Neural Networks and Support Vector Machines and Their Application to Aerosol and Cloud Remote Sensing: A Review

  • Chapter
  • First Online:
Springer Series in Light Scattering

Part of the book series: Springer Series in Light Scattering ((SSLS))

Abstract

Machine learning techniques, such as artificial neural networks and support vector machines , are becoming increasingly popular in the remote sensing community. They can be used to solve inverse problems as well as for data classification and clustering. The first applications of machine learning methods to remote sensing problems were mainly aimed at tasks such as land use classification , identification of specific objects (e.g. clouds) in satellite imagery, and atmospheric profiling. In the last decade, these methods have started to receive attention in the aerosol and cloud remote sensing community as tools to speed up the retrieval of aerosol and cloud properties. Machine learning methods can enter the processing chain of a remote sensing product in several ways. They have been used as stand-alone retrieval or classification algorithms, as fast approximate forward models or as part of a more complex type of algorithm. In this paper we review examples of use of machine learning techniques in the three ways mentioned above. Furthermore, we discuss the theoretical basis underlying the use of these techniques in remote sensing , as well as their advantages and disadvantages with respect to the traditional processing schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 181.89
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aires F, Schmitt M, Chédin A, Scott N (1999) The “weight smoothing” regularization of MLP for Jacobian stabilization. IEEE Trans Neural Netw 10(6):1502–1510. https://doi.org/10.1109/72.809096

  • Alexander D (2013) Volcanic ash in the atmosphere and risks for civil aviation: A study in European crisis management. Int J Disaster Risk Sci 4(1):9–19. https://doi.org/10.1007/s13753-013-0003-0

  • Bartlett PL (1997) For valid generalization, the size of the weights is more important than the size of the network. In: Jordan MI, Petsche T (eds) Advances in neural information processing systems 9. Proceedings of neural information processing systems (NIPS) conference 1996, MIT Press, Cambridge, MA, United States, pp 134–140

    Google Scholar 

  • Bellman R (1961) Adaptive control processes. A guided tour. Princeton University Press, Princeton

    Google Scholar 

  • Berdnik VV, Gallyamova GI (2012) Calculation of the reflectance and transmittance of a disperse layer by the neural network method. Opt Spectrosc 112(4):618–623. https://doi.org/10.1134/S0030400X12040078

  • Berdnik VV, Loiko VA (2009) Retrieval of size and refractive index of spherical particles by multiangle light scattering: neural network method application. Appl Opt 48(32):6178–6187. https://doi.org/10.1364/AO.48.006178

  • Berdnik VV, Loiko VA (2016) Neural networks for particle parameter retrieval by multi-angle light scattering. In: Kokhanovsky A (ed) Light scattering reviews 10: light scattering and radiative transfer. Springer, Berlin, pp 291–340. https://doi.org/10.1007/978-3-662-46762-6_7

  • Berdnik VV, Mukhamedyarov RD, Loiko VA (2004) Sizing of soft spheroidal particles by multiangle scattered light intensity data: application of neural networks. J Quant Spectrosc Radiat Transf 89:279–289. https://doi.org/10.1016/j.jqsrt.2004.05.028

  • Bishop CM (1995a) Neural networks for pattern recognition. Oxford University Press, New York

    Google Scholar 

  • Bishop CM (1995b) Training with noise is equivalent to Tikhonov regularization. Neural Comput 7(1):108–116. https://doi.org/10.1162/neco.1995.7.1.108

  • Bös S, Amari S (1999) Annealed online learning in multilayer neural networks. In: Saad D (ed) On-line learning in neural networks. Cambridge University Press, New York, pp 209–229. https://doi.org/10.1017/CBO9780511569920.011

  • Boucher O, Randall D, Artaxo P, Bretherton C, Feingold G, Forster P, Kerminen V-M, Kondo Y, Liao H, Lohmann U, Rasch P, Satheesh SK, Sherwood S, Stevens B, Zhang XY (2013) Clouds and aerosols. In: Stocker TF, Qin D, Plattner K-F, Tignor M, Allen SK, Boschung J, Nauels A, **a Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 571–657

    Google Scholar 

  • Brajard J, Jamet C, Moulin C, Thiria S (2006a) Use of a neuro-variational inversion for retrieving oceanic and atmospheric constituents from satellite ocean colour sensor: application to absorbing aerosols. Neural Netw. 19:178–185. https://doi.org/10.1016/j.neunet.2006.01.015

  • Brajard J, Jamet C, Moulin C, Thiria S (2006b) Validation of a neuro-variational inversion of ocean colour images. Adv Space Res 38:2169–2175. https://doi.org/10.1016/j.asr.2006.03.039

  • Brajard J, Santer R, Crépon M, Thiria S (2012) Atmospheric correction of MERIS data for case-2 waters using a neuro-variational inversion. Remote Sens Environ 126:51–61. https://doi.org/10.1016/j.rse.2012.07.004

  • Chevallier F, Chéruy F, Scott NA, Chédin A (1998) A neural network approach for a fast and accurate computation of a longwave radiative budget. J Appl Meteorol 37:1385–1397. https://doi.org/10.1175/1520-0450(1998)037<1385:ANNAFA>2.0.CO;2

  • Cornet C, Isaka H, Guillemet B, Szczap F (2004) Neural network retrieval of cloud parameters of inhomogeneous clouds from multispectral and multiscale radiance data: feasibility study. J Geophys Res 109(D12):203. https://doi.org/10.1029/2003JD004186

  • Cornet C, Buriez J-C, Riédi J, Isaka H, Guillemet B (2005) Case study of inhomogeneous cloud parameter retrieval from MODIS data. Geophys Res Lett 32(D13):807. https://doi.org/10.1029/2005GL022791

  • Cover TM (1965) Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans Electron Comput EC-14:326–334. https://doi.org/10.1109/pgec.1965.264137

  • Cybenko G (1989) Approximation by superpositions of a sigmoidal function. Math Control Signal Syst 2(4):303–314. https://doi.org/10.1007/BF02551274

  • de Haan JF, Bosma PB, Hovenier JW (1987) The adding method for multiple scattering calculations of polarized light. Astron Astrophys 183:371–391

    ADS  MathSciNet  Google Scholar 

  • Di Noia A, Hasekamp OP, van Harten G, Rietjens JHH, Smit JM, Snik F, Henzing JS, de Boer J, Keller CU, Volten H (2015) Use of neural networks in ground-based aerosol retrievals from multi-angle spectropolarimetric observations. Atmos Meas Tech 8:281–299. https://doi.org/10.5194/amt-8-281-2015

  • Diouf D, Niang A, Brajard J, Crépon M, Thiria S (2013) Retrieving aerosol characteristics and sea-surface chlorophyll from satellite ocean color multi-spectral sensors using a neural-variational method. Remote Sens Environ 130:74–86. https://doi.org/10.1016/j.rse.2012.11.002

  • Dubovik O, King MD (2000) A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J Geophys Res 105(D16):20,673–20,796. https://doi.org/10.1029/2000JD900282

  • Dubovik O, Herman M, Holdak A, Lapyonok T, Tanré D, Deuzé JL, Ducos F, Sinyuk A, Lopatin A (2011) Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations. Atmos Meas Tech 4:975–1018. https://doi.org/10.5194/amt-4-975-2011

  • Faure T, Isaka H, Guillemet B (2001a) Map** neural network computation of high-resolution radiant fluxes of inhomogeneous clouds. J Geophys Res 106(D14):14,961–14,973. https://doi.org/10.1029/2001JD900058

  • Faure T, Isaka H, Guillemet B (2001b) Neural network analysis of the radiative interaction between neighboring pixels in inhomogeneous clouds. J Geophys Res 106(D13):14,465–14,484. https://doi.org/10.1029/2000JD900686

  • Faure T, Isaka H, Guillemet B (2001c) Neural network retrieval of cloud parameters of inhomogeneous and fractional clouds: feasibility study. Remote Sens Environ 77:123–128. https://doi.org/10.1016/S0034-4257(01)00199-7

  • Faure T, Isaka H, Guillemet B (2002) Neural network retrieval of cloud parameters from high-resolution multispectral radiometric data: a feasibility study. Remote Sens Environ 80:285–296. https://doi.org/10.1016/S0034-4257(01)00310-8

  • Fisher RA (1922) On the mathematical foundations of theoretical statistics. Philos Trans R Soc Lond A 222:309–368. https://doi.org/10.1098/rsta.1922.0009

  • Funahashi K-I (1989) On the approximate realization of continuous map**s by neural networks. Neural Netw 2(3):183–192. https://doi.org/10.1016/0893-6080(89)90003-8

  • Gray TM, Bennartz R (2015) Automatic volcanic ash detection from MODIS observations using a back-propagation neural network. Atmos Meas Tech 8:5089–5097. https://doi.org/10.5194/amt-8-5089-2015

  • Hagan MT, Menhaj MB (1994) Training feedforward networks with the Marquardt algorithm. IEEE Trans Neural Netw 5(6):989–993. https://doi.org/10.1109/72.329697

  • Han B, Vucetic S, Braverman A, Obradovic Z (2006) A statistical complement to deterministic algorithms for the retrieval of aerosol optical thickness from radiance data. Eng Appl Artif Intel 19:787–795. https://doi.org/10.1016/j.engappai.2006.05.009

  • Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern SMC-3(6):610–621. https://doi.org/10.1109/TSMC.1973.4309314

  • Hasekamp OP, Litvinov P, Butz A (2011) Aerosol properties over the ocean from PARASOL multiangle photopolarimetric measurements. J Geophys Res 116(D14):204. https://doi.org/10.1029/2010JD015469

  • Haykin S (1999) Neural networks: a comprehensive foundation. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Hertz J, Krogh A, Palmer RG (1991) Introduction to the theory of neural computation. Westview Press, Boulder

    Google Scholar 

  • Holzer-Popp T, Schroedter-Homscheidt M, Breitkreutz H, Martynenko D, Klüser L (2008) Improvements of synergetic aerosol retrieval for ENVISAT. Atmos Chem Phys 8:7651–7672. https://doi.org/10.5194/acp-8-7651-2008

  • Hornik K (1991) Approximation capabilities of multilayer feedforward networks. Neural Netw 4(2):251–257. https://doi.org/10.1016/0893-6080(91)90009-T

  • Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are universal approximators. Neural Netw 2(5):359–366. https://doi.org/10.1016/0893-6080(89)90020-8

  • Hornik K, Stinchcombe M, White H (1990) Universal approximation of an unknown map** and its derivatives using multilayer feedforward networks. Neural Netw 3(5):551–560. https://doi.org/10.1016/0893-6080(90)90005-6

  • Huang G-B, Zhu Q-Y, Siew C-K (2005) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501. https://doi.org/10.1016/j.neucom.2005.12.126

  • Ishimaru A, Marks RJ II, Tsang L, Lam CM, Park DC, Kitamura S (1990) Particle-size distribution determination using optical sensing and neural networks. Opt Lett 15(21):1221–1223. https://doi.org/10.1364/OL.15.001221

  • Jamet C, Thiria S, Moulin C, Crépon M (2005) Use of a neurovariational inversion for retrieving oceanic and atmospheric constituents from ocean color imagery: a feasibility study. J Atmos Ocean Technol 22:460–475. https://doi.org/10.1175/JTECH1688.1

  • Jang J-D, Viau AA, Anctil F, Bartholomé, (2006) Neural network application for cloud detection in SPOT VEGETATION images. Int J Remote Sens 27(4):719–736. https://doi.org/10.1080/01431160500106892

  • Kahn R, Banerjee D, McDonald D (2001) Sensitivity of multiangle imaging to natural mixtures of aerosols over ocean. J Geophys Res 106(D16):18,219–18,238. https://doi.org/10.1029/2000JD900497

  • Kecman V (2001) Learning and soft computing. Support vector machines, neural networks and fuzzy logic model. MIT Press, Cambridge

    Google Scholar 

  • Key J, Maslanik JA, Schweiger AJ (1989) Classification of merged AVHRR and SMMR Arctic data with neural networks. Photogramm Eng Remote Sens 55(9):1331–1338

    Google Scholar 

  • Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biol Cybern 43:59–69. https://doi.org/10.1007/bf00337288

  • Kox S, Bugliaro L, Ostler A (2014) Retrieval of cirrus cloud optical thickness and top altitude from geostationary remote sensing. Atmos Meas Tech 7:3233–3246. https://doi.org/10.5194/amt-7-3233-2014

  • Krasnopolsky VM (2007) Reducing uncertainties in neural network Jacobians and improving accuracy of neural network emulations with NN ensemble approaches. Neural Netw. 20(4):454–461. https://doi.org/10.1016/j.neunet.2007.04.008

  • Lee J, Weger RC, Sengupta SK, Welch RM (1990) A neural network approach to cloud classification. IEEE Trans Geosci Remote Sens 28(5):846–855. https://doi.org/10.1109/36.58972

  • Lee Y, Lin Y, Wahba G (2004a) Multicategory support vector machines. Theory and application to the classification of microarray data and satellite radiance data. J Am Stat Assoc 99:67–81. https://doi.org/10.1198/016214504000000098

  • Lee Y, Wahba G, Ackerman SA (2004b) Cloud classification of satellite radiance data by multicategory support vector machines. J Atmos Ocean Tech 21:159–169. https://doi.org/10.1175/1520-0426(2004)021<0159:CCOSRD>2.0.CO;2

  • Leshno M, Lin VY, Pinkus A, Schocken S (1993) Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw 6(6):861–867. https://doi.org/10.1016/S0893-6080(05)80131-5

  • Levy RC, Remer LA, Mattoo S, Vermote EF, Kaufman YJ (2007) Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J Geophys Res 112(D13):211. https://doi.org/10.1029/2006JD007811

  • Loyola DG, Thomas W, Livschitz Y, Ruppert T, Albert P, Hollmann R (2007) Cloud properties derived from GOME/ERS-2 backscatter data for trace gas retrieval. IEEE Trans Geosci Remote Sens 45(9):2747–2758. https://doi.org/10.1109/TGRS.2007.901043

  • Loyola DG, Thomas W, Spurr RJD, Mayer B (2010) Global patterns in daytime cloud properties derived from GOME backscatter UV-VIS measurements. Int J Remote Sens 31(16):4295–4318. https://doi.org/10.1080/01431160903246741

  • Marchuk GI, Mikhailov GA, Nazaraliev MA, Darbinjan RA, Kargin BA, Elepov BS (1980) The Monte Carlo methods in atmospheric optics. Springer, Berlin

    Book  Google Scholar 

  • Marshak A, Davis A, Cahalan RF, Wiscombe W (1998) Nonlocal independent pixel approximation: direct and inverse problems. IEEE Trans Geosci Remote Sens 36(1):192–205. https://doi.org/10.1109/36.655329

  • Mazzoni D, Garay MJ, Davies R, Nelson D (2007) An operational MISR pixel classifier using support vector machines. Remote Sens Environ 107:149–158. https://doi.org/10.1016/j.rse.2006.06.021

  • McCulloch W, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5(4):115–133. https://doi.org/10.1007/BF02478259

  • Mercer J (1909) Functions of positive and negative type, and their connection with the theory of integral equations. Phil. Trans. Royal Soc. A 209:415–446. https://doi.org/10.1098/rsta.1909.0016

  • Miller SW, Emery WJ (1997) An automatic neural network cloud classifier for use over land and ocean surfaces. J Appl Meteorol 36:1346–1362. https://doi.org/10.1175/1520-0450(1997)036<1346:AANNCC>2.0.CO;2

  • Møller MF (1993) A scaled conjugate gradient algorithm for fast supervised learning. Neural Netw 6(4):525–533. https://doi.org/10.1016/S0893-6080(05)80056-5

  • Niang A, Gross L, Thiria S, Badran F, Moulin C (2003) Automatic neural classification of ocean colour reflectance spectra at the top of the atmosphere with introduction of expert knowledge. Remote Sens Environ 86:257–271. https://doi.org/10.1016/S0034-4257(03)00113-5

  • Niang A, Badran F, Moulin C, Crépon M, Thiria S (2006) Retrieval of aerosol type and optical thickness over the Mediterranean from SeaWiFS images using an automatic neural classification method. Remote Sens Environ 100:82–94. https://doi.org/10.1016/j.rse.2005.10.005

  • Nocedal J, Wright SJ (1999) Numerical optimization. Springer series in operations research. Springer, New York

    Google Scholar 

  • Park J, Sandberg IW (1991) Universal approximation using radial-basis-function networks. Neural Comput 3(2):246–257. https://doi.org/10.1162/neco.1991.3.2.246

  • Park J, Sandberg IW (1993) Approximation and radial-basis-function networks. Neural Comput 5(2):305–316. https://doi.org/10.1162/neco.1993.5.2.305

  • Phillips DL (1962) A technique for the numerical solution of certain integral equations of the first kind. J Assoc Comput Mach 9(1):84–97. https://doi.org/10.1145/321105.321114

  • Picchiani M, Chini M, Corradini S, Merucci L, Sellitto P, Del Frate F, Stramondo S (2011) Volcanic ash detection and retrievals using MODIS data by means of neural networks. Atmos Meas Tech 4:2619–2631. https://doi.org/10.5194/amt-4-2619-2011

  • Piscini A, Picchiani M, Chini M, Corradini S, Merucci L, Del Frate F, Stramondo S (2014) A neural network approach for the simultaneous retrieval of volcanic ash parameters and SO\(_2\) using MODIS data. Atmos Meas Tech 7:4023–4027. https://doi.org/10.5194/amt-7-4023-2014

  • Prata AJ (1989a) Infrared radiative transfer calculations for volcanic ash clouds. Geophys Res Lett 16(11):1293–1296. https://doi.org/10.1029/GL016i011p01293

  • Prata AJ (1989b) Observations of volcanic ash clouds in the 10–12 \(\upmu \)m window using AVHRR/2 data. Int J Remote Sens 10(4):751–761. https://doi.org/10.1080/01431168908903916

  • Prata AJ, Grant IF (2001) Retrieval of microphysical and morphological properties of volcanic ash plumes from satellite data: application to Mt Ruapehu, New Zealand. Q J R Meteorol Soc 127:2153–2179. https://doi.org/10.1002/qj.49712757615

  • Radosavljevic V, Vucetic S, Obradovic Z (2010) A data-mining technique for aerosol retrieval across multiple accuracy measures. IEEE Geosci Remote Sens Lett 7(2):411–415. https://doi.org/10.1109/LGRS.2009.2037720

  • Riedmiller M (1994) Advanced supervised learning in multi-layer perceptrons - from backpropagation to adaptive learning algorithms. Comput Stand Interfaces 16:265–278. https://doi.org/10.1016/0920-5489(94)90017-5

  • Ristovski K, Vucetic S, Obradovic Z (2012) Uncertainty analysis of neural-network-based aerosol retrieval. IEEE Trans Geosci Remote Sens 50(2):409–414. https://doi.org/10.1109/TGRS.2011.2166120

  • Robert CP (2007) The Bayesian choice. From decision-theoretic foundations to computational implementation. Springer, New York. https://doi.org/10.1007/0-387-71599-1

  • Rodgers CD (2000) Inverse methods for atmospheric sounding: theory and practice. World Scientific, London

    Book  MATH  Google Scholar 

  • Rosenblatt F (1958) The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 65:386–408. https://doi.org/10.1037/h0042519

  • Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-propagating errors. Nature 323:533–536. https://doi.org/10.1038/323533a0

  • Russell PB, Bergstrom RW, Shinozuka Y, Clarke AD, De Carlo PF, Jimenez JL, Livingston JM, Redemann J, Dubovik O, Strawa A (2010) Absorption Angstrom exponent in AERONET and related data as an indicator of aerosol composition. Atmos Chem Phys 10:1155–1169. https://doi.org/10.5194/acp-10-1155-2010

  • Russell PB, Kacenelenbogen M, Livingston JM, Hasekamp OP, Burton SP, Schuster GL, Johnson MS, Knobelspiesse KD, Redemann J, Ramachandran S, Holben B (2013) A multiparameter aerosol classification method and its application to retrievals from spaceborne polarimetry. J Geophys Res 119(16):9838–9863. https://doi.org/10.1002/2013JD021411

  • Saponaro G, Kolmonen P, Karhunen J, Tamminen J, de Leeuw G (2013) A neural network algorithm for cloud fraction estimation using NASA-Aura OMI VIS radiance measurements. Atmos Meas Tech 6:2301–2309. https://doi.org/10.5194/amt-6-2301-2013

  • Schölkopf B, Smola AJ (2002) Learning with Kernels. Support vector machines, regularization, optimization and beyond. MIT Press, Cambridge

    Google Scholar 

  • Shettle EP, Fenn RW (1979) Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties. Environmental research paper, vol 676. Air Force Laboratory, Hanscom AFB, MA, United States

    Google Scholar 

  • Spurr RJD, Kurosu TP, Chance KV (2001) A linearized discrete ordinate radiative transfer model for atmospheric remote-sensing retrieval. J Quant Spectrosc Rad Transf. 68:689–735. https://doi.org/10.1016/S0022-4073(00)00055-8

  • Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F (2015) NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull Am Meteorol Soc 96:2059–2077. https://doi.org/10.1175/BAMS-D-14-00110.1

  • Taravat A, Del Frate F, Cornaro C, Vergari S (2015) Neural networks and support vector machine algorithms for automatic cloud classification of whole-sky ground-based images. IEEE Geosci Remote Sens Lett 12(3):666–670. https://doi.org/10.1109/LGRS.2014.2356616

  • Taylor M, Kazadzis S, Tsekeri A, Gkikas A, Amiridis V (2014) Satellite retrieval of aerosol microphysical and optical parameters using neural networks: a new methodology applied to the Sahara desert dust peak. Atmos Meas Tech 7:3151–3175. https://doi.org/10.5194/amt-7-3151-2014

  • Tikhonov AN, Arsenin VY (1977) Solutions of Ill-posed problems. Winston & Sons, Washington

    MATH  Google Scholar 

  • Tuia D, Verrelst J, Pérez-Cruz F, Camps-Valls G (2011) Multioutput support vector regression for remote sensing biophysical parameter estimation. IEEE Geosci Remote Sens Lett 8(4):804–808. https://doi.org/10.1109/LGRS.2011.2109934

  • Ulanowski Z, Wang Z, Kaye P, Ludlow IK (1998) Application of neural networks to the inverse light scattering problem for spheres. Appl Opt 37(18):4027–4033. https://doi.org/10.1364/AO.37.004027

  • van Harten G, de Boer J, Rietjens JHH, Di Noia A, Snik F, Volten H, Smit JM, Hasekamp OP, Henzing JS, Keller CU (2014) Atmospheric aerosol characterization with a ground-based SPEX spectropolarimetric instrument. Atmos Meas Tech 7:4341–4351. https://doi.org/10.5194/amt-7-4341-2014

  • Vapnik VN (1995) The nature of statistical learning theory. Springer, New York

    Book  MATH  Google Scholar 

  • Vapnik VN (1998) Statistical learning theory. Wiley, New York

    MATH  Google Scholar 

  • Vucetic S, Han B, Mi W, Obradovic Z (2008) A data-mining approach for the validation of aerosol retrievals. IEEE Geosci Remote Sens Lett 5(1):113–117. https://doi.org/10.1109/LGRS.2007.912725

  • Wang Z, Ulanowski Z, Kaye PH (1999) On solving the inverse scattering problem with RBF neural networks: Noise-free case. Neural Comput Appl 8:177–186. https://doi.org/10.1007/s005210050019

  • Werbos PJ (1974) Beyond regression: new tools for prediction and analysis in the behavioral sciences. PhD thesis, Harvard University, Cambridge, MA, United States

    Google Scholar 

  • Yhann SR, Simpson JJ (1995) Application of neural networks to AVHRR cloud segmentation. IEEE Trans Geosci Remote Sens 33(3):590–604. https://doi.org/10.1109/36.387575

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Di Noia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Di Noia, A., Hasekamp, O.P. (2018). Neural Networks and Support Vector Machines and Their Application to Aerosol and Cloud Remote Sensing: A Review. In: Kokhanovsky, A. (eds) Springer Series in Light Scattering. Springer Series in Light Scattering. Springer, Cham. https://doi.org/10.1007/978-3-319-70796-9_4

Download citation

Publish with us

Policies and ethics

Navigation