Bambara Groundnut is a Climate-Resilient Crop: How Could a Drought-Tolerant and Nutritious Legume Improve Community Resilience in the Face of Climate Change?

  • Chapter
  • First Online:
Sustainable Solutions for Food Security

Abstract

Bambara groundnut (Vigna subterranea (L.) Verdc.; www.bamyield.org) is a crop similar in morphology and growth habit to groundnut (Arachis hypogaea L.). It was also historically largely displaced by groundnut upon the latter’s introduction to sub-Saharan Africa from Latin America (Sprent et al. 2010). Bambara groundnut nevertheless still holds local importance in West Africa, East Africa, Southern Africa and even Southeast Asia (Fig. 8.1). It is held in high esteem for its nutritional qualities by the consumer and its drought tolerance by the farmer (Tables 8.1, 8.2, and 8.3; Fig. 8.2). It could therefore be promoted in areas that are currently drought prone as well as in areas where climate change projections show an increased frequency and intensity in droughts as well as unpredictable rainfall patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 126.59
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abberton, M., Batley, J., Bentley, A., Bryant, J., Cai, H., Cockram, J., Costa de Oliveira, A., Cseke, L. J., Dempewolf, H., De Pace, C., Edwards, D., Gepts, P., Greenland, A., Hall, A. E., Henry, R., Hori, K., Howe, G. T., Hughes, S., Humphreys, M., Lightfoot, D., Marshall, A., Mayes, S., Nguyen, H. T., Ogbonnaya, F. C., Ortiz, R., Paterson, A. H., Tuberosa, R., Valliyodan, B., Varshney, R. K., & Yano, M. (2016). Global agricultural intensification during climate change: A role for genomics. Plant Biotechnology Journal, 14, 1095–1098.

    Article  Google Scholar 

  • Adzwala, W., Donkoh, S. A., Nyarko, G., O’Reilly, P. J., Olayide, O. E., & Awai, P. E. (2015). Technical efficiency of Bambara groundnut production in Northern Ghana. University of Development Studies International Journal of Development, 2(2), 37–49.

    Google Scholar 

  • Adzwala, W., Donkoh, S. A., Nyarko, G., O’Reilly, P. J., Olayide, O. E., Mayes, S., Feldman, A., & Azman, H. R. (2016a). Adoption of Bambara groundnut production and its effects on farmers’ welfare in Northern Ghana. African Journal of Agricultural Research, 11(7), 583–594.

    Article  Google Scholar 

  • Adzwala, W., Donkoh, S. A., Nyarko, G., O’Reilly, P. J., & Mayes, S. (2016b). Use patterns and perceptions about the attributes of Bambara groundnut (Vigna subterranea (L.) Verdc.) in Northern Ghana. Ghana Journal of Science, Technology and Development, 4(2), 56–71.

    Google Scholar 

  • Ahmad, N. S., Redjeki, E. S., Ho, W. K., Aliyu, S., Mayes, K., Massawe, F., Kilian, A., & Mayes, S. (2016). Construction of a genetic linkage map and QTL analysis in Bambara groundnut. Genome, 59(7), 459–472.

    Article  CAS  Google Scholar 

  • Akande, K. E., Abubakar, M. M., Adegbola, T. A., Bogoro, S. E., Doma, U. D., & Fabiyi, E. F. (2009). Nutrient compostion and uses of Bambara groundnut (Vignia subterranea (L.) Verdcourt). Continental Journal of Food Science and Technology, 3, 8–13.

    Google Scholar 

  • Alozie, Y. E., Iyam, M. A., Lawal, O., Udofia, U., & Ani, I. F. (2009). Utilization of Bambara groundnut flour blends in bread production. Journal of Food Technology, 7(4), 111–114.

    CAS  Google Scholar 

  • Amarteifio, J. O., & Moholo, D. (1998). The chemical composition of four legumes consumed in Botswana. Journal of Food Composition and Analysis, 11, 329–332.

    Article  Google Scholar 

  • AMCHARTS.COM. (n.d.). Retrieved July 18, 2017, from https://www.amcharts.com/visited_countries

  • Azam-Ali, S. N., Sesay, A., Karikari, S. K., Massawe, F. J., Aguilar-Manjarrez, J., Bannayan, M., & Hampson, K. J. (2001). Assessing the potential of an underutilized crop – A case study using Bambara groundnut. Experimental Agriculture, 37, 433–472.

    Article  Google Scholar 

  • BamNetwork. (n.d.). Retrieved July 18, 2017, from https://www.bamnetwork.org

  • Bamshaiye, O. M., Adegbola, J. A., & Bamishaiye, E. I. (2011). Bambara groundnut: An Under-Utilized Nut in Africa. Advances in agricultural biotechnology, 1, 60–72.

    Google Scholar 

  • Berchie, J. N., Adu-Dapaah, H. K., Dankyi, A. A., Plahar, W. A., Nelson-Quartey, F., Haleegoah, J., Asafu-Agyei, J. N., & Addo, J. K. (2010). Practices and constraints in Bambara groundnuts production, marketing and consumption in the Brong Ahafo and Upper-East regions of Ghana. Journal of Agronomy, 9(3), 111–118.

    Article  Google Scholar 

  • Brink, M. (1997). Rates of progress towards flowering and podding in Bambara groundnut (Vigna subterranea) as a function of temperature and photoperiod. Annals of Botany, 80(4), 505–513.

    Article  Google Scholar 

  • Brough, S. H., Azam-Ali, S. N., & Taylor, A. J. (1993). The potential of Bambara groundnut (Vigna subterranea) in vegetable milk production and basic protein functionality systems. Food Chemistry, 47, 277–283.

    Article  CAS  Google Scholar 

  • Burlingame, B., & Dernini, S. (Eds.). (2012). Sustainable diets and biodiversity - Directions and solutions for policy, research and action. Proceedings of the International Scientific Symposium – Biodiversity and Sustainable Diets United Against Hunger, E-ISBN 978-92-5-107288-2.

    Google Scholar 

  • Chai, H. H., Massawe, F., & Mayes, S. (2016). Effects of mild drought stress on the morpho-physiological characteristics of a Bambara groundnut segregating population. Euphytica, 208(2), 225–236.

    Article  CAS  Google Scholar 

  • Chai, H. H., Ho, W. K., Graham, N., May, S., Massawe, F., & Mayes, S. (2017). A cross-species gene expression marker-based genetic map and QTL analysis in Bambara groundnut. Genes, 8, e84. https://doi.org/10.3390/genes8020084.

    Article  CAS  Google Scholar 

  • Daryanto, S., Wang, L., & Jacinthe, P.-A. (2015). Global synthesis of drought effects on food legume production. PLoS One, 10(6), e0127401.

    Article  Google Scholar 

  • FAOSTAT. (n.d.). Food and Agriculture Organization of the United Nations Statistics Division. Retrieved July 18, 2017, from http://www.fao.org/faostat

  • Hillocks, R. J., Bennett, C., & Mponda, O. M. (2012). Bambara nut: A review of utilisation, market potential and crop improvement. African Crop Science Journal, 20(1), 1–16.

    Google Scholar 

  • Hiremath, P. J., Kumar, A., Penmetsa, R. V., Farmer, A., Schlueter, J. A., Chamarthi, S. K., Whaley, A. M., Carrasquilla-Garcia, N., Gaur, P. M., Upadhyaya, H. D., Polavarapu, B. K. K., Shah, T. M., Cook, D. R., & Varshney, R. K. (2012). Large-scale development of cost-effective SNP marker assays for diversity assessment and genetic map** in chickpea and comparative map** in legumes. Plant Biotechnology Journal, 10(6), 716–732.

    Article  CAS  Google Scholar 

  • Ho, W. K., Muchugi, A., Muthemba, S., Kariba, R., Mavenkeni, B. O., Hendre, P., Song, B., Van Deynze, A., Massawe, F. J., & Mayes, S. (2016). Use of microsatellite markers for the assessment of Bambara groundnut breeding system and varietal purity before genome sequencing. Genome, 59(6), 427–431.

    Article  CAS  Google Scholar 

  • Ho, W. K., Chai, W. K., Kendabie, P., Ahmad, N. S., Jani, J., Massawe, K. A., & Mayes, S. (2017). Integrating genetic maps in Bambara groundnut [Vigna subterranea (L) Verdc.] and their syntenic relationships among closely related legumes. BMC Genomics, 18, 192. https://doi.org/10.1186/s12864-016-3393-8.

    Article  Google Scholar 

  • Ijarotimi, O. S., & Keshinro, O. O. (2012). Formulation and nutritional quality of infant formula produced from germinated popcorn, Bambara groundnut and African locust bean flour. Journal of Microbiology, Biotechnology and Food Sciences, 1(6), 1358–1388.

    CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change. (2014). Fifth Assessment Report (AR5) - WGII climate change 2014: Impacts, adaptation, and vulnerability. Retrieved December 31, 2016, from https://ipcc.ch/report/ar5/wg2

  • Kaptso, K. G., N**tang, Y. N., Komnek, A. E., Hounhouigan, J., Scher, J., & Mbofung, C. M. F. (2008). Physical properties and rehydration kinetics of two varieties of cowpea (Vigna unguiculata) and Bambara groundnuts (Voandzeia subterranea) seeds. Journal of Food Engineering, 86, 91–99.

    Article  CAS  Google Scholar 

  • Karikari, S. K., & Tabona, T. T. (2004). Constitutive traits and selective indices of Bambara groundnut (Vigna subterranea (L) Verdc) landraces for drought tolerance under Botswana conditions. Physics and Chemistry of the Earth, 29, 1029–1034.

    Article  Google Scholar 

  • Karunaratne, A. S., Azam-Ali, S. N., Izzi, G., & Steduto, P. (2011). Calibration and validation of FAO-Aquacrop Model for irrigated and water deficient Bambara groundnut. Experimental Agriculture, 47(3), 509–527.

    Article  Google Scholar 

  • Kendabie, P., Massawe, F., & Mayes, S. (2015). Develo** genetic map** resources from landrace-derived genotypes that differ for photoperiod sensitivity in Bambara groundnut (Vigna subterranea L.). Aspects of Applied Biology, 124, 1–8.

    Google Scholar 

  • Kew Science. (n.d.). Plants of the world online. Retrieved July 18, 2017, from http://powo.science.kew.org/taxon/urn:lsid:ipni.org:names:525534-1

  • Kouassi, N. J., & Zorobi, I. A. (2010). Effect of sowing density and seedbed type on yield and yield components in Bambara groundnut (Vigna subterranea) in woodland savannas of Cote D’Ivoire. Experimental Agriculture, 46(1), 99–110.

    Article  Google Scholar 

  • Linnemann, A. R., Westphal, E., & Wessel, M. (1995). Photoperiod regulation of development and growth in Bambara groundnut (Vigna subterranea). Field Crops Research, 40(1), 39–47.

    Article  Google Scholar 

  • Mabhaudhi, T., & Modi, A. T. (2013). Growth, phenological and yield responses of a Bambara groundnut (Vigna subterranea (L.) Verdc.) landrace to imposed water stress under field conditions. South African Journal of Plant and Soil, 30(2), 69–79.

    Article  Google Scholar 

  • Mabhaudhi, T., Modi, A. T., & Beletse, Y. G. (2013). Growth, phenological and yield responses of a Bambara groundnut (Vigna subterranea L. Verdc) landrace to imposed water stress: II. Rain shelter conditions. Water SA, 39(2), 191–198.

    Google Scholar 

  • Mahala, A. G., & Mohammed, A. A. A. (2010). Nutritive evaluation of Bambara groundnut (Vigna subterranean) pods. Seeds and Hull as Animal Feeds, 6(5), 383–386.

    CAS  Google Scholar 

  • Makanda, I., Tongoona, P., Madamba, R., Icishahayo, D., & Derera, J. (2009). Evaluation of Bambara groundnut varieties for off-season production in Zimbabwe. African Crop Science Journal, 16(3), 175–183.

    Google Scholar 

  • Massawe, F. J., Mayes, S., & Cheng, A. (2016). Crop diversity: An unexploited treasure trove for food security. Trends in Plant Science, 21(5), 365–368.

    Article  CAS  Google Scholar 

  • Mayes, S., Massawe, F. J., Alderson, P. G., Roberts, J. A., Azam-Ali, S. N., & Hermann, M. (2012). The potential for underutilized crops to improve security of food production. Journal of Experimental Botany, 63(3), 1075–1079.

    Article  CAS  Google Scholar 

  • Mayes, S., Ho, W. K., Kendabie, P., Chai, H. H., Aliyu, S., Feldman, A., Halimi, R. A., Massawe, F., & Azam-Ali, S. (2015a). Applying molecular genetics to underutilised species – Problems and opportunities. Malaysian Applied Biology, 44(4), 1–9.

    Google Scholar 

  • Mayes, S., Kendabie, P., Ho, W. K., & Massawe, F. (2015b). Increasing the contribution that underutilised crops could make to food security – Bambara groundnut as an example. Aspects of Applied Biology, 124, 1–8.

    Google Scholar 

  • Mazahib, A. M., Nuha, M. O., Salawa, I. S., & Babiker, E. E. (2013). Some nutritional attributes of Bambara groundnut as influenced by domestic processing. International Food Research Journal, 20(3), 1165–1171.

    CAS  Google Scholar 

  • Molosiwa, O. O., Aliyu, S., Stadler, F., Mayes, K., Massawe, F., Kilian, A., & Mayes, S. (2015). SSR marker development, genetic diversity and population structure analysis of Bambara groundnut [Vigna subterranea (L.) Verdc.] landraces. Genetic Resources and Crop Evolution, 62, 1225. https://doi.org/10.1007/s10722-015-0226-6.

    Article  CAS  Google Scholar 

  • Mubaiwa, J., Fogliano, V., Chidewe, C., & Linnemann, A. R. (2017). Hard-to-cook phenomenon in Bambara groundnut (Vigna subterranea (L.) Verdc.) processing: Options to improve its role in providing food security. Food Reviews International, 33, 167. https://doi.org/10.1080/87559129.2016.1149864.

    Article  CAS  Google Scholar 

  • Mumuni, E., Kaliannan, M., & O’Reilly, P. (2016). Approaches for scientific collaboration and interactions in complex research projects under disciplinary influence. The Journal of Develo** Areas, 50(5), 383–391.

    Article  Google Scholar 

  • Muñoz-Amatriaín, M., Mirebrahim, H., Xu, P., Wanamaker, S. I., Luo, M., Alhakami, H., Alpert, M., Atokple, I., Batieno, B. J., Boukar, O., Bozdag, S., Cisse, N., Drabo, I., Ehlers, J. D., Farmer, A., Fatokun, C., Gu, Y. Q., Guo, Y.-N., Huynh, B.-L., Jackson, S. A., Kusi, F., Lawley, C. T., Lucas, M. R., Ma, Y., Timko, M. P., Wu, J., You, F., Barkley, N. A., Roberts, P. A., Lonardi, S., & Close, T. J. (2017). Genome resources for climate-resilient cowpea, an essential crop for food security. The Plant Journal, 89, 1042–1054. https://doi.org/10.1111/tpj.13404.

    Article  CAS  Google Scholar 

  • Mwale, S. S., Azam-Ali, S. N., & Massawe, F. J. (2007a). Growth and development of Bambara groundnut (Vigna subterranea) in response to soil moisture: 1. Dry matter and yield. European Journal of Agronomy, 26(4), 345–353.

    Article  Google Scholar 

  • Mwale, S. S., Azam-Ali, S. N., & Massawe, F. J. (2007b). Growth and development of Bambara groundnut (Vigna subterranea) in response to soil moisture: 2. Resource capture and conversion. European Journal of Agronomy, 26(4), 354–362.

    Article  Google Scholar 

  • Nyemba, R. C., & Dakora, F. D. (2010). Evaluating N2 fixation by food grain legumes in farmers’ fields in three agro-ecological zones of Zambia, using 15N natural abundance. Biology and Fertility of Soils, 46(5), 461–470.

    Article  Google Scholar 

  • Ojimelukwe, P. C. (1998). Cooking characteristics of four cultivars of Bambara groundnuts seeds and starch isolate. Journal of Food Biochemistry, 23, 109–117.

    Article  Google Scholar 

  • Olukolu, B. A., Mayes, S., Stadler, F., Ng, N. Q., Fawole, I., Dominique, D., Azam-Ali, S. N., Abbott, A. G., & Kole, C. (2012). Genetic diversity in Bambara groundnut (Vigna subterranea (L.) Verdc.) as revealed by phenotypic descriptors and DArT marker analysis. Genetic Resources and Crop Evolution, 59, 347–358.

    Article  Google Scholar 

  • Ouedraogo, M., Ouedraogo, J. T., Tignere, J. B., Balma, D., Dabire, C. B., & Konate, G. (2008). Characterization and evaluation of accessions of Bambara groundnut (Vigna subterranea (L.) Verdcourt) from Burkina Faso. Sciences & Nature, 5(2), 191–197.

    Article  Google Scholar 

  • PROTA. (n.d.). Prota 1: Cereals and pulses/Céréales et légumes secs. Retrieved July 18, 2017, from http://database.prota.org/PROTAhtml/Vigna%20subterranea_En.htm

  • Pungulani, L., Kadyampakeni, D., Nsapato, L., & Kachapila, M. (2012). Selection of high yielding and farmers’ preferred genotypes of Bambara Nut (Vigna subterranea (L.) Verdc) in Malawi. American Journal of Plant Sciences, 3, 1802–1808.

    Article  Google Scholar 

  • Somta, P., Chankaew, S., Rungnoi, O., & Srinives, P. (2011). Genetic diversity of the Bambara groundnut (Vigna subterranea (L.) Verdc.) as assessed by SSR markers. Genome, 54, 898–910.

    Article  CAS  Google Scholar 

  • Sprent, J. I., Odee, D. W., & Dakora, F. D. (2010). African legumes: A vital but under-utilized resource. Journal of Experimental Botany, 61(5), 1257–1265.

    Article  CAS  Google Scholar 

  • Touré, Y., Koné, M., Kouakou Tanoh, H., & Koné, D. (2012). Agromorphological and phenological variability of 10 Bambara groundnut [Vigna subterranea (L.) Verdc. (Fabaceae)] landraces cultivated in the Ivory Coast. Tropicultura, 30(4), 216–221.

    Google Scholar 

  • United States Department of Agriculture. (n.d.). National nutrient database for standard reference release 28. Retrieved December 27, 2016, from https://ndb.nal.usda.gov/ndb/search/list

  • Varshney, R. K. (2016). Exciting journey of 10 years from genomes to fields and markets: Some success stories of genomics-assisted breeding in chickpea, pigeonpea and groundnut. Plant Science, 242, 98–107.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aryo Feldman .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

This video highlights international, crop breeding and field evaluation of a drought-tolerant, tropical legume, bambara groundnut. First, you can see the experimental field site in an ex-palm oil estate in Crops For the Future, Malaysia, which coordinates multi-site trials around West and Southern Africa, and Southeast Asia. Seeds are harvested from pods that bury themselves in the soil as a mechanism of stress avoidance. The high level of diversity in the crop’s seeds and plants are characterised in terms of morphology, physiology, nutrition and DNA. The crop is an important source of non-animal protein in low-income countries, as well as providing other key nutritional properties like essential fatty acids. The crop is underutilised in most respects but it is currently attracting high-level scientific research, even outside of the Tropics, due to its unique plant, farm and food traits. These have led to it being dubbed as a ‘crop for the future’ (MP4 152,096 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Feldman, A., Ho, W.K., Massawe, F., Mayes, S. (2019). Bambara Groundnut is a Climate-Resilient Crop: How Could a Drought-Tolerant and Nutritious Legume Improve Community Resilience in the Face of Climate Change?. In: Sarkar, A., Sensarma, S., vanLoon, G. (eds) Sustainable Solutions for Food Security . Springer, Cham. https://doi.org/10.1007/978-3-319-77878-5_8

Download citation

Publish with us

Policies and ethics

Navigation