Basic, Dual, Adaptive, and Directed Mutation Operators in the Fly Algorithm

  • Conference paper
  • First Online:
Artificial Evolution (EA 2017)

Abstract

Our work is based on a Cooperative Co-evolution Algorithm – the Fly algorithm – in which individuals correspond to 3-D points. The Fly algorithm uses two levels of fitness function: (i) a local fitness computed to evaluate a given individual (usually during the selection process) and (ii) a global fitness to assess the performance of the population as a whole. This global fitness is the metrics that is minimised (or maximised depending on the problem) by the optimiser. Here the solution of the optimisation problem corresponds to a set of individuals instead of a single individual (the best individual) as in classical evolutionary algorithms (EAs). The Fly algorithm heavily relies on mutation operators and a new blood operator to insure diversity in the population. To lead to accurate results, a large mutation variance is often initially used to avoid local minima (or maxima). It is then progressively reduced to refine the results. Another approach is the use of adaptive operators. However, very little research on adaptive operators in Fly algorithm has been conducted. We address this deficiency and propose 4 different fully adaptive mutation operators in the Fly algorithm: Basic Mutation, Adaptive Mutation Variance, Dual Mutation, and Directed Mutation. Due to the complex nature of the search space, (kN-dimensions, with k the number of genes per individuals and N the number of individuals in the population), we favour operators with a low maintenance cost in terms of computations. Their impact on the algorithm efficiency is analysed and validated on positron emission tomography (PET) reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ali Abbood, Z., Lavauzelle, J., Lutton, E., Rocchisani, J.M., Louchet, J., Vidal, F.P.: Voxelisation in the 3D Fly algorithm for PET. Swarm Evol. Comput. (2017) (in press)

    Google Scholar 

  2. Bäck, T.: Self-adaptation in genetic algorithms. In: Proceedings of the 1st European Conference on Artificial Life, pp. 263–271. MIT Press (1992)

    Google Scholar 

  3. Beyer, H.G., Schwefel, H.P.: Evolution strategies - a comprehensive introduction. Nat. Comput. 1(1), 3–52 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bousquet, A., Louchet, J., Rocchisani, J.-M.: Fully three-dimensional tomographic evolutionary reconstruction in nuclear medicine. In: Monmarché, N., Talbi, E.-G., Collet, P., Schoenauer, M., Lutton, E. (eds.) EA 2007. LNCS, vol. 4926, pp. 231–242. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79305-2_20

    Chapter  Google Scholar 

  5. Chellapilla, K.: Combining mutation operators in evolutionary programming. IEEE Trans. Evol. Comput. 2(3), 91–96 (1998)

    Article  Google Scholar 

  6. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

    Article  Google Scholar 

  7. Collet, P., Louchet, J.: Artificial evolution and the Parisian approach. Applications in the processing of signals and images, chap. 2, pp. 15–44. Wiley (2010)

    Google Scholar 

  8. Collet, P., Lutton, E., Louchet, J.: Issues on the optimisation of evolutionary algorithm code. In: IEEE Congress on Evolutionary Computation (2002)

    Google Scholar 

  9. Eiben, A.E., Hinterding, R., Michalewicz, Z.: Parameter control in evolutionary algorithms. IEEE Trans. Evol. Comput. 3(2), 124–141 (1999)

    Article  Google Scholar 

  10. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11(1), 1–18 (2003)

    Article  Google Scholar 

  11. Hudson, H.M., Larkin, R.S.: Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imaging 13(4), 601–609 (1994)

    Article  Google Scholar 

  12. Louchet, J.: Stereo analysis using individual evolution strategy. In: Proceedings of the International Conference on Pattern Recognition, vol. 1, pp. 908–911 (2000)

    Google Scholar 

  13. Lutton, E., Lévy Véhel, J.: Pointwise regularity of fitness landscapes and the performance of a simple ES. In: IEEE Congress on Evolutionary Computation, pp. 16–21 (2006)

    Google Scholar 

  14. Ochoa, G.: Setting the mutation rate: scope and limitations of the 1/L heuristic. In: Proceedings of the GECCO 2002, pp. 495–502 (2002)

    Google Scholar 

  15. Orlowska-Kowalska, T., Lis, J.: Application of evolutionary algorithms with adaptive mutation to the identification of induction motor parameters at standstill. COMPEL 28(6), 1647–1661 (2009)

    Article  MATH  Google Scholar 

  16. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog Verlag, Stuttgart (1973)

    Google Scholar 

  17. Schwefel, H.P.: Numerical Optimization of Computer Models. Wiley, Chichester (1981)

    MATH  Google Scholar 

  18. Shepp, L.A., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1(2), 113–122 (1982)

    Article  Google Scholar 

  19. Vidal, F.P., Lutton, E., Louchet, J., Rocchisani, J.-M.: Threshold selection, mitosis and dual mutation in cooperative co-evolution: application to medical 3D tomography. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 414–423. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15844-5_42

    Google Scholar 

  20. Vidal, F.P., Villard, P., Lutton, E.: Tuning of patient specific deformable models using an adaptive evolutionary optimization strategy. IEEE Trans. Bio-Med. Eng. 59(10), 2942–2949 (2012)

    Article  Google Scholar 

Download references

Acknowledgement

This work has been funded by FP7-PEOPLE-2012-CIG project Fly4PET (http://fly4pet.fpvidal.net). We thank HPC Wales for the use of its services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck P. Vidal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ali Abbood, Z., Vidal, F.P. (2018). Basic, Dual, Adaptive, and Directed Mutation Operators in the Fly Algorithm. In: Lutton, E., Legrand, P., Parrend, P., Monmarché, N., Schoenauer, M. (eds) Artificial Evolution. EA 2017. Lecture Notes in Computer Science(), vol 10764. Springer, Cham. https://doi.org/10.1007/978-3-319-78133-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-78133-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-78132-7

  • Online ISBN: 978-3-319-78133-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation