM (2004) Activation of naive CD4 T cells by anti-CD3 reveals an important role for Fyn in Lck-mediated signaling. Proc Natl Acad Sci U S A. 101(41):14859–14864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cannons JL, Yu LJ, Hill B et al (2004) SAP regulates T(H)2 differentiation and PKC-theta-mediated activation of NF-kappaB1. Immunity 21(5):693–706

    Article  CAS  PubMed  Google Scholar 

  24. Cannons JL, Qi H, Lu KT et al (2010) Optimal germinal center responses require a multistage T cell: B cell adhesion process involving integrins, SLAM-associated protein, and CD84. Immunity 32(2):253–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Latour S, Roncagalli R, Chen R et al (2003) Binding of SAP SH2 domain to FynT SH3 domain reveals a novel mechanism of receptor signalling in immune regulation. Nat Cell Biol 5(2):149–154

    Article  CAS  PubMed  Google Scholar 

  26. Yasuda K, Nagafuku M, Shima T et al (2002) Cutting edge: Fyn is essential for tyrosine phosphorylation of Csk-binding protein/phosphoprotein associated with glycolipid-enriched microdomains in lipid rafts in resting T cells. J Immunol. 169(6):2813–2817

    Article  CAS  PubMed  Google Scholar 

  27. Kong KF, Yokosuka T, Canonigo-Balancio AJ, Isakov N, Saito T, Altman A (2011) A motif in the V3 domain of the kinase PKC-theta determines its localization in the immunological synapse and functions in T cells via association with CD28. Nat Immunol 12(11):1105–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kang JA, Choi H, Yang T, Cho SK, Park ZY, Park SG (2017) PKCtheta-Mediated PDK1 Phosphorylation Enhances T Cell Activation by Increasing PDK1 Stability. Mol Cells 40(1):37–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Qiao Q, Yang C, Zheng C et al (2013) Structural architecture of the CARMA1/Bcl10/MALT1 signalosome: nucleation-induced filamentous assembly. Mol Cell 51(6):766–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Isakov N, Altman A (2002) Protein kinase C(theta) in T cell activation. Annu Rev Immunol 20:761–794

    Article  CAS  PubMed  Google Scholar 

  31. Gazzola A, Mannu C, Rossi M et al (2014) The evolution of clonality testing in the diagnosis and monitoring of hematological malignancies. Ther Adv Hematol. 5(2):35–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. van Dongen JJ, Langerak AW, Bruggemann M et al (2003) Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 17(12):2257–2317

    Article  PubMed  Google Scholar 

  33. Szczepanski T, van der Velden VH, Raff T et al (2003) Comparative analysis of T-cell receptor gene rearrangements at diagnosis and relapse of T-cell acute lymphoblastic leukemia (T-ALL) shows high stability of clonal markers for monitoring of minimal residual disease and reveals the occurrence of second T-ALL. Leukemia 17(11):2149–2156

    Article  CAS  PubMed  Google Scholar 

  34. Iqbal J, Naushad H, Bi C et al (2016) Genomic signatures in B-cell lymphoma: How can these improve precision in diagnosis and inform prognosis? Blood Rev 30(2):73–88

    Article  CAS  PubMed  Google Scholar 

  35. Iqbal J, Wilcox R, Naushad H et al (2016) Genomic signatures in T-cell lymphoma: How can these improve precision in diagnosis and inform prognosis? Blood Rev 30(2):89–100

    Article  CAS  PubMed  Google Scholar 

  36. Iqbal J, Shen Y, Huang X et al (2015) Global microRNA expression profiling uncovers molecular markers for classification and prognosis in aggressive B-cell lymphoma. Blood 125(7):1137–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Iqbal J, Shen Y, Liu Y et al (2012) Genome-wide miRNA profiling of mantle cell lymphoma reveals a distinct subgroup with poor prognosis. Blood 119(21):4939–4948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu C, Iqbal J, Teruya-Feldstein J et al (2013) MicroRNA expression profiling identifies molecular signatures associated with anaplastic large cell lymphoma. Blood 122(12):2083–2092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bouska A, McKeithan TW, Deffenbacher KE et al (2014) Genome-wide copy-number analyses reveal genomic abnormalities involved in transformation of follicular lymphoma. Blood 123(11):1681–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bouska A, Zhang W, Gong Q et al (2017) Combined copy number and mutation analysis identifies oncogenic pathways associated with transformation of follicular lymphoma. Leukemia 31(1):83–91

    Article  CAS  PubMed  Google Scholar 

  41. Cairns RA, Iqbal J, Lemonnier F et al (2012) IDH2 mutations are frequent in angioimmunoblastic T-cell lymphoma. Blood 119(8):1901–1903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Guo S, Chan JK, Iqbal J et al (2014) EZH2 mutations in follicular lymphoma from different ethnic groups and associated gene expression alterations. Clin Cancer Res 20(12):3078–3086

    Article  CAS  PubMed  Google Scholar 

  43. Kucuk C, Hu X, Jiang B et al (2015) Global promoter methylation analysis reveals novel candidate tumor suppressor genes in natural killer cell lymphoma. Clin Cancer Res 21(7):1699–1711

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. McKinney M, Moffitt AB, Gaulard P et al (2017) The Genetic Basis of Hepatosplenic T-cell Lymphoma. Cancer Discov 7(4):369–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Laurent C et al (2017) J Clinic Oncol 35(18):2008–2017

    Google Scholar 

  46. Weisenburger et al (2011) Blood, 117:3402–3408

    Google Scholar 

  47. Bowen et al (2014) Bristish J Hematol 166:202–208

    Google Scholar 

  48. de Leval L, Rickman DS, Thielen C et al (2007) The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood 109(11):4952–4963

    Article  PubMed  CAS  Google Scholar 

  49. Martinez-Delgado B (2006) Peripheral T-cell lymphoma gene expression profiles. Hematol Oncol 24(3):113–119

    Article  CAS  PubMed  Google Scholar 

  50. Piccaluga PP, Agostinelli C, Califano A et al (2007) Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets. J Clin Invest. 117(3):823–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cuadros M, Dave SS, Jaffe ES et al (2007) Identification of a proliferation signature related to survival in nodal peripheral T-cell lymphomas. J Clin Oncol 25(22):3321–3329

    Article  PubMed  Google Scholar 

  52. Martinez-Delgado B, Cuadros M, Honrado E et al (2005) Differential expression of NF-kappaB pathway genes among peripheral T-cell lymphomas. Leukemia 19(12):2254–2263

    Article  CAS  PubMed  Google Scholar 

  53. Piccaluga PP, Fuligni F, De Leo A et al (2013) Molecular profiling improves classification and prognostication of nodal peripheral T-cell lymphomas: results of a phase III diagnostic accuracy study. Journal of clinical oncology: official journal of the American Society of Clinical Oncology. 31(24):3019–3025

    Article  Google Scholar 

  54. Ballester B, Ramuz O, Gisselbrecht C et al (2006) Gene expression profiling identifies molecular subgroups among nodal peripheral T-cell lymphomas. Oncogene 25(10):1560–1570

    Article  CAS  PubMed  Google Scholar 

  55. O’Shea JJ, Paul WE (2010) Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327(5969):1098–1102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Wang T, Feldman AL, Wada DA et al (2014) GATA-3 expression identifies a high-risk subset of PTCL, NOS with distinct molecular and clinical features. Blood 123(19):3007–3015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Heavican TB, Yu J, Bouska A, Greiner TC, Lachel CM, Wang C, Dave BJ, Amador CC, Fu K, Vose JM, Weisenburger DD, Gascoyne RD, Hartmann S, Pedersen MBJ, Wilcox R, Teh BT, Lim ST, Ong CK, Seto M, Berger F, Rosenwald A, Ott G, Campo E, Rimsza LM, Jaffe ES, Braziel RM, d’Amore FA, Inghirami G, Bertoni F, Staudt L, McKeithan TW, Pileri SA, Chan WC, Iqbal J (2016) Molecular subgroups of peripheral T-cell lymphoma evolve by distinct genetic pathways. In: 58th ASH Annual Meeting and Exposition, San Diego, CA

    Google Scholar 

  58. Schatz JH, Horwitz SM, Teruya-Feldstein J et al (2015) Targeted mutational profiling of peripheral T-cell lymphoma not otherwise specified highlights new mechanisms in a heterogeneous pathogenesis. Leukemia 29(1):237–241

    Article  CAS  PubMed  Google Scholar 

  59. Abate F, da Silva-Almeida AC, Zairis S et al (2017) Activating mutations and translocations in the guanine exchange factor VAV1 in peripheral T-cell lymphomas. Proc Natl Acad Sci U S A. 114(4):764–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Yoo HY, Sung MK, Lee SH et al (2014) A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nat Genet 46(4):371–375

    Article  CAS  PubMed  Google Scholar 

  61. Laginestra MA, Piccaluga PP, Fuligni F et al (2014) Pathogenetic and diagnostic significance of microRNA deregulation in peripheral T-cell lymphoma not otherwise specified. Blood Cancer J. 4:259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dobay MP, Lemonnier F, Missiaglia E et al (2017) Integrative clinicopathological and molecular analyses of angioimmunoblastic T-cell lymphoma and other nodal lymphomas of follicular helper T-cell origin. Haematologica 102(4):e148–e151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Piccaluga et al (2007) Cancer Res 15, 67(22):10703–10710

    Article  CAS  PubMed  Google Scholar 

  64. Crotty S (2014) Immunity 41(4):529–542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fazilleau N, McHeyzer-Williams LJ, Rosen H, McHeyzer-Williams MG (2009) The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. Nat Immunol 10(4):375–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Hatzi K, Nance JP, Kroenke MA et al (2015) BCL6 orchestrates Tfh cell differentiation via multiple distinct mechanisms. J Exp Med 212(4):539–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dupuis J, Boye K, Martin N et al (2006) Expression of CXCL13 by neoplastic cells in angioimmunoblastic T-cell lymphoma (AITL): a new diagnostic marker providing evidence that AITL derives from follicular helper T cells. Am J Surg Pathol 30(4):490–494

    Article  PubMed  Google Scholar 

  68. Miysohi et al (2012) Am J Clin Pathol 137(6):879–89

    Google Scholar 

  69. Bisig B, Thielen C, Herens C et al (2012) c-Maf expression in angioimmunoblastic T-cell lymphoma reflects follicular helper T-cell derivation rather than oncogenesis. Histopathology 60(2):371–376

    Article  PubMed  Google Scholar 

  70. Murakami YI, Yatabe Y, Sakaguchi T et al (2007) c-Maf expression in angioimmunoblastic T-cell lymphoma. Am J Surg Pathol 31(11):1695–1702

    Article  PubMed  Google Scholar 

  71. Iqbal J et al (2007) Leukemia 21(11):2332–2343

    Google Scholar 

  72. Iqbal J, Weisenburger DD, Greiner TC et al (2010) Molecular signatures to improve diagnosis in peripheral T-cell lymphoma and prognostication in angioimmunoblastic T-cell lymphoma. Blood 115(5):1026–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Grogg KL, Attygalle AD, Macon WR, Remstein ED, Kurtin PJ, Dogan A (2005) Angioimmunoblastic T-cell lymphoma: a neoplasm of germinal-center T-helper cells? Blood 106(4):1501–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Schlegelberger B, Himmler A, Godde E, Grote W, Feller AC, Lennert K (1994) Cytogenetic findings in peripheral T-cell lymphomas as a basis for distinguishing low-grade and high-grade lymphomas. Blood 83(2):505–511

    CAS  PubMed  Google Scholar 

  75. Nelson M, Horsman DE, Weisenburger DD et al (2008) Cytogenetic abnormalities and clinical correlations in peripheral T-cell lymphoma. Br J Haematol 141(4):461–469

    Article  CAS  PubMed  Google Scholar 

  76. Lepretre S, Buchonnet G, Stamatoullas A et al (2000) Chromosome abnormalities in peripheral T-cell lymphoma. Cancer Genet Cytogenet 117(1):71–79

    Article  CAS  PubMed  Google Scholar 

  77. Lakkala-Paranko T, Franssila K, Lappalainen K et al (1987) Chromosome abnormalities in peripheral T-cell lymphoma. Br J Haematol 66(4):451–460

    Article  CAS  PubMed  Google Scholar 

  78. Lemonnier F, Couronne L, Parrens M et al (2012) Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters. Blood 120(7):1466–1469

    Article  CAS  PubMed  Google Scholar 

  79. Sakata-Yanagimoto M, Enami T, Yoshida K et al (2014) Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet 46(2):171–175

    Article  CAS  PubMed  Google Scholar 

  80. Odejide O, Weigert O, Lane AA et al (2014) A targeted mutational landscape of angioimmunoblastic T-cell lymphoma. Blood 123(9):1293–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dawlaty MM, Ganz K, Powell BE, et al Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell 9(2):166–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dawlaty MM, Breiling A, Le T, et al. Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev Cell 24(3):310–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wu H, Zhang Y (2011) Mechanisms and functions of Tet protein-mediated 5-methylcytosine oxidation. Genes Dev 25(23):2436–2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hill PW, Amouroux R, Hajkova P (2014) DNA demethylation, Tet proteins and 5-hydroxymethylcytosine in epigenetic reprogramming: an emerging complex story. Genomics 104(5):324–333

    Article  CAS  PubMed  Google Scholar 

  85. Losman JA, Looper RE, Koivunen P et al (2013) (R)-2-hydroxyglutarate is sufficient to promote leukemogenesis and its effects are reversible. Science 339(6127):1621–1625

    Article  CAS  PubMed  Google Scholar 

  86. Koivunen P, Lee S, Duncan CG et al (2012) Transformation by the (R)-enantiomer of 2-hydroxyglutarate linked to EGLN activation. Nature 483(7390):484–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li Z, Cai X, Cai CL et al (2011) Deletion of Tet2 in mice leads to dysregulated hematopoietic stem cells and subsequent development of myeloid malignancies. Blood 118(17):4509–4518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sasaki M, Knobbe CB, Munger JC et al (2012) IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics. Nature 488(7413):656–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Akbay EA, Moslehi J, Christensen CL et al (2014) D-2-hydroxyglutarate produced by mutant IDH2 causes cardiomyopathy and neurodegeneration in mice. Genes Dev 28(5):479–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chen C, Liu Y, Lu C et al (2013) Cancer-associated IDH2 mutants drive an acute myeloid leukemia that is susceptible to Brd4 inhibition. Genes Dev 27(18):1974–1985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xu W, Yang H, Liu Y et al Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19(1):17–30

    Google Scholar 

  92. Palomero T, Couronne L, Khiabanian H et al Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nature genetics 46(2):166–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Nagata Y, Kontani K, Enami T et al (2016) Variegated RHOA mutations in adult T-cell leukemia/lymphoma. Blood 127(5):596–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yoo HY, Sung MK, Lee SH, et al A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nature genetics 46(4):371–375

    Article  CAS  PubMed  Google Scholar 

  95. Abdel-Wahab O, Levine RL (2013) Mutations in epigenetic modifiers in the pathogenesis and therapy of acute myeloid leukemia. Blood 121(18):3563–3572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Rohr J, Guo S, Hu D et al (2014) CD28 Mutations in Peripheral T-Cell Lymphomagenesis and Progression. Blood 124(21):1681–1681

    Google Scholar 

  97. Rohr J, Guo S, Huo J et al (2015) Recurrent activating mutations of CD28 in peripheral T-cell lymphomas. Leukemia

    Google Scholar 

  98. Wang C, McKeithan TW, Gong Q et al (2015) IDH2R172 mutations define a unique subgroup of patients with angioimmunoblastic T-cell lymphoma. Blood 126(15):1741–1752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. DiNardo CD, Propert KJ, Loren AW et al Serum 2-hydroxyglutarate levels predict isocitrate dehydrogenase mutations and clinical outcome in acute myeloid leukemia. Blood 121(24):4917–4924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cheminant M, Bruneau J, Kosmider O et al (2014) Efficacy of 5-Azacytidine in a TET2 mutated angioimmunoblastic T cell lymphoma. Br J Haematol

    Google Scholar 

  101. Pro B, Horwitz SM, Prince HM et al (2016) Romidepsin induces durable responses in patients with relapsed or refractory angioimmunoblastic T-cell lymphoma. Hematol Oncol

    Google Scholar 

  102. Borroto A, Gil D, Delgado P et al (2000) Rho regulates T cell receptor ITAM-induced lymphocyte spreading in an integrin-independent manner. Eur J Immunol 30(12):3403–3410

    Article  CAS  PubMed  Google Scholar 

  103. Rougerie P, Delon J Rho GTPases: masters of T lymphocyte migration and activation. Immunol Lett 142(1–2):1-13

    Article  CAS  PubMed  Google Scholar 

  104. Cleverley SC, Costello PS, Henning SW, Cantrell DA (2000) Loss of Rho function in the thymus is accompanied by the development of thymic lymphoma. Oncogene 19(1):13–20

    Article  CAS  PubMed  Google Scholar 

  105. Cortes JR, Ambesi-Impiombato A, Couronne L, Kim CS, West Z, Belver L, da Silva Almeida AC, Bhagat G, Bernard OA, Ferrando AA, PalomeroT (2016) Role and Mechanisms of Rhoa G17 V in the Pathogenesis of AITL. ASH Meeting, San Diego

    Google Scholar 

  106. Li Z, Dong X, Wang Z et al (2005) Regulation of PTEN by Rho small GTPases. Nat Cell Biol 7(4):399–404

    Article  CAS  PubMed  Google Scholar 

  107. Morris SW, Kirstein MN, Valentine MB et al (1995) Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 267(5196):316–317

    Article  CAS  PubMed  Google Scholar 

  108. Mason DY, Bastard C, Rimokh R et al (1990) CD30-positive large cell lymphomas (‘Ki-1 lymphoma’) are associated with a chromosomal translocation involving 5q35. Br J Haematol 74(2):161–168

    Article  CAS  PubMed  Google Scholar 

  109. Morris SW, Kirstein MN, Valentine MB et al (1994) Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 263(5151):1281–1284

    Article  CAS  PubMed  Google Scholar 

  110. Rimokh R, Magaud JP, Berger F et al (1989) A translocation involving a specific breakpoint (q35) on chromosome 5 is characteristic of anaplastic large cell lymphoma (‘Ki-1 lymphoma’). Br J Haematol 71(1):31–36

    Article  CAS  PubMed  Google Scholar 

  111. Agnelli L, Mereu E, Pellegrino E et al (2012) Identification of a 3-gene model as a powerful diagnostic tool for the recognition of ALK-negative anaplastic large-cell lymphoma. Blood 120(6):1274–1281

    Article  CAS  PubMed  Google Scholar 

  112. Piva R, Pellegrino E, Mattioli M et al (2006) Functional validation of the anaplastic lymphoma kinase signature identifies CEBPB and BCL2A1 as critical target genes. J Clin Invest. 116(12):3171–3182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Matsuyama H, Suzuki HI, Nishimori H et al (2011) miR-135b mediates NPM-ALK-driven oncogenicity and renders IL-17-producing immunophenotype to anaplastic large cell lymphoma. Blood 118(26):6881–6892

    Article  CAS  PubMed  Google Scholar 

  114. Abate F, Todaro M, van der Krogt JA et al (2014) A novel patient-derived tumorgraft model with TRAF1-ALK anaplastic large-cell lymphoma translocation. Leukemia

    Google Scholar 

  115. Parrilla Castellar ER, Jaffe ES, Said JW et al (2014) ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood 124(9):1473–1480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Crescenzo R, Abate F, Lasorsa E et al (2015) Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell 27(4):516–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G (2008) The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer 8(1):11–23

    Article  CAS  PubMed  Google Scholar 

  118. Spaccarotella E, Pellegrino E, Ferracin M et al (2014) STAT3-mediated activation of microRNA cluster 17–92 promotes proliferation and survival of ALK-positive anaplastic large cell lymphoma. Haematologica 99(1):116–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Merkel O, Hamacher F, Laimer D et al (2010) Identification of differential and functionally active miRNAs in both anaplastic lymphoma kinase (ALK)+ and ALK- anaplastic large-cell lymphoma. Proc Natl Acad Sci U S A. 107(37):16228–16233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Portis T, Grossman WJ, Harding JC, Hess JL, Ratner L (2001) Analysis of p53 inactivation in a human T-cell leukemia virus type 1 Tax transgenic mouse model. J Virol 75(5):2185–2193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Vernin C, Thenoz M, Pinatel C et al (2014) HTLV-1 bZIP factor HBZ promotes cell proliferation and genetic instability by activating OncomiRs. Cancer Res 74(21):6082–6093

    Article  CAS  PubMed  Google Scholar 

  122. Wright DG, Marchal C, Hoang K et al (2016) Human T-cell leukemia virus type-1-encoded protein HBZ represses p53 function by inhibiting the acetyltransferase activity of p300/CBP and HBO1. Oncotarget. 7(2):1687–1706

    Article  PubMed  Google Scholar 

  123. Sasaki H, Nishikata I, Shiraga T et al (2005) Overexpression of a cell adhesion molecule, TSLC1, as a possible molecular marker for acute-type adult T-cell leukemia. Blood 105(3):1204–1213

    Article  CAS  PubMed  Google Scholar 

  124. Pise-Masison CA, Radonovich M, Dohoney K et al (2009) Gene expression profiling of ATL patients: compilation of disease related genes and evidence for TCF-4 involvement in BIRC5 gene expression and cell viability. Blood

    Google Scholar 

  125. Zinzani et al (2016) Haematologica 101(10):e407–410

    Article  PubMed  PubMed Central  Google Scholar 

  126. Ogura M et al (2014) J Clin Oncol 10, 32(11):1157–1163

    Google Scholar 

  127. Kataoka K, Nagata Y, Kitanaka A et al (2015) Integrated molecular analysis of adult T cell leukemia/lymphoma. Nat Genet 47(11):1304–1315

    Article  CAS  PubMed  Google Scholar 

  128. Yoshie O, Fujisawa R, Nakayama T et al (2002) Frequent expression of CCR4 in adult T-cell leukemia and human T-cell leukemia virus type 1-transformed T cells. Blood 99(5):1505–1511

    Article  CAS  PubMed  Google Scholar 

  129. Harasawa H, Yamada Y, Hieshima K et al (2006) Survey of chemokine receptor expression reveals frequent co-expression of skin-homing CCR4 and CCR10 in adult T-cell leukemia/lymphoma. Leuk Lymphoma 47(10):2163–2173

    Article  CAS  PubMed  Google Scholar 

  130. Li J, Lu E, Yi T, Cyster JG (2016) EBI2 augments Tfh cell fate by promoting interaction with IL-2-quenching dendritic cells. Nature 533(7601):110–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Fujii K, Ishimaru F, Nakase K et al (2003) Over-expression of short isoforms of Helios in patients with adult T-cell leukaemia/lymphoma. Br J Haematol 120(6):986–989

    Article  CAS  PubMed  Google Scholar 

  132. Zhang Z, Swindle CS, Bates JT, Ko R, Cotta CV, Klug CA (2007) Expression of a non-DNA-binding isoform of Helios induces T-cell lymphoma in mice. Blood 109(5):2190–2197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sato H, Oka T, Shinnou Y et al (2010) Multi-step aberrant CpG island hyper-methylation is associated with the progression of adult T-cell leukemia/lymphoma. Am J Pathol 176(1):402–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Nosaka K, Maeda M, Tamiya S, Sakai T, Mitsuya H, Matsuoka M (2000) Increasing methylation of the CDKN2A gene is associated with the progression of adult T-cell leukemia. Cancer Res 60(4):1043–1048

    CAS  PubMed  Google Scholar 

  135. Fujikawa D, Nakagawa S, Hori M et al (2016) Polycomb-dependent epigenetic landscape in adult T-cell leukemia. Blood 127(14):1790–1802

    Article  CAS  PubMed  Google Scholar 

  136. Krejsgaard T, Lindahl LM, Mongan NP et al (2016) Malignant inflammation in cutaneous T-cell lymphoma—a hostile takeover. Seminars in immunopathology

    Google Scholar 

  137. Macias ES, Pereira FA, Rietkerk W, Safai B (2011) Superantigens in dermatology. J Am Acad Dermatol 64(3):455–472; Quiz 473–454

    Article  CAS  PubMed  Google Scholar 

  138. Suga H, Sugaya M, Miyagaki T et al (2014) Skin barrier dysfunction and low antimicrobial peptide expression in cutaneous T-cell lymphoma. Clin Cancer Res 20(16):4339–4348

    Article  CAS  PubMed  Google Scholar 

  139. Thode C, Woetmann A, Wandall HH et al (2015) Malignant T cells secrete galectins and induce epidermal hyperproliferation and disorganized stratification in a skin model of cutaneous T-cell lymphoma. J Invest Dermatol. 135(1):238–246

    Article  PubMed  Google Scholar 

  140. Dobbeling U, Dummer R, Laine E, Potoczna N, Qin JZ, Burg G (1998) Interleukin-15 is an autocrine/paracrine viability factor for cutaneous T-cell lymphoma cells. Blood 92(1):252–258

    CAS  PubMed  Google Scholar 

  141. Leroy S, Dubois S, Tenaud I et al (2001) Interleukin-15 expression in cutaneous T-cell lymphoma (mycosis fungoides and Sezary syndrome). The British journal of dermatology. 144(5):1016–1023

    Article  CAS  PubMed  Google Scholar 

  142. Netchiporouk E, Litvinov IV, Moreau L, Gilbert M, Sasseville D, Duvic M (2014) Deregulation in STAT signaling is important for cutaneous T-cell lymphoma (CTCL) pathogenesis and cancer progression. Cell Cycle 13(21):3331–3335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Mishra A, La Perle K, Kwiatkowski S et al (2016) Mechanism, Consequences, and Therapeutic Targeting of Abnormal IL15 Signaling in Cutaneous T-cell Lymphoma. Cancer Discov 6(9):986–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. McKenzie RC, Jones CL, Tosi I, Caesar JA, Whittaker SJ, Mitchell TJ (2012) Constitutive activation of STAT3 in Sezary syndrome is independent of SHP-1. Leukemia 26(2):323–331

    Article  CAS  PubMed  Google Scholar 

  145. van der Fits L, Out-Luiting JJ, van Leeuwen MA et al (2012) Autocrine IL-21 stimulation is involved in the maintenance of constitutive STAT3 activation in Sezary syndrome. J Invest Dermatol. 132(2):440–447

    Article  PubMed  CAS  Google Scholar 

  146. Takahashi N, Sugaya M, Suga H et al (2016) Thymic Stromal Chemokine TSLP Acts through Th2 Cytokine Production to Induce Cutaneous T-cell Lymphoma. Cancer Res 76(21):6241–6252

    Article  CAS  PubMed  Google Scholar 

  147. Tuzova M, Richmond J, Wolpowitz D et al (2015) CCR4+ T cell recruitment to the skin in mycosis fungoides: potential contributions by thymic stromal lymphopoietin and interleukin-16. Leuk Lymphoma 56(2):440–449

    Article  CAS  PubMed  Google Scholar 

  148. Geskin LJ, Viragova S, Stolz DB, Fuschiotti P (2015) Interleukin-13 is overexpressed in cutaneous T-cell lymphoma cells and regulates their proliferation. Blood 125(18):2798–2805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Ohmatsu H, Humme D, Gulati N et al (2014) IL32 is progressively expressed in mycosis fungoides independent of helper T-cell 2 and helper T-cell 9 polarization. Cancer Immunol Res 2(9):890–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Suga H, Sugaya M, Miyagaki T et al (2014) The role of IL-32 in cutaneous T-cell lymphoma. J Invest Dermatol. 134(5):1428–1435

    Article  CAS  PubMed  Google Scholar 

  151. Lauenborg B, Christensen L, Ralfkiaer U et al (2015) Malignant T cells express lymphotoxin alpha and drive endothelial activation in cutaneous T cell lymphoma. Oncotarget. 6(17):15235–15249

    Article  PubMed  PubMed Central  Google Scholar 

  152. Michel L, Jean-Louis F, Begue E, Bensussan A, Bagot M (2013) Use of PLS3, Twist, CD158 k/KIR3DL2, and NKp46 gene expression combination for reliable Sezary syndrome diagnosis. Blood 121(8):1477–1478

    Article  CAS  PubMed  Google Scholar 

  153. Wong HK, Gibson H, Hake T et al (2015) Promoter-Specific Hypomethylation Is Associated with Overexpression of PLS3, GATA6, and TWIST1 in the Sezary Syndrome. J Invest Dermatol. 135(8):2084–2092

    Article  CAS  PubMed  Google Scholar 

  154. Huang Y, Su MW, Jiang X, Zhou Y (2015) Evidence of an oncogenic role of aberrant TOX activation in cutaneous T-cell lymphoma. Blood 125(9):1435–1443

    Article  CAS  PubMed  Google Scholar 

  155. Dulmage BO, Akilov O, Vu JR, Falo LD, Geskin LJ (2015) Dysregulation of the TOX-RUNX3 pathway in cutaneous T-cell lymphoma. Oncotarget

    Google Scholar 

  156. Haider A, Steininger A, Ullmann R et al (2016) Inactivation of RUNX3/p46 Promotes Cutaneous T-Cell Lymphoma. J Invest Dermatol. 136(11):2287–2296

    Article  CAS  PubMed  Google Scholar 

  157. Choi J, Goh G, Walradt T et al (2015) Genomic landscape of cutaneous T cell lymphoma. Nat Genet 47(9):1011–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. da Silva Almeida AC, Abate F, Khiabanian H et al (2015) The mutational landscape of cutaneous T cell lymphoma and Sezary syndrome. Nat Genet 47(12):1465–1470

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Kiel MJ, Sahasrabuddhe AA, Rolland DC et al (2015) Genomic analyses reveal recurrent mutations in epigenetic modifiers and the JAK-STAT pathway in Sezary syndrome. Nat Commun. 6:8470

    Article  CAS  PubMed  Google Scholar 

  160. Wang L, Ni X, Covington KR et al (2015) Genomic profiling of Sezary syndrome identifies alterations of key T cell signaling and differentiation genes. Nat Genet 47(12):1426–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Mathur R, Alver BH, San Roman AK et al (2017) ARID1A loss impairs enhancer-mediated gene regulation and drives colon cancer in mice. Nat Genet 49(2):296–302

    Article  CAS  PubMed  Google Scholar 

  162. Watanabe R, Ui A, Kanno S et al (2014) SWI/SNF factors required for cellular resistance to DNA damage include ARID1A and ARID1B and show interdependent protein stability. Cancer Res 74(9):2465–2475

    Article  CAS  PubMed  Google Scholar 

  163. Williamson CT, Miller R, Pemberton HN et al (2016) ATR inhibitors as a synthetic lethal therapy for tumours deficient in ARID1A. Nat Commun. 7:13837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Guo C, Chen LH, Huang Y et al (2013) KMT2D maintains neoplastic cell proliferation and global histone H3 lysine 4 monomethylation. Oncotarget. 4(11):2144–2153

    Article  PubMed  PubMed Central  Google Scholar 

  165. Kaikkonen MU, Spann NJ, Heinz S et al (2013) Remodeling of the enhancer landscape during macrophage activation is coupled to enhancer transcription. Mol Cell 51(3):310–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Hidaka T, Nakahata S, Hatakeyama K et al (2008) Down-regulation of TCF8 is involved in the leukemogenesis of adult T-cell leukemia/lymphoma. Blood 112(2):383–393

    Article  CAS  PubMed  Google Scholar 

  167. Papadopoulou V, Postigo A, Sanchez-Tillo E, Porter AC, Wagner SD (2010) ZEB1 and CtBP form a repressive complex at a distal promoter element of the BCL6 locus. Biochem J 427(3):541–550

    Article  CAS  PubMed  Google Scholar 

  168. Wang J, Lee S, Teh CE, Bunting K, Ma L, Shannon MF (2009) The transcription repressor, ZEB1, cooperates with CtBP2 and HDAC1 to suppress IL-2 gene activation in T cells. Int Immunol 21(3):227–235

    Article  CAS  PubMed  Google Scholar 

  169. Migliazza A, Lombardi L, Rocchi M et al (1994) Heterogeneous chromosomal aberrations generate 3’ truncations of the NFKB2/lyt-10 gene in lymphoid malignancies. Blood 84(11):3850–3860

    CAS  PubMed  Google Scholar 

  170. Neri A, Fracchiolla NS, Migliazza A, Trecca D, Lombardi L (1996) The involvement of the candidate proto-oncogene NFKB2/lyt-10 in lymphoid malignancies. Leuk Lymphoma 23(1–2):43–48

    Article  CAS  PubMed  Google Scholar 

  171. Ungewickell A, Bhaduri A, Rios E et al (2015) Genomic analysis of mycosis fungoides and Sezary syndrome identifies recurrent alterations in TNFR2. Nat Genet 47(9):1056–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Ralfkiaer U, Hagedorn PH, Bangsgaard N et al (2011) Diagnostic microRNA profiling in cutaneous T-cell lymphoma (CTCL). Blood 118(22):5891–5900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Sandoval J, Diaz-Lagares A, Salgado R et al (2015) MicroRNA expression profiling and DNA methylation signature for deregulated microRNA in cutaneous T-cell lymphoma. J Invest Dermatol. 135(4):1128–1137

    Article  CAS  PubMed  Google Scholar 

  174. Ralfkiaer U, Lindahl LM, Litman T et al (2014) MicroRNA expression in early mycosis fungoides is distinctly different from atopic dermatitis and advanced cutaneous T-cell lymphoma. Anticancer Res 34(12):7207–7217

    CAS  PubMed  Google Scholar 

  175. Narducci MG, Arcelli D, Picchio MC et al (2011) MicroRNA profiling reveals that miR-21, miR486 and miR-214 are upregulated and involved in cell survival in Sezary syndrome. Cell Death Dis 2:e151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Carreon JD, Morton LM, Devesa SS et al (2008) Incidence of lymphoid neoplasms by subtype among six Asian ethnic groups in the United States, 1996-2004. Cancer Causes Control 19(10):1171–1181

    Article  PubMed  PubMed Central  Google Scholar 

  177. Morton LM, Wang SS, Devesa SS, Hartge P, Weisenburger DD, Linet MS (2006) Lymphoma incidence patterns by WHO subtype in the United States, 1992-2001. Blood 107(1):265–276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Chan JK, Sin VC, Wong KF et al (1997) Nonnasal lymphoma expressing the natural killer cell marker CD56: a clinicopathologic study of 49 cases of an uncommon aggressive neoplasm. Blood 89(12):4501–4513

    CAS  PubMed  Google Scholar 

  179. Matano S, Nakamura S, Nakamura S et al (1999) Monomorphic agranular natural killer cell lymphoma/leukemia with no Epstein-Barr virus association. Acta Haematol 101(4):206–208

    Article  CAS  PubMed  Google Scholar 

  180. Martin AR, Chan WC, Perry DA, Greiner TC, Weisenburger DD (1995) Aggressive natural killer cell lymphoma of the small intestine. Mod Pathol 8(5):467–472

    CAS  PubMed  Google Scholar 

  181. Yagita M, Huang CL, Umehara H et al (2000) A novel natural killer cell line (KHYG-1) from a patient with aggressive natural killer cell leukemia carrying a p53 point mutation. Leukemia 14(5):922–930

    Article  CAS  PubMed  Google Scholar 

  182. Chen IM, Whalen M, Bankhurst A et al (2004) A new human natural killer leukemia cell line, IMC-1. A complex chromosomal rearrangement defined by spectral karyoty**: functional and cytogenetic characterization. Leuk Res 28(3):275–284

    Article  CAS  PubMed  Google Scholar 

  183. Kulwichit W, Edwards RH, Davenport EM, Baskar JF, Godfrey V, Raab-Traub N (1998) Expression of the Epstein-Barr virus latent membrane protein 1 induces B cell lymphoma in transgenic mice. Proc Natl Acad Sci U S A. 95(20):11963–11968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Pratt ZL, Kuzembayeva M, Sengupta S, Sugden B (2009) The microRNAs of Epstein-Barr Virus are expressed at dramatically differing levels among cell lines. Virology 386(2):387–397

    Article  CAS  PubMed  Google Scholar 

  185. Klinke O, Feederle R, Delecluse HJ (2014) Genetics of Epstein-Barr virus microRNAs. Semin Cancer Biol 26:52–59

    Article  CAS  PubMed  Google Scholar 

  186. Vereide DT, Seto E, Chiu YF et al (2014) Epstein-Barr virus maintains lymphomas via its miRNAs. Oncogene 33(10):1258–1264

    Article  CAS  PubMed  Google Scholar 

  187. Huang WT, Lin CW (2014) EBV-encoded miR-BART20-5p and miR-BART8 inhibit the IFN-gamma-STAT1 pathway associated with disease progression in nasal NK-cell lymphoma. Am J Pathol 184(4):1185–1197

    Article  CAS  PubMed  Google Scholar 

  188. Motsch N, Alles J, Imig J et al (2012) MicroRNA profiling of Epstein-Barr virus-associated NK/T-cell lymphomas by deep sequencing. PLoS ONE 7(8):e42193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Iqbal J, Kucuk C, Deleeuw RJ et al (2009) Genomic analyses reveal global functional alterations that promote tumor growth and novel tumor suppressor genes in natural killer-cell malignancies. Leukemia 23(6):1139–1151

    Article  CAS  PubMed  Google Scholar 

  190. Huang Y, de Reynies A, de Leval L et al (2010) Gene expression profiling identifies emerging oncogenic pathways operating in extranodal NK/T-cell lymphoma, nasal type. Blood 115(6):1226–1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Nakashima Y, Tagawa H, Suzuki R et al (2005) Genome-wide array-based comparative genomic hybridization of natural killer cell lymphoma/leukemia: different genomic alteration patterns of aggressive NK-cell leukemia and extranodal Nk/T-cell lymphoma, nasal type. Genes Chromosomes Cancer 44(3):247–255

    Article  CAS  PubMed  Google Scholar 

  192. Siu LL, Chan V, Chan JK, Wong KF, Liang R, Kwong YL (2000) Consistent patterns of allelic loss in natural killer cell lymphoma. Am J Pathol 157(6):1803–1809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Siu LL, Wong KF, Chan JK, Kwong YL (1999) Comparative genomic hybridization analysis of natural killer cell lymphoma/leukemia. Recognition of consistent patterns of genetic alterations. Am J Pathol 155(5):1419–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Ko YH, Choi KE, Han JH, Kim JM, Ree HJ (2001) Comparative genomic hybridization study of nasal-type NK/T-cell lymphoma. Cytometry 46(2):85–91

    Article  CAS  PubMed  Google Scholar 

  195. Kucuk C, Iqbal J, Hu X et al (2011) PRDM1 is a tumor suppressor gene in natural killer cell malignancies. Proc Natl Acad Sci USA 108(50):20119–20124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Karube K, Nakagawa M, Tsuzuki S et al (2011) Identification of FOXO3 and PRDM1 as tumor-suppressor gene candidates in NK-cell neoplasms by genomic and functional analyses. Blood 118(12):3195–3204

    Article  CAS  PubMed  Google Scholar 

  197. Kucuk C, Hu X, Iqbal J et al (2013) HACE1 is a tumor suppressor gene candidate in natural killer cell neoplasms. Am J Pathol 182(1):49–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Zhang L, Anglesio MS, O’Sullivan M et al (2007) The E3 ligase HACE1 is a critical chromosome 6q21 tumor suppressor involved in multiple cancers. Nat Med 13(9):1060–1069

    Article  CAS  PubMed  Google Scholar 

  199. Quintanilla-Martinez L, Kremer M, Keller G et al (2001) p53 Mutations in nasal natural killer/T-cell lymphoma from Mexico: association with large cell morphology and advanced disease. Am J Pathol 159(6):2095–2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Frappier L (2012) Contributions of Epstein-Barr nuclear antigen 1 (EBNA1) to cell immortalization and survival. Viruses. 4(9):1537–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Li M, Chen D, Shiloh A et al (2002) Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416(6881):648–653

    Article  CAS  PubMed  Google Scholar 

  202. Saridakis V, Sheng Y, Sarkari F et al (2005) Structure of the p53 binding domain of HAUSP/USP7 bound to Epstein-Barr nuclear antigen 1 implications for EBV-mediated immortalization. Mol Cell 18(1):25–36

    Article  CAS  PubMed  Google Scholar 

  203. Oka T, Ouchida M, Koyama M et al (2002) Gene silencing of the tyrosine phosphatase SHP1 gene by aberrant methylation in leukemias/lymphomas. Cancer Res 62(22):6390–6394

    CAS  PubMed  Google Scholar 

  204. Siu LL, Chan JK, Wong KF, Kwong YL (2002) Specific patterns of gene methylation in natural killer cell lymphomas: p73 is consistently involved. Am J Pathol 160(1):59–66

    Article  CAS  PubMed  Google Scholar 

  205. Deyoung MP, Ellisen LW (2007) p63 and p73 in human cancer: defining the network. Oncogene 26(36):5169–5183

    Article  CAS  PubMed  Google Scholar 

  206. Candi E, Agostini M, Melino G, Bernassola F (2014) How the TP53 family proteins TP63 and TP73 contribute to tumorigenesis: regulators and effectors. Hum Mutat 35(6):702–714

    Article  CAS  PubMed  Google Scholar 

  207. Lanier LL (2008) Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 9(5):495–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Han Y, Amin HM, Frantz C et al (2006) Restoration of shp1 expression by 5-AZA-2’-deoxycytidine is associated with downregulation of JAK3/STAT3 signaling in ALK-positive anaplastic large cell lymphoma. Leukemia 20(9):1602–1609

    Article  CAS  PubMed  Google Scholar 

  209. Chim CS, Fung TK, Cheung WC, Liang R, Kwong YL (2004) SOCS1 and SHP1 hypermethylation in multiple myeloma: implications for epigenetic activation of the Jak/STAT pathway. Blood 103(12):4630–4635

    Article  CAS  PubMed  Google Scholar 

  210. Chen KF, Su JC, Liu CY et al (2012) A novel obatoclax derivative, SC-2001, induces apoptosis in hepatocellular carcinoma cells through SHP-1-dependent STAT3 inactivation. Cancer Lett 321(1):27–35

    Article  CAS  PubMed  Google Scholar 

  211. Kim DJ, Tremblay ML, Digiovanni J (2010) Protein tyrosine phosphatases, TC-PTP, SHP1, and SHP2, cooperate in rapid dephosphorylation of Stat3 in keratinocytes following UVB irradiation. PLoS ONE 5(4):e10290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Gupta SC, Phromnoi K, Aggarwal BB (2013) Morin inhibits STAT3 tyrosine 705 phosphorylation in tumor cells through activation of protein tyrosine phosphatase SHP1. Biochem Pharmacol 85(7):898–912

    Article  CAS  PubMed  Google Scholar 

  213. Kucuk C, Jiang B, Hu X et al (2015) Activating mutations of STAT5B and STAT3 in lymphomas derived from gammadelta-T or NK cells. Nat Commun. 6:6025

    Article  CAS  PubMed  Google Scholar 

  214. Takakuwa T, Dong Z, Nakatsuka S et al (2002) Frequent mutations of Fas gene in nasal NK/T cell lymphoma. Oncogene 21(30):4702–4705

    Article  CAS  PubMed  Google Scholar 

  215. Shen L, Liang AC, Lu L et al (2002) Frequent deletion of Fas gene sequences encoding death and transmembrane domains in nasal natural killer/T-cell lymphoma. Am J Pathol 161(6):2123–2131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Coppo P, Gouilleux-Gruart V, Huang Y et al (2009) STAT3 transcription factor is constitutively activated and is oncogenic in nasal-type NK/T-cell lymphoma. Leukemia 23(9):1667–1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Yu H, Kortylewski M, Pardoll D (2007) Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7(1):41–51

    Article  CAS  PubMed  Google Scholar 

  218. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9(11):798–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Wang T, Niu G, Kortylewski M et al (2004) Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 10(1):48–54

    Article  PubMed  CAS  Google Scholar 

  220. Koo GC, Tan SY, Tang T et al (2012) Janus kinase 3-activating mutations identified in natural killer/T-cell lymphoma. Cancer Discov 2(7):591–597

    Article  CAS  PubMed  Google Scholar 

  221. Bouchekioua A, Scourzic L, de Wever O et al (2014) JAK3 deregulation by activating mutations confers invasive growth advantage in extranodal nasal-type natural killer cell lymphoma. Leukemia 28(2):338–348

    Article  CAS  PubMed  Google Scholar 

  222. Kimura H, Karube K, Ito Y et al (2014) Rare occurrence of JAK3 mutations in natural killer cell neoplasms in Japan. Leuk Lymphoma 55(4):962–963

    Article  PubMed  Google Scholar 

  223. Jiang L, Gu ZH, Yan ZX, et al. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma. Nature genetics. 2015:Epub ahead of print

    Google Scholar 

  224. Dobashi A, Tsuyama N, Asaka R et al (2016) Frequent BCOR aberrations in extranodal NK/T-Cell lymphoma, nasal type. Genes Chromosomes Cancer 55(5):460–471

    Article  CAS  PubMed  Google Scholar 

  225. Lee S, Park HY, Kang SY et al (2015) Genetic alterations of JAK/STAT cascade and histone modification in extranodal NK/T-cell lymphoma nasal type. Oncotarget. 6(19):17764–17776

    Article  PubMed  PubMed Central  Google Scholar 

  226. Miyazaki K, Yamaguchi M, Imai H et al (2009) Gene expression profiling of peripheral T-cell lymphoma including gammadelta T-cell lymphoma. Blood 113(5):1071–1074

    Article  CAS  PubMed  Google Scholar 

  227. Travert M, Huang Y, de Leval L et al (2012) Molecular features of hepatosplenic T-cell lymphoma unravels potential novel therapeutic targets. Blood 119(24):5795–5806

    Article  CAS  PubMed  Google Scholar 

  228. Moffitt AB, Ondrejka SL, McKinney M et al (2017) Enteropathy-associated T cell lymphoma subtypes are characterized by loss of function of SETD2. J Exp Med

    Google Scholar 

  229. Davis RE, Brown KD, Siebenlist U, Staudt LM (2001) Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J Exp Med 194(12):1861–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Bild AH, Yao G, Chang JT et al (2006) Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 439(7074):353–357

    Article  CAS  PubMed  Google Scholar 

  231. Rosenwald A, Wright G, Leroy K et al (2003) Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med 198(6):851–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Savage KJ, Monti S, Kutok JL et al (2003) The molecular signature of mediastinal large B-cell lymphoma differs from that of other diffuse large B-cell lymphomas and shares features with classical Hodgkin lymphoma. Blood 102(12):3871–3879

    Article  CAS  PubMed  Google Scholar 

  233. Zinzani PL, Tani M, Musuraca G et al (2006) Phase II study of proteasome inhibitor bortezomib (Velcade®) in patients with relapsed/refractory T-cell lymphoma: preliminary results. Blood 108a

    Google Scholar 

  234. Piva R, Ruggeri B, Williams M et al (2007) CEP-18770: a novel orally-active proteasome inhibitor with a tumor-selective pharmacological profile competitive with bortezomib. Blood

    Google Scholar 

  235. Feldman A, Sun D, Law M (2007) Syk Tyrosine Kinase is Overexpressed in the Majority of Peripheral T and NK-cell Lymphomas, and Re. Blood 110:690a

    Google Scholar 

  236. Wilcox RA, Sun DX, Novak A, Dogan A, Ansell SM, Feldman AL (2010) Inhibition of Syk protein tyrosine kinase induces apoptosis and blocks proliferation in T-cell non-Hodgkin’s lymphoma cell lines. Leukemia 24(1):229–232

    Article  CAS  PubMed  Google Scholar 

  237. Piccaluga PP, Rossi M, Agostinelli C et al (2014) Platelet-derived growth factor alpha mediates the proliferation of peripheral T-cell lymphoma cells via an autocrine regulatory pathway. Leukemia 28(8):1687–1697

    Article  CAS  PubMed  Google Scholar 

  238. Andrae J, Gallini R, Betsholtz C (2008) Role of platelet-derived growth factors in physiology and medicine. Genes Dev 22(10):1276–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Perry AM, Molina-Kirsch H, Nathwani BN et al (2011) Classification of non-Hodgkin lymphomas in Guatemala according to the World Health Organization system. Leuk Lymphoma 52(9):1681–1688

    Article  PubMed  Google Scholar 

  240. Wang C, Collins M, Kuchroo VK (2015) Effector T cell differentiation: are master regulators of effector T cells still the masters? Curr Opin Immunol 37:6–10

    Article  PubMed  CAS  Google Scholar 

  241. Rudiger T, Weisenburger DD, Anderson JR et al (2002) Peripheral T-cell lymphoma (excluding anaplastic large-cell lymphoma): results from the Non-Hodgkin’s Lymphoma Classification Project. Ann Oncol 13(1):140–149

    Article  CAS  PubMed  Google Scholar 

  242. Vose J, Armitage J, Weisenburger D, International TCLP (2008) International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol 26(25):4124–4130

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wing C. Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iqbal, J., Amador, C., McKeithan, T.W., Chan, W.C. (2019). Molecular and Genomic Landscape of Peripheral T-Cell Lymphoma. In: Querfeld, C., Zain, J., Rosen, S. (eds) T-Cell and NK-Cell Lymphomas. Cancer Treatment and Research, vol 176. Springer, Cham. https://doi.org/10.1007/978-3-319-99716-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-99716-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-99715-5

  • Online ISBN: 978-3-319-99716-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation