Oaks Under Mediterranean-Type Climates: Functional Response to Summer Aridity

  • Chapter
  • First Online:
Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L.

Abstract

Mediterranean-type climates are characterized by warm or hot summers, mild or cold winters and, especially, by the existence of a summer drought period driven by the low or even nule precipitation during this season. Mediterranean-type climates are represented in different areas of the world, both in the Northern and the Southern Hemisphere . Specifically, regarding the existence of Quercus under these climatic conditions, two main geographical areas should be considered, namely the Mediterranean Basin in the Palearctic and California (USA) and Baja California (Mexico) in the Nearctic. Despite the relatively low geographical extension of the areas occupied by oaks under this type of climate, it has deserved its own phytoclimatical entity since the first geobotanical synthesis at a global scale. Although evergreen and sclerophyllous oak species are widely assumed as a prototype of mediterranean oaks, both palaeoecological evidences and present biogeographical analysis confirm the co-existence of this oak type with winter -deciduous species of the same genus. In this chapter, the different advantages and disadvantages of both phenological patterns (evergreeness and winter -deciduousness) are presented. Moreover, the strategies for saving water through the overall leaf size reduction, the stomatal control of water losses or some xeromorphic traits for a further reduction of transpiration are also shown. Finally, the development of a high resistance to drought -induced cavitation , as a way for co** with low water potential during dry periods, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 245.03
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 320.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 320.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abadía A, Gil E, Morales F, Montañés L, Montserrat G, Abadía J (1996) Marcescence and senescence in a submediterranean oak (Quercus subpyrenaica E.H. del Villar): photosynthetic characteristics and nutrient composition. Plant, Cell Environ 19:685–694

    Article  Google Scholar 

  • Acherar M, Rambal S (1992) Comparative relations of four Mediterranean oak species. Vegetatio 99–100:177–184

    Article  Google Scholar 

  • Ackerly DD, Knight CA, Weiss SB, Barton K, Starmer KP (2002) Leaf size, specific leaf area and microhabitat distribution of woody plants in a California chaparral: contrasting patterns in species level and community level analyses. Oecologia 130:449–457

    Article  CAS  PubMed  Google Scholar 

  • Ackerly DD (2004) Adaptation, niche conservatism, and convergence: comparative studies of leaf evolution in the California chaparral. Am Nat 163:654–671

    Article  PubMed  Google Scholar 

  • Ackerly DD (2009) Evolution, origin and age of lineages in the Californian and Mediterranean floras. J Biogeogr 36:1221–1233

    Article  Google Scholar 

  • Andivia E, Carevic F, Fernández M, Alejano R, Vázquez-Piqué J, Tapias R (2012) Seasonal evolution of water status after outplanting of two provenances of Holm oak nursery seedlings. New For 43:815–824

    Google Scholar 

  • Aranwela N, Sanson G, Read J (1999) Methods of assessing leaf-fracture properties. New Phytol 144:369–393

    Google Scholar 

  • Archibold OW (1995) Ecology of world vegetation. Chapman & Hall, London

    Book  Google Scholar 

  • Arizaga S, Martínez-Cruz J Salcedo-Cabrales M, Bello-González MA (2009) Manual de la biodiversidad de encinos michoacanos. Semarnat, INE, Mexico

    Google Scholar 

  • Atjay GL, Ketner P, Duvigneaud P (1979) Terrestrial primary production and phytomass. In: Bolin B, Degens ET, Kempe S, Ketner P (eds) The global carbon cycle, SCOPE Report 13. Wiley, UK, pp 129–181

    Google Scholar 

  • Axelrod DI (1973) History of the Mediterranean ecosystem in California. In: Di Castri F, Mooney HA (eds) Mediterranean type ecosystems. Origin and structure. Springer, Berlin, pp 225–277

    Chapter  Google Scholar 

  • Axelrod DI (1975) Evolution and biogeography of Madrean-Tethyan sclerophyll vegetation. Ann Mo Bot Gar 62:280–334

    Article  Google Scholar 

  • Axelrod DI (1977) Outline history of California vegetation. In: Barbour MG, Major J (eds) Terrestrial vegetation of California. John Wiley, New York, pp 139–193

    Google Scholar 

  • Axelrod DI (1989) Age and origin of Chaparral. The California Chaparral: paradigms revisited (ed. SC Keeley) Natural History Museum of Los Angeles County, Los Angeles, pp 7–19

    Google Scholar 

  • Baldocchi DD, Xu L (2007) What limits evaporation from Mediterranean oak woodlands—the supply of moisture in the soil, physiological control by plants or the demand by the atmosphere? Adv Water Resour 30:2113–2122

    Article  Google Scholar 

  • Baldocchi DD, Ma S, Rambal S, Misson L, Ourcival JM, Limousin JM, Papale D (2010) On the differential advantages of evergreenness and deciduousness in Mediterranean oak woodlands: a flux perspective. Ecol Appl 20:1583–1597

    Article  PubMed  Google Scholar 

  • Barbero M, Loisel R, Quèzel P (1992) Biogeography, ecology and history of Mediterranean Quercus ilex ecosystems. Vegetatio 99–100:19–34

    Article  Google Scholar 

  • Barbosa M, Fernandes GW (2014) Bottom-up effects on gall distribution. In: Fernandes GW, Santos JC (eds) Neotropical insect galls. Springer, Dordrecht, pp 99–113

    Google Scholar 

  • Barbour MG (1988) Californian upland forests and woodlands. In: Barbour MG, Billings WD (eds) North American terrestrial vegetation. Cambridge University Press, Cambridge, pp 131–164

    Google Scholar 

  • Barbour MG, Minnich RH (1990) The myth of chaparral convergence. Israel J Bot 39:453–463

    Google Scholar 

  • Beadle NCW (1953) The edaphic factor in plant ecology with a special note on soil phosphates. Ecology 34:426–428

    Article  Google Scholar 

  • Beadle NCW (1954) Soil phosphate and the delimitation of plant communities in eastern Australia. Ecology 35:370–375

    Article  CAS  Google Scholar 

  • Beadle NCW (1966) Soil phosphate and its role in molding segments of the Australian flora and vegetation, with special reference to xeromorphy and sclerophylly. Ecology 47:992–1007

    Article  Google Scholar 

  • Benz BW, Martin CE (2006) Foliar trichomes, boundary layers, and gas exchange in 12 species of epiphytic Tillandsia (Bromeliaceae). J Plant Physiol 163:648–656

    Article  CAS  PubMed  Google Scholar 

  • Bernays EA (1981) Plant tannins and insect herbivores: an appraisal. Ecol Entomol 6:353–360

    Article  Google Scholar 

  • Bethoux JP, Gentili B, Morin P, Nicolas E, Pierre C, Ruiz-Pino D (1999) The Mediterranean Sea: a miniature ocean for climatic and environmental studies and a key for climatic functioning of the North Atlantic. Prog Oceanogr 44:131–146

    Article  Google Scholar 

  • Bhaskar R, Ackerley DD (2006) Ecological relevance of minimum seasonal water potentials. Physiol Plant 127:353–359

    Article  CAS  Google Scholar 

  • Bhaskar R, Valiente-Banuet A, Ackerly DD (2007) Evolution of hydraulic traits in closely related species pairs from mediterranean and non-mediterranean environments of North America. New Phytol 176:718–726

    Article  PubMed  Google Scholar 

  • Bickford CP (2016) Ecophysiology of leaf trichomes. Funct Plant Biol 43:807–814

    Google Scholar 

  • Blackman CJ, Brodribb TJ, Jordan GJ (2010) Leaf hydraulic vulnerability is related to conduit dimensions and drought resistance across a diverse range of woody angiosperms. New Phytol 188:1113–1123

    Article  PubMed  Google Scholar 

  • Blondel J, Aronson J (1995) Biodiversity and ecosystem function in the Mediterranean Basin: human and nonhuman determinants. In: Davis GW, Richardson DM (eds) Mediterranean-type ecosystems: the function of biodiversity. Springer, Berlin, pp 43–119

    Chapter  Google Scholar 

  • Blumler MA (1991) Winter-deciduous versus evergreen habit in Mediterranean regions: a model. USDA Forest Service Gen Tech Rep PSW-126

    Google Scholar 

  • Blumler MA (2005) Three conflated definitions of Mediterranean climates. Middle States Geographer 38:52–60

    Google Scholar 

  • Bozzano M, Turok J (2003) Mediterranean Oaks network, report of the second meeting, 2–4 may 2002-Gozo. Malta, International Plant Genetics Resources Institute, Rome, Italy

    Google Scholar 

  • Breckle SW (2002) Walter’s vegetation of the earth. The ecological systems of the geo-biosphere. 4th edn. Springer, Berlin

    Google Scholar 

  • Brewer CA, Smith WK (1997) Patterns of leaf surface wetness for montane and subalpine plants. Plant, Cell Environ 20:1–11

    Article  Google Scholar 

  • Brodribb TJ, Holbrook NM, Edwards EJ, Gutierrez MV (2003) Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees. Plant, Cell Environ 26:443–450

    Article  Google Scholar 

  • Bryson RA, Hare FK (1974) Climates of North America. World Survey of Climatology, vol 11. Elsevier Scientific Publishing Co., Amsterdam

    Google Scholar 

  • Büntgen U, Tegel W, Nicolussi K, McCormick M, Frank D, Trouet V, Kaplan JO, Franz Herzig F, Heussner KU, Wanner H, Luterbacher J, Esper J (2011) 2500 years of European climate variability and human susceptibility. Science 33:578–582

    Article  CAS  Google Scholar 

  • Burghardt M, Riederer M (2003) Ecophysiological relevance of cuticular transpiration of deciduous and evergreen plants in relation to stomatal closure and leaf water potential. J Exp Bot 54:1941–1949

    Article  CAS  PubMed  Google Scholar 

  • Bussotti F, Bettini D, Grossoni P, Mansuino S, Nibbi R, Soda C, Tani C (2002) Structural and functional traits of Quercus ilex in response to water availability. Environ Exp Bot 47:11–23

    Article  Google Scholar 

  • Bussotti F, Ferrini F, Pollastrini M, Alessio Fini A (2014) The challenge of Mediterranean sclerophyllous vegetation underclimate change: from acclimation to adaptation. Environ Exp Bot 103:80–98

    Google Scholar 

  • Castro-Díez P, Pedro Villar-Salvador P, Pérez-Rontomé C, Maestro-Martínez M Montserrat-Martí G (1997) Leaf morphology and leaf chemical composition in three Quercus (Fagaceae) species along a rainfall gradient in NE Spain. Trees 11:127–134

    Google Scholar 

  • Castro-Díez P, Montserrat-Martí G (1998) Phenological pattern of fifteen Mediterranean phanaerophytes from Quercus ilex communities of NE-Spain. Plant Ecol 139:103–112

    Article  Google Scholar 

  • Cavender-Bares J, Kitajima K, Bazzaz FA (2004) Multiple trait associations in relation to habitat differentiation among 17 Floridian oak species. Ecol Monogr 74:635–662

    Google Scholar 

  • Chabot BF, Hicks DJ (1982) The ecology of leaf life spans. Annu Rev Ecol Syst 13:229–259

    Article  Google Scholar 

  • Christman MA, Sperry JS, Smith DD (2012) Rare pits, large vessels and extreme vulnerability to cavitation in a ring-porous tree species. New Phytol 193:713–720

    Article  PubMed  Google Scholar 

  • Choat B, Jansen S, Brodribb TJ, Cochard H, Delzon S, Bhaskar R, Bucci SJ, Feild TS, Gleason SM, Hacke UG, Jacobsen AL, Lens F, Maherali H, Martínez-Vilalta J, Mayr S, Mencuccini M, Mitchell PJ, Nardini A, Pittermann J, Pratt RB, Sperry JS, Westoby M, Wright IJ, Zanne AE (2012) Global convergence in the vulnerability of forests to drought. Nature 491:752–755

    CAS  PubMed  Google Scholar 

  • Choong MF, Lucas PW, Ong JSY, Pereira B, Tan HTW, Turner IM (1992) Leaf fracture toughness and sclerophylly: their correlations and ecological implications. New Phytol 121:597–610

    Article  Google Scholar 

  • Cody ML, Mooney HA (1978) Convergence versus nonconvergence in Mediterranean-Climate ecosystems. Annu Rev Ecol Syst 9:265–321

    Article  Google Scholar 

  • Cochard H, Breda N, Granier A, Aussenac G (1992) Vulnerability to air-embolism of 3 European oak species (Quercus petraea (Matt) Liebl, Quercus pubescens Willd, L). Ann Sci For 49:225–233

    Article  Google Scholar 

  • Cochard H, Tyree MT (1990) Xylem dysfunction in Quercus: vessel sizes, tyloses, cavitation and seasonal changes in embolism. Tree Physiol 6:393–407

    Article  CAS  PubMed  Google Scholar 

  • Corcuera L, Camarero JJ, Gil-Pelegrín E (2002) Functional groups in Quercus species derived from the analysis of pressure-volume curves. Trees 16:465–472

    Article  Google Scholar 

  • Corcuera L, Camarero JJ, Gil-Pelegrín E (2004a) Effects of a severe drought on Quercus ilex radial growth and xylem anatomy. Trees 18:83–92

    Article  Google Scholar 

  • Corcuera L, Camarero JJ, Gil-Pelegrín E (2004b) Effects of a severe drought on growth and wood anatomical properties of Quercus faginea. IAWA J 25:185–204

    Article  Google Scholar 

  • Corcuera L, Morales F, Abadía A, Gil-Pelegrín E (2005a) The effect of low temperatures on the photosynthetic apparatus of Quercus ilex subsp. ballota at its lower and upper altitudinal limits in the Iberian peninsula and during a single freezing-thawing cycle. Trees 19:99–108

    Article  CAS  Google Scholar 

  • Corcuera L, Morales F, Abadía A, Gil-Pelegrín E (2005b) Seasonal changes in photosynthesis and photoprotection in a Quercus ilex subsp. ballota woodland located in its upper altitudinal extreme in the Iberian Peninsula. Tree Physiol 25:599–608

    Article  CAS  PubMed  Google Scholar 

  • Corcuera L, Camarero JJ, Sisó S, Gil-Pelegrín E (2006) Radial-growth and wood-anatomical changes in overaged Quercus pyrenaica coppice stands: functional responses in a new Mediterranean landscape. Trees 20:91–98

    Article  Google Scholar 

  • Cowling RM, Campbell BM (1983) The definition of leaf consistence categories in the fynbos biome and their distribution along an altitudinal gradient in the south eastern Cape. J S Afr Bot 49:87–101

    Google Scholar 

  • Cowling RM, Witkowski ETF (1994) Convergence and non-convergence of plant traits in climatically and edaphically matched sites in Mediterranean Australia and South Africa. Aust J Ecol 19:220–232

    Article  Google Scholar 

  • Cowling RM, Rundel PW, Lamont BB, Arroyo MK, Arianoutsou M (1996) Plant diversity in mediterranean-climate regions. Trends Ecol Evol 11:362–366

    Article  CAS  PubMed  Google Scholar 

  • Cuadrat JM, Saz MA, Vicente-Serrano S, González-Hidalgo JC (2007) Water resources and precipitation trends in Aragon (Spain). Int J Water Resour D 23:107–124

    Article  Google Scholar 

  • Damesin C, Rambal S (1995) Field study of leaf photosynthetic performance by a Mediterranean deciduous oak tree (Quercus pubescens) during a severe summer drought. New Phytol 131:159–167

    Article  Google Scholar 

  • Damesin C, Rambal S, Joffre R (1998) Co-occurrence of trees with different leaf habit: a functional approach on Mediterranean oaks. Acta Oecol 19:195–204

    Article  Google Scholar 

  • David TS, Henriques MO, Kurz-Besson C, Nunes J, Valente F, Vaz M, Pereira JS, Siegwolf R, Chaves MM, Gazarini LC, David JS (2007) Water-use strategies in two co-occurring Mediterranean evergreen oaks: surviving the summer drought. Tree Physiol 27:793–803

    Article  CAS  PubMed  Google Scholar 

  • Deitch MJ, Sapundjieff MJ, Feirer ST (2017) Characterizing precipitation variability and trends in the world’s Mediterranean-Climate areas. Water 9:259

    Article  Google Scholar 

  • del Río S, Penas A (2006) Potential distribution of semi-deciduous forests in Castile and Leon (Spain) in relation to climatic variations. Plant Ecol 185:269–282

    Article  Google Scholar 

  • Denk T, Grimm GW (2009) Significance of pollen characteristics for infrageneric classification and phyllogeny in Quercus (Fagaceae). Int J Plant Sci 170(7):926–940

    Article  Google Scholar 

  • Ding Y, Zhang Y, Zheng QS, Tyree MT (2014) Pressure-volume curves: revisiting the impact of negative turgor during cell collapse by literature review and simulations of cell micromechanics. New Phytol 203:378–387

    Google Scholar 

  • Di Paola A, Paquette A, Trabucco A, Mereu S, Valentini R, Paparella F (2017) Coexistence trend contingent to Mediterranean oaks with different leaf habits. Ecol Evol 7:3006–3015

    Article  PubMed  PubMed Central  Google Scholar 

  • Dolph GE, Dilcher DL (1980) Variation in leaf size with respect to climate in the tropics of the Western-hemisphere. Bull Torrey Bot Club 107:154–162

    Article  Google Scholar 

  • Dreyer E, Le Roux X, Montpied P, Duadet FA, Masson F (2001) Temperature response of leaf photosynthetic capacity in seedlings from seven temperate tree species. Tree Physiol 21:223–232

    Article  CAS  PubMed  Google Scholar 

  • Dufour-Dror JM, Ertas (2004) A Bioclimatic perspectives in the distribution of Quercus ithaburensis Decne. Subspecies in Turkey and in the Levant. J Biogeogr 31:461–474

    Google Scholar 

  • Edwards C, Read J, Sanson G (2000) Characterising sclerophylly: some mechanical properties of leaves from heath and forest. Oecologia 123:158–167

    Article  CAS  PubMed  Google Scholar 

  • Ehleringer J (1981) Leaf absorptances of Mohave and Sonoran desert plants. Oecologia 49:366–370

    Article  PubMed  Google Scholar 

  • Ehleringer J, Björkman O, Mooney HA (1976) Leaf pubescence: effects on absorptance and photosynthesis in a desert shrub. Science 192:376–377

    Article  CAS  PubMed  Google Scholar 

  • Ehleringer J, Björkman O (1978) Pubescence and leaf spectral characteristics in a desert shrub, Encelia farinosa. Oecologia 36:151–162

    Article  CAS  PubMed  Google Scholar 

  • Ehleringer J, Mooney HA, Gulmon SL, Rundel PW (1981) Parallel evolution of leaf pubescence in Encelia in coastal deserts of north and south America. Oecologia 49:38–41

    Article  PubMed  Google Scholar 

  • Ehleringer J (1984) Ecology and ecophysiology of leaf pubescence in North American desert plants. In: Rodriguez E, Healey PL, Mehta I (eds) Biology and chemistry of plant trichomes. Plenum, New York, pp 113–132

    Chapter  Google Scholar 

  • Ehleringer J, Mooney HA (1978) Leaf hairs: effects on physiological activity and adaptive value to a desert shrub. Oecologia 37:183–200

    Article  CAS  PubMed  Google Scholar 

  • Ehleringer JR, Smedly MP (1988) Stomatal sensitivity and water-use efficiency in oaks and their hybrids. In: Wallace A, McArthur ED, Haferkamp MR (eds) Symposium on shrub ecophysiology and biotechnology. USDA Forest Service Tech Rep INT-256, Ogden, UT, pp 98–102

    Google Scholar 

  • Ehleringer JR, Phillips SL (1996) Ecophysiological factors contributing to the distributions of several Quercus species in the Intermountain West. Ann Sci Forest 53:291–302

    Article  Google Scholar 

  • Epron D, Dreyer E (1992) Effects of severe dehydration on leaf photosynthesis in Quercus petraea (Matt.) Liebl.: photosystem II efficiency, photochemical and non-photochemical fluorescence quenching and electrolyte leakage. Tree Physiol 10:273–284

    Article  CAS  PubMed  Google Scholar 

  • Epron D, Dreyer E (1993) Long-term effects of drought on photosynthesis of adult oak trees (Quercus petraea Matt.) Liebl. and Quercus robur L.) in a natural stand. New Phytol 125:381–389

    Article  Google Scholar 

  • Escudero A, Mediavilla S (2003) Decline in photosynthetic nitrogen use efficiency with leaf age and nitrogen resorption as determinants of leaf life span. J Ecol 91:880–889

    Article  Google Scholar 

  • Esteso-Martínez J, Camarero JJ, Gil-Pelegrín E (2006) Competitive effects of herbs on Quercus faginea seedlings inferred from vulnerability curves and spatial-pattern analyses in a Mediterranean stand (Iberian System, northeastern Spain). Ecoscience 13(3):378–387

    Article  Google Scholar 

  • Faria T, Silvério D, Breia E, Cabral R, Abadia A, Abadia J, Pereira JS, Chaves MM (1998) Differences in the response of carbon assimilation to summer stress (water deficits, high light and temperature) in four Mediterranean tree species. Physiol Plant 102:419–428

    Article  CAS  Google Scholar 

  • Farrant JM (2000) A comparison of mechanisms of desiccation tolerance among three angiosperm resurrection plant species. Plant Ecol 151:29–39

    Article  Google Scholar 

  • Feeny P (1970) Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51:565–581

    Article  Google Scholar 

  • Felger RS, Johnson MB, Wilson MF (2001) The trees of Sonora. Oxford University Press, Oxford, Mexico

    Google Scholar 

  • Fernández V, Sancho-Knapik, Guzmán P, Peguero-Pina JJ, Gil L, Karabourniotis G, Khayet M, Fasseas C, Heredia-Guerrero JA, Heredia A, Gil-Pelegrín E (2014) Wettability, polarity, and water absorption of holm oak leaves: effect of leaf side and age. Plant Physiol 166:168–180

    Google Scholar 

  • Fick SE, Hijmans RJ (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol doi:10.1002/joc.5086

  • Filella I, Llusià J, Piñol J, Peñuelas J (1998) Leaf gas exchange and fluorescence of Phillyrea latifolia, Pistacia lentiscus and Quercus ilex saplings in severe drought and high temperature conditions. Environ Exp Bot 39:213–220

    Article  Google Scholar 

  • Flexas J, Diaz-Espejo A, Gago J, Gallé A, Galmés J, Gulías J, Medrano H (2014) Photosynthetic limitations in Mediterranean plants: A review. Environ Exp Bot 103:12–23

    Article  CAS  Google Scholar 

  • Follieri M, Magri D, Sadori L (1988) 250,000-year pollen record from Valle di Castigliore (Roma). Pollen Spores 30:329–356

    Google Scholar 

  • Fonseca CR, Overton JM, Collins B, Westoby M (2000) Shifts in trait-combinations along rainfall and phosphorus gradients. J Ecol 88:964–977

    Article  Google Scholar 

  • Fotelli MN, Radoglou M, Constantinidou H-IA (2000) Water stress responses of seedlings of four Mediterranean oak species. Tree Physiol 20:1065–1075

    Article  CAS  PubMed  Google Scholar 

  • Fralish JS, Franklin SB (2002) Taxonomy and ecology of woody plants in North American forests (excluding Mexico and Subtropical Florida). Wiley, New York

    Google Scholar 

  • Franks PJ, Beerling DJ (2009) Maximun leaf conductance driven by CO2 effects on stomatal size and density over geologic time. PNAS 106:10343–10347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frisch HL (1991) Fundamentals of membrane transport. Polym J 23:445–456

    Article  CAS  Google Scholar 

  • Galmés J, Medrano H, Flexas J (2007) Photosynthesis and photoinhibition in response to drought in a pubescent (var. minor) and a glabrous (var. palaui) variety of Digitalis minor. Environ Exp Bot 60:105–111

    Article  CAS  Google Scholar 

  • García-Ruiz JM, López-Moreno JI, Vicente-Serrano SM, Lasanta T, Beguería S (2011) Mediterranean water resources in a global change scenario. Earth Sci Rev 105:121–139

    Article  Google Scholar 

  • García-Ruiz JM, Nadal-Romero E, Lana-Renault N, Beguería S (2013) Erosion in Mediterranean landscapes: changes and future challenges. Geomorphology 198:20–36

    Article  Google Scholar 

  • García-Plazaola JI, Artetxe U, Duñabeitia MK, Becerril JM (1999) Role of photoprotective systems of Holm-Oak (Quercus ilex) in the adaptation to winter conditions. J Physiol 155:25–630

    Google Scholar 

  • Gasith A, Resh VH (1999) Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annu Rev Ecol Syst 30:51–81

    Article  Google Scholar 

  • Gibson AC (1998) Photosynthetic organs of desert plants. Bioscience 48:911–920

    Article  Google Scholar 

  • Giertych MJ, Karolewski P, Oleksyn J (2015) Carbon allocation in seedlings of deciduous tree species depends on their shade tolerance. Acta Physiol Plant 37:216

    Article  CAS  Google Scholar 

  • Gil-Pelegrín E, Peguero-Pina JJ, Camarero JJ, Fernández-Cancio A, Navarro-Cerrillo R (2008) Drought and forest decline in the Iberian Peninsula: a simple explanation for a complex phenomenom? In: Sánchez JM (ed) Droughts: causes, effects and predictions. Nova Science Publishers Inc., New York, pp 27–68

    Google Scholar 

  • Givnish T (1976) Leaf form in relation to environment: a theoretical study. PhD Thesis, Princeton University

    Google Scholar 

  • Givnish TJ (1987) Comparative studies of leaf form: assessing the relative roles of selective pressures and phylogenetic constraints. New Phytol 106:131–160

    Article  Google Scholar 

  • Givnish TJ (2002) Adaptive significance of evergreen versus deciduous leaves: solving the triple paradox. Silva Fenn 36:703–743

    Article  Google Scholar 

  • Gonçalves-Alvim SJ, Korndorf G, Fernandes GW (2006) Sclerophylly in Qualea parviflora (Vochysiaceae): influence of herbivory, mineral nutrients, and water status. Plant Ecol 187:153–162

    Article  Google Scholar 

  • González-Zurdo P, Escudero A, Babiano J, García-Ciudad A, Mediavilla S (2016) Costs of leaf reinforcement in response to winter cold in evergreen species. Tree Physiol 36:273–286

    Article  PubMed  PubMed Central  Google Scholar 

  • Goulden ML (1996) Carbon assimilation and water-use efficiency by neighboring Mediterranean-climate oaks that differ in water access. Tree Physiol 16:417–424

    Article  CAS  PubMed  Google Scholar 

  • González-Rebollar JL, García-Álvarez A, Ibáñez JJ (1995) A mathematical model for predicting the impact of climate changes on mediterranean plant landscapes. In: Zewer S, van Rompaey RSAR, Kok MTJ, Berk MM (eds) Climate change research: evaluation and policy implications. Elsevier, Amsterdam, pp 757–762

    Google Scholar 

  • Grammatikopoulos G, Karabourniotis G, Kyparissis A, Petropoulou Y, Manetas Y (1994) Leaf hairs of olive (Olea europaea) prevent stomatal closure by ultraviolet-B radiation. Aust J Plant Physiol 21:293–301

    Article  CAS  Google Scholar 

  • Grassi G, Magnani F (2005) Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant, Cell Environ 28:834–849

    Article  CAS  Google Scholar 

  • Griffin JR (1971) Oak regeneration in the upper Carmel Valley, California. Ecology 52:862–868

    Article  Google Scholar 

  • Griffin JR (1973) Xylem sap tension in three woodland oaks of central California. Ecology 54:152–159

    Article  Google Scholar 

  • Griffin JR (1977) Oak woodland. In: Barbour MG, Major J (eds) Terrestrial vegetation of California. Wiley, New York, pp 383–415

    Google Scholar 

  • Groom P, Lamont BB (1997) Xerophytic implications of increased sclerophylly: interactions with water and light in Hakea psilorrhyncha seedlings. New Phytol 136:23–231

    Article  Google Scholar 

  • Groom PK, Lamont BB (1999) Which commn indices of sclerophylly best reflect differences in leaf structure? Ecoscience 6:471–474

    Article  Google Scholar 

  • Grove AT, Miles MR, Worthington EB, Doggett H, Dasgupta B, Farmer BH (1977) The geography of semi-arid lands [and discussion]. Philos Trans R Soc Lond B Biol Sci 278:457–475

    Article  Google Scholar 

  • Grubb PJ (1986) Sclerophylls, pachyphylls and pycnophylls: the nature and significance of hard leaf surfaces. In: Juniper B, Southwood R (eds) Insects and the plant surface. Edward Arnold, London, UK, pp 137–150

    Google Scholar 

  • Hacke UG, Sperry JS, Wheeler JK, Castro L (2006) Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiol 26:689–701

    Article  PubMed  Google Scholar 

  • Hardin JW (1979) Patterns of variation in foliar trichomes of eastern North American Quercus. Am J Bot 66:576–585

    Article  Google Scholar 

  • He Y, Li N, Wang Z, Wang H, Yang G, **ao L, Wu J, Sun B (2014) Quercus yangyiensis sp. nov. from the late Pliocene of Baoshan, Yunnan and its paleoclimatic significance. Acta Geol Sin 88:738–747

    Article  Google Scholar 

  • Heide-Jorgensen HS (1990) Xeromorphic leaves of Hakea suaveolens R. Br. IV. Ontogeny, structure and function of the sclereids. Aust J Bot 38:25–43

    Article  Google Scholar 

  • Herrera CM (1992) Historical effects and sorting processes as explanations for contemporary ecological patterns: character syndromes in Mediterranean Woody plants. Am Nat 140:421–446

    Google Scholar 

  • Himrane H, Camarero JJ, Gil-Pelegrín E (2004) Morphological and ecophysiological variation of the hybrid oak Quercus subpyrenaica (Q. faginea × Q. pubescens). Trees 18:566–575

    Article  Google Scholar 

  • Holloway PJ (1982) Structure and histochemistry of plant cuticular membranes: an overview. In: Cutler DF, Alvin KL, Price CE (eds) The plant cuticle. Academic Press, London, pp 1–32

    Google Scholar 

  • Hurrell JW, Hoerling MP, Phillips AS, Xu T (2004) Twentieth century North Atlantic climate change. Part I: assessing determinism. Clim Dyn 23:371–389

    Article  Google Scholar 

  • Iovi K, Kolovou C, Kyparissis A (2009) An ecophysiological approach of hydraulic performance for nine Mediterranean species. Tree Physiol 29:889–900

    Article  PubMed  Google Scholar 

  • Jacobsen AL, Pratt RB, Davis SD, Ewers FW (2007a) Cavitation resistance and seasonal hydraulics differ among three arid Californian plant communities. Plant Cell Envir 30:1599–1609

    Article  Google Scholar 

  • Jacobsen AL, Pratt RB, Ewers FW, Davis SD (2007b) Cavitation resistance among 26 chaparral species of Southern California. Ecol Monogr 77:99–115

    Article  Google Scholar 

  • Jacobsen AL, Esler KJ, Pratt RB, Ewers FW (2009) Water stress tolerance of shrubs in mediterranean type climate regions: convergence of fymbos and succulent karoo communities with California shrub communities. Am J Bot 96:1445–1453

    Article  PubMed  Google Scholar 

  • Jacobsen AL, Pratt RB, Davis SD, Tobin MF (2014) Geographic and seasonal variation in chaparral vulnerability to cavitation. Madroño 61:317–327

    Article  Google Scholar 

  • Jeffree CE (1996) Structure and ontogeny of plant cuticles. In: Kerstiens G (ed) Plant cuticles: an integrated functional approach. Bios Scientific Publishers, Oxford, pp 33–82

    Google Scholar 

  • Jiménez-Moreno G, Fauquette S, Suc JP (2010) Miocene to Pliocene vegetation reconstruction and climate estimates in the Iberian Peninsula from pollen data. Rev Palaeobot Palyno 162:403–415

    Google Scholar 

  • Joffre R, Rambal S, Damesin C (2007) Functional attributes in Mediterranean-type ecosystems. In: Valladares F, Pugnaire FI (eds) Functional plant ecology, 2nd edn. CRC Press, Boca raton, Fl, USA, pp 285–312

    Google Scholar 

  • John GP, Scoffoni C, Buckley TN, Villar R, Poorter H, Sack L (2017) The anatomical and compositional basis of leaf mass per area. Ecol Lett 20(4):412–425

    Article  PubMed  Google Scholar 

  • Johnson HB (1975) Plant pubescence: an ecological perspective. Bot Rev 41:233–258

    Article  Google Scholar 

  • Johnson DM, Woodruff DR, McCullo KA, Meinzer FC (2009) Leaf hydraulic conductance, measured in situ, declines and recovers daily: leaf hydraulics, water potential and stomatal conductance in four temperate and three tropical tree species. Tree Physiol 29:879–887

    Article  CAS  PubMed  Google Scholar 

  • Jordan GJ, Weston PH, Carpenter RJ, Dillon RA, Brodribb TJ (2008) The evolutionary relations of sunken, covered and encrypted stomata to dry habitats in Proteaceae. Am J Bot 95:521–530

    Article  PubMed  Google Scholar 

  • Karabourniotis G, Bornman JF (1999) Penetration of UV-A, UV-B and blue light through the leaf trichome layers of two xeromorphic plants, olive and oak, measured by optical fibre microprobes. Physiol Plant 105:655–661

    Article  CAS  Google Scholar 

  • Kerstiens G (1996) Cuticular water permeability and its physiological significance. J Exp Bot 47:1813–1832

    Article  CAS  Google Scholar 

  • Kerstiens G (2006) Water transport in plant cuticles: an update. J Exp Bot 57:2493–2499

    Article  CAS  PubMed  Google Scholar 

  • Kikuzawa K (1991) A cost-benefit analysis of leaf habit and leaf longevity of trees and their geographical pattern. Am Nat 138:1250–1263

    Article  Google Scholar 

  • Knox RG, Harcombe PA, Elsik IS (1995) Contrasting patterns of resource limitation in tree seedlings across a gradient in soil texture. Can J Forest Res 25:1583–1594

    Article  Google Scholar 

  • Kooyman RM, Laffan SW, Westoby M (2017) The incidence of low phosphorus soils in Australia. Plant Soil 412:143–150

    Article  CAS  Google Scholar 

  • Köppen W (1936) Das geographische system der klimate. In: Köppen W, Geiger R (eds) Handbuch der Klimatologie 3. Gebrueder Borntraeger, Berlin

    Google Scholar 

  • Kouki M, Manetas Y (2002) Toughness is less important than chemical composition of Arbutus leaves in food selection by Poecilimon species. New Phytol 154:399–407

    Article  CAS  Google Scholar 

  • Kovar-Eder J (2003) Vegetation dynamics in Europe during the Neogene. In: Reumer JWF, Wessels W (eds) Distribution and migration of tertiary mamals in Eurasia. A volume in honour of Hans de Bruijn. Deinsea 10:373–392

    Google Scholar 

  • Krichak SO, Alpert P (2005) Decadal trends in the East Atlantic/West Russiapattern and the Mediterranean precipitation. Int J Climatol 25:183–192

    Article  Google Scholar 

  • Kröber W, Zhang S, Ehmig M, Bruelheide H (2014) Linking xylem hydraulic conductivity and vulnerability to the leaf economics spectrum-A cross-species study of 39 evergreen and deciduous broadleaved subtropical tree species. PLoS ONE 9(11):e109211

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lamont BB, Groom PK, Cowling RM (2002) High leaf mass per area of related species assemblages may reflect low rainfall and carbon isotope discrimination rather than low phosphorus and nitrogen concentrations. Funct Ecol 16:403–412

    Article  Google Scholar 

  • Lasanta T, Nadal-Romero E, Errea P, Arnáez J (2016) The effect of landscape conservation measures in changing landscape patterns: a case study in mediterranean mountains. Land Degrad Dev 27(2):373–386

    Google Scholar 

  • Leiva MJ, Fernández-Alés (1998) Variability in seedling water status during drought within a Quercus ilex subsp. ballota population, and its relation to seedling morphology. For Ecol Manag 111:147–156

    Google Scholar 

  • Levin DA (1976) The chemical defenses of plants to pathogens and herbivores. Annu Rev Ecol Syst 7:121–159

    Article  CAS  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses. Volume 2, Water, radiation, salt and other stresses, 2nd edn. Academic Press, New York

    Google Scholar 

  • Li Y, Sperry JS, Taneda H, Bush SE, Hacke UG (2008) Evaluation of centrifugal methods for measuring xylem cavitation in conifers, diffuse- and ring-porous angiosperms. New Phytol 177:558–568

    PubMed  Google Scholar 

  • Limousin JM, Misson L, Lavoir AV, Martin NK, Rambal S (2010a) Do photosynthetic limitations of evergreen Quercus ilex leaves change with long-term increased drought severity? Plant, Cell Environ 33:863–875

    CAS  Google Scholar 

  • Limousin JM, Longepierre D, Huc R, Rambal S (2010b) Change in hydraulic traits of Mediterranean Quercus ilex subjected to long-term throughfall exclusion. Tree Physiol 30:1026–1036

    Article  PubMed  Google Scholar 

  • Lionello, P, Malanotte-Rizzoli, P, Boscolo, R, et al (2006) The Mediterranean climate: an overview of the main characteristics and issues. In: Lionello P, Malanotte-Rizzoli P, R Boscolo R (eds). Mediterranean Climate Variability. Elsevier, Amsterdam, p 1–26

    Google Scholar 

  • Lo Gullo MA, Salleo S, Rosso (1986) Drought avoidance strategy in Ceratonia Siliqua L., a mesomorphic-leaved tree in the Xeric Mediterranean area. Ann Bot 58:745–756

    Google Scholar 

  • Lo Gullo MA, Salleo S (1988) Different strategies of drought resistance in three Mediterranean sclerophyllous trees growing in the same environmental conditions. New Phytol 108:267–276

    Article  Google Scholar 

  • Lo Gullo MA, Salleo S (1993) Different vulnerabilities of Quercus ilex L. to freezeand summer drought-induced xylem embolism: an ecological interpretation. Plant, Cell Environ 16:511–519

    Article  Google Scholar 

  • Lo Gullo M, Nardini A, Trifilò P, Salleo S (2005) Diurnal and seasonal variations in leaf hydraulic conductance in evergreen and deciduous trees. Tree Physiol 25:505–512

    Article  PubMed  Google Scholar 

  • Loveless AR (1961) A nutrítional interpretation of sclerophylly based on differences in the chemical composition of sclerophyllous and mesophytic leaves. Ann Bot 25:168–184

    Article  CAS  Google Scholar 

  • Loveless AR (1962) Further evidence to support a nutritional interpretation of sclerophylly. Ann Bot 26:551–561

    Article  Google Scholar 

  • Lucas PW, Pereira B (1990) Estimation of the fracture toughness of leaves. Funct Ecol 4:819–822

    Article  Google Scholar 

  • Lumaret R, Mir C, Michaud H, Raynal V (2002) Phylogeographical variation of chloroplast DNA in holm oak (Quercus ilex L.). Mol Ecol 11:2327–2336

    Article  CAS  PubMed  Google Scholar 

  • Maherali H, Pockman WT Jackson RB (2004) Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology 85:2184–2199

    Google Scholar 

  • Maherali H, Moura CF, Caldeira MC, Willson CJ, Jackson RB (2006) Functional coordination between leaf gas exchange and vulnerability to xylem cavitation in temperate forest trees. Plant, Cell Environ 29:571–583

    Article  Google Scholar 

  • Mai DH (1991) Palaeofloristic changes in Europe and the confirmation of the arctotertiary-palaeotropical geoflora concept. Rev Palaeobot Palyno 68:29–36

    Article  Google Scholar 

  • Maire V, Wright IJ, Prentice IC, Batjes NH, Bhaskar R, van Bodegom PM, Cornwell WK, Ellsworth D, Niinemets U, Ordonez A, Reich PB, Santiago LS (2015) Global effects of soil and climate on leaf photosynthetic traits and rates. Global Ecol Biogeogr 24:706–717

    Article  Google Scholar 

  • Manes F, Vitale M, Donato E, Giannini M, Puppi G (2006) Different ability of three Mediterranean oak species to tolerate progressive water stress. Photosynthetica 44(3):387–393

    Article  Google Scholar 

  • Manetas Y (2003) The importance of being hairy: the adverse effects of hair removal on stem photosynthesis of Verbascum speciosum are due to solar UV-B radiation. New Phytol 158:503–508

    Article  Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC (1997) A pacific interdecadal climate oscillation with impacts on salmon production. B Am Meteorol Soc 78:1069–1079

    Google Scholar 

  • Mariotti A, Zeng N, Lau KM (2002) Euro-Mediterranean rainfall and ENSO a seasonally varying relationship. Geophys Res Lett 29:1621

    Article  Google Scholar 

  • Martínez-Vilalta J, Prat E, Oliveras I, Piñol J (2002) Xylem hydraulic properties of roots and stems of nine Mediterranean woody species. Oecologia 133:19–29

    Article  PubMed  Google Scholar 

  • Martínez-Vilalta J, Cochard H, Mencuccini M, Sterck F, Herrero A, Korhonen JFJ, Llorens P, Nikinmaa E, Nolè A, Poyatos R, Ripullone F, Sass-Klaassen U, Zweifel R (2009) Hydraulic adjustment of Scots pine across Europe. New Phytol 184:353–364

    Article  PubMed  Google Scholar 

  • McDonald PG, Fonseca CR, Overton JM, Westoby M (2003) Leaf-size divergence along rainfall and soil-nutrient gradients: is the method of size reduction common among clades? Funct Ecol 17:50–57

    Article  Google Scholar 

  • Mediavilla S, Escudero A (2003) Stomatal responses to drought at a Mediterranean site: a comparative study of co-occurring woody species differing in leaf longevity. Tree Physiol 23:987–996

    Article  PubMed  Google Scholar 

  • Mediavilla S, Escudero A (2004) Stomatal responses to drought of mature trees and seedlings of two co-occurring Mediterranean oaks. For Ecol Manag 187:281–294

    Article  Google Scholar 

  • Mediavilla S, García-Ciudad A, García-Criado B, Escudero A (2008) Testing the correlations between leaf life span and leaf structural reinforcement in 13 species of European Mediterranean woody plants. Funct Ecol 22:787–793

    Article  Google Scholar 

  • Medrano H, Flexas J, Galmés (2008) Variability in water use efficiency at the leaf level among Mediterranean plants with different growth forms. Plant Soil 317:17–29

    Google Scholar 

  • Meher-Homji (1973) A phytoclimatic approach to the problem of Mediterraneity in the Indo-Pakistan sub-continent. Feddes-Repertorium 83:757–788

    Google Scholar 

  • Michaud H, Toumi HL, Lumaret R, Li TX, Romane F, Di Giusto F (1995) Effect of geographical discontinuity on genetic variation in Quercus ilex L. (holm oak). Evidence from enzyme polymorphism. Heredity 74:590–606

    Article  CAS  Google Scholar 

  • Millar CI (2012) Geologic, climatic, and vegetation history of California. In: Baldwin BG, Goldman DH, Keil DJ, Patterson R, Rosatti TJ, Wilken DH (eds) The Jepson Manual: Vascular Plants of California, 2nd edn. University of California Press, pp 49–67

    Google Scholar 

  • Mitrakos KA (1980) A theory for Mediterranean plant life. Acta Oecol 1:245–252

    Google Scholar 

  • Mitrakos K (1982) Winter low temperatures in mediterranean-type ecosystems. Ecol Mediterr 8:95–102

    Google Scholar 

  • Montserrat-Martí G, Camarero JJ, Palacio S, Pérez-Rontomé C, Milla R, Albuixech J, Maestro M (2009) Summer-drought constrains the phenology and growth of two co-existing Mediterranean oaks with contrasting leaf habit: implications for their persistence and reproduction. Trees 23:787–799

    Article  Google Scholar 

  • Mooney HA, Dunn EL (1970) Convergent evolution of Mediterranean-climate evergreen sclerophyll shrubs. Evolution 24:292–303

    Article  PubMed  Google Scholar 

  • Mooney HA (1982) Habitat, plant form, and plant water relations in Mediterranean-climate regions. Ecol Mediterr 8:287–296

    Google Scholar 

  • Morales F, Abadía A, Abadía J Montserrat G, Gil-Pelegrín E (2002) Trichomes and photosynthetic pigment composition changes: responses of Quercus ilex subsp. ballota (Desf.) Samp. and Quercus coccifera L. to Mediterranean stress conditions. Trees 16:504–510

    Google Scholar 

  • Morecroft MD, Roberts JM (1999) Photosynthesis and stomatal conductance of mature canopy Oak (Quercus robur) and Sycamore (Acer pseudoplatanus) trees throughout the growing season. Funct Ecol 13:332–342

    Article  Google Scholar 

  • Moreno G, Gallardo JF, Vicente MA (2011) How mediterranean deciduous trees cope with long summer drought? The case of Quercus pyrenaica forests in western Spain. In: Bredemeier M, Cohen S, Godbold DL, Lode E, Pichler V, Schleppi P (eds) Forest management and the water cycle. An ecosystem-based approach. Ecological Studies 212, Springer, Dordrecht, pp 181–207

    Google Scholar 

  • Nardini A, Lo Gullo MA, Tracanelli S (1996) Water relations of six sclerophylls growing near Trieste (Northeastern ltaly): has sclerophylly a univocal functional significance? Giorn Bot Ital 130:811–828

    Article  Google Scholar 

  • Nardini A, Lo Gullo MA, Salleo S (1999) Competitive strategies for water availability in two Mediterranean Quercus species. Plant, Cell Environ 22:109–116

    Article  Google Scholar 

  • Nardini A, Pedà G, La Rocca N (2012a) Trade-offs between leaf hydraulic capacity and drought vulnerability: morpho-anatomical bases, carbon costs and ecological consequences. New Phytol 196:788–798

    Article  PubMed  Google Scholar 

  • Nardini A, Pedá G, Salleo S (2012b) Alternative methods for scaling leaf hydraulic conductance offer new insights into the structure–function relationships of sun and shade leaves. Funct Plant Biol 39:394–401

    Article  Google Scholar 

  • Nardini A, Lo Gullo MA, Truifilo P, Salleo S (2014) The challenge of the Mediterranean climate to plant hydraulics: responses and adaptations. Environ Exp Bot 103:68–79

    Article  Google Scholar 

  • Negi SS, Naithani HB (1995) Oaks of India, Nepal and Bhutan. International Book Distributors, Dehra Dun, India

    Google Scholar 

  • Nixon KC (2002) The oak (Quercus) biodiversity of California and adjacent regions. USDA Forest Service Gen Tech Rep. PSW-GTR-184

    Google Scholar 

  • Nicotra AB, Cosgrove MJ, Cowling A, Schlichting CD, Jones CS (2008) Leaf shape linked to photosynthetic rates and temperature optima in South African Pelargonium species. Oecologia 154:625–635

    Article  CAS  PubMed  Google Scholar 

  • Niinemets U (2001) Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82:453–469

    Article  Google Scholar 

  • Niinemets Ü, Cescatti A, Rodeghiero M, Tosens T (2005) Leaf internal conductance limits photosynthesis more strongly in older leaves of Mediterranean evergreen broad-leaved species. Plant, Cell Environ 28:1552–1556

    Article  Google Scholar 

  • Niinemets Ü, Keenan T (2014) Photosynthetic responses to stress in Mediterranean evergreens: mechanisms and models. Environ Exp Bot 103:24–41

    Article  CAS  Google Scholar 

  • Niinemets Ü (2015) Is there a species spectrum within the world-wide leaf economics spectrum? Major variations in leaf functional traits in the Mediterranean sclerophyll Quercus ilex. New Phytol 205:79–96

    Article  PubMed  Google Scholar 

  • Niinemets Ü (2016) Does the touch of cold make evergreen leaves tougher? Tree Physiol 36:267–272

    Article  PubMed  PubMed Central  Google Scholar 

  • Niklas KJ (1999) A mechanical perspective on foliage leaf form and function. New Phytol 143:19–31

    Article  Google Scholar 

  • Nobel (1991) Physicochemical and environmental plant physiology. Academic Press, San Diego

    Google Scholar 

  • Noce S, Collalti A, Valentini R, Santini M (2016) Hot spot maps of forest presence in the Mediterranean Basin. iForest 9:766

    Google Scholar 

  • Oertli JJ (1986) The effect of cell size on cell collapse under negative turgor pressure. J Plant Physiol 124:365–370

    Article  Google Scholar 

  • Oertli JJ, Lips SH, Agami M (1990) The strength of sclerophyllous cells to resist collapse due to negative turgor pressure. Acta Oecol 11:281–289

    Google Scholar 

  • Ogaya R, Peñuelas J (2003) Phenological patterns of Quercus ilex, Phillyrea latifolia, and Arbutus unedo growing under a field experimental drought. Écoscience 11:263–270

    Article  Google Scholar 

  • Ogaya R, Peñuelas J (2007) Leaf mass per area ratio in Quercus ilex leaves under a wide range of climatic conditions. The importance of low temperatures. Acta Oecol 31:168–173

    Article  Google Scholar 

  • Oliveira G, Peñuelas J (2002) Comparative protective strategies of Cistus albidus and Quercus ilex facing photoinhibitory winter conditions. Environ Exp Bot 47:281–289

    Article  Google Scholar 

  • Onoda Y, Westoby M, Adler PB, Choong AMF, Clissold FJ, Cornelissen JHC, Díaz S, Dominy NJ, Elgart A, Enrico L, Fine PVA, Howard JJ, Jalili A, Kitajima K, Kurokawa H, McArthur C, Lucas PW, Markesteijn L, Perez- Harguindeguy N, Poorter L, Richards L, Santiago LS, Sosinski EE, van Bael SA, Warton DI, Wright IJ, Wright SJ, Yamashita N (2011) Global patterns of leaf mechanical properties. Ecol Lett 14:301–312

    Article  PubMed  Google Scholar 

  • Paddock WA III, Davis SD, Pratt RB, Jacobsen AL, Tobin MF, López-Portillo J, Ewers FW (2013) Factors determining mortality of adult chaparral shrubs in an extreme drought year in California. Aliso 31:49–57

    Article  Google Scholar 

  • Panahi P, Jamzad Z, Pourmajidian MR, Fallah A, Pourhashemi M (2012a) Foliar epidermis morphology in Quercus (subgenus Quercus, section Quercus) in Iran. Acta Bot Croat 71:95–113

    Google Scholar 

  • Panahi P, Jamzad Z, Pourmajidian MR, Fallah A, Pourhashemi M, Sohrabi H (2012b) Taxonomic revision of the Quercus brantii complex (Fagaceae) in Iran with emphasis on leaf and pollen micromorphology. Acta Bot Hung 54(3–4):355–375

    Article  Google Scholar 

  • Pasho E, Camarero JJ, de Luis M, Vicente-Serrano SM (2011) Impacts of drought at different time scales on forest growth across a wide climatic gradient in north-eastern Spain. Agr Forest Meteorol 151:1800–1811

    Article  Google Scholar 

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci Discuss 4:439–473

    Article  Google Scholar 

  • Peeters PJ, Sanson G, Read J (2007) Leaf biomechanical properties and the densities of herbivorous insect guilds. Funct Ecol 21:246–255

    Article  Google Scholar 

  • Peguero-Pina JJ, Sancho-Knapik D, Cochard H, Barredo G, Villarroya D, Gil-Pelegrín E (2011) Hydraulic traits are associated with the distribution range of two closely related Mediterranean firs, Abies alba M. and Abies pinsapo Boiss. Tree Physiol 31:1067–1075

    Article  PubMed  Google Scholar 

  • Peguero-Pina JJ, Sancho-Knapik D, Barrón E, Camarero JJ, Vilagrosa A, Gil-Pelegrín E (2014) Morphological and physiological divergences within Quercus ilex support the existence of different ecotypes depending on climatic dryness. Ann Bot 114:301–313

    Article  PubMed  PubMed Central  Google Scholar 

  • Peguero-Pina JJ, Sancho-Knapik D, Martín P, Saz MA, Gea-Izquierdo G, Cañellas I, Gil-Pelegrín E (2015) Evidence of vulnerability segmentation in a deciduous Mediterranean oak (Quercus subpyrenaica E. H. del Villar). Trees 29:1917–1927

    Article  Google Scholar 

  • Peguero-Pina JJ, Sisó S, Sancho-Knapik D, Díaz-Espejo Flexas J, Galmés J, Gil-Pelegrín E (2016a) Leaf morphological and physiological adaptations of a deciduous oak (Quercus faginea Lam.) to the Mediterranean climate: a comparison with a closely related temperate species (Quercus robur L.). Tree Physiol 36:287–299

    Article  PubMed  Google Scholar 

  • Peguero-Pina JJ, Sisó S, Fernández-Marín B, Flexas J, Galmés J, García-Plazaola JI, Niinemets Ü, Sancho-Knapik D, Gil-Pelegrín E (2016b) Leaf functional plasticity decreases the water consumption without further consequences for carbon uptake in Quercus coccifera L. under Mediterranean conditions. Tree Physiol 36:356–367

    Article  PubMed  Google Scholar 

  • Peguero-Pina JJ, Sisó S, Flexas J, Galmés J, García-Nogales A, Niinemets Ü, Sancho-Knapik D, Saz MA, Gil-Pelegrín E (2017a) Cell-level anatomical characteristics explain high mesophyll conductance and photosynthetic capacity in sclerophyllous Mediterranean oaks. New Phytol 214:585–596

    Article  CAS  PubMed  Google Scholar 

  • Peguero-Pina JJ, Sancho-Knapik D, Gil-Pelegrín E (2017b) Ancient cell structural traits and photosynthesis in today’s Environment. J Exp Bot 68:1389–1392

    Article  PubMed Central  Google Scholar 

  • Peñuelas J, Filella I, Llusià J, Siscart D, Piñol J (1998) Comparative field study of spring and summer leaf gas exchange and photobiology of the mediterranean trees Quercus ilex and Phillyrea latifolia. J Exp Bot 49:229–238

    Google Scholar 

  • Pérez-Estrada LB, Cano-Santana Z, Oyama K (2000) Variation in leaf trichomes of Wigandia urens: environmental factors and physiological consequences. Tree Physiol 20:629–632

    Article  PubMed  Google Scholar 

  • Pesoli P, Gratani L, Larcher W (2003) Responses of Quercus ilex from different provenances to experimentally imposed water stress. Biol Plantarum 46:577–581

    Article  Google Scholar 

  • Pinto CA, David JS, Cochard H, Caldeira MC, Henriques MO, Quilhó T, Paço TA, Pereira JS, David TS (2012) Drought-induced embolism in current-year shoots of two Mediterranean evergreen oaks. Forest Ecol Manag 285:1–10

    Article  Google Scholar 

  • Pratt RB, Jacobsen AL, Golgotiu KA, Sperry JS, Ewers FW Davis SD (2007) Life history type and water stress tolerance in nine California chaparral species (Rhamnaceae). Ecol Monogr 77:239–253

    Google Scholar 

  • Poudyal K, Jha PK, Zobel DB, Thapa CB (2004) Patterns of leaf conductance and water potentila of five Himalayan tree species. Tree Physiol 24:689–699

    Article  CAS  PubMed  Google Scholar 

  • Poyatos R, Llorens P, Piñol J, Rubio C (2008) Response of Scots pine (Pinus sylvestris L.) and pubescent oak (Quercus pubescensWilld.) to soil and atmospheric water deficits under Mediterranean mountain climate. Ann For Sci 65:306

    Google Scholar 

  • Pozo-Vázquez D, Esteban-Parra MJ, Rodrigo FS, Castro-Diez Y (2001) A study of NAO variability and its possible non-linear influences on European Surface temperature. Clim Dyn 17:701–715

    Article  Google Scholar 

  • Radoglou K (1996) Environmental control of CO2 assimilation rates and stomatal conductance in five oak species growing under field conditions in Greece. Ann Sci Forest 53:269–278

    Article  Google Scholar 

  • Read J, Sanson GD (2003) Characterising sclerophylly: the mechanical properties of a diverse range of leaf types. New Phytol 160:81–99

    Article  Google Scholar 

  • Read J, Sanson GD, Lamont BB (2005) Leaf mechanical properties in sclerophyll woodland and shrubland on contrasting soils. Plant Soil 276:95–113

    Article  CAS  Google Scholar 

  • Read J, Sanson G, De Garine-Wichatitsky M, Tanguy J (2006) Sclerophylly in two contrasting tropical environments: low nutrients versus low rainfall. Am J Bot 93:1601–1614

    Article  PubMed  Google Scholar 

  • Read J, Sanson GD, Caldwell E, Clissold F, Chatain A, Peeters P, Lamont BB, De Garine-Wichatitsky M, Jaffré T, Stuart Kerr S (2009) Correlations between leaf toughness and phenolics among species in contrasting environments of Australia and New Caledonia. Ann Bot 103:757–767

    Article  CAS  PubMed  Google Scholar 

  • Read J, Sanson G, Trautmann MF (2016) Leaf traits in Chilean matorral: Sclerophylly within, among, and beyond matorral, and its environmental determinants. Ecol Evol 6:1430–1446

    Article  PubMed  PubMed Central  Google Scholar 

  • Reale O, Dirmeyer P (2000) Modeling the effects of vegetation on Mediterranean climate during the Roman classical period—Part I: climate history and model sensitivity. Global Planet 25:163–184

    Article  Google Scholar 

  • Reille M, Pons A (1992) The ecological significance of sclerophyllous oak forests in the western part of the Mediterranean Basin: a note on pollen analytical data. Vegetatio 99–100:13–17

    Article  Google Scholar 

  • Retallack GJ (2004) Late Miocene climate and life on land in Oregon within a context of Neogene global change. Palaeogeogr Palaeocl 214:97–123

    Google Scholar 

  • Ribeiro SP, Basset Y (2007) Gall-forming and free-feeding herbivory along vertical gradients in a lowland tropical rainforest: the importance of leaf sclerophylly. Ecography 30:663–672

    Article  Google Scholar 

  • Riera-Mora S, Esteban-Amat A (1994) Vegetation history and human activity during the last 6000 years on the central Catalan coast (north-eastern Iberian Peninsula). Veg His Archaebot 3:7–23

    Google Scholar 

  • Rico M, Gallego HA, Moreno G, Santa Regina I (1996) Stomatal response of Quercus pyrenaica Willd to environmental factors in two sites differing in their annual rainfall (Sierra de Gata, Spain). Ann Sci For 53:221–234

    Article  Google Scholar 

  • Riederer M, Schreiber L (2001) Protecting against water loss: analysis of the barrier properties of plant cuticles. J Exp Bot 52:2023–2032

    Article  CAS  PubMed  Google Scholar 

  • Ripley BS, Pammenter NW, Smith VR (1999) Function of leaf hairs revisited: the hair layer on leaves of Arctotheca populifolia reduces photoinhibition, but leads to higher leaf temperatures caused by lower transpiration rates. J Plant Physiol 155:78–85

    Article  CAS  Google Scholar 

  • Rivas-Martínez S, Rivas-Sáenz S, Penas-Merino A (2011) Worldwide bioclimatic classification system. Global geobotany 1:1–634

    Google Scholar 

  • Roth-Nebelsick A, Hassiotou F, Veneklaas EJ (2009) Stomatal crypts have small effects on transpiration: a numerical model analysis. Plant Physiol 151:2018–2027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth-Nebelsick A, Fernández V, Peguero-Pina JJ, Sancho-Knapik D, Gil-Pelegrín E (2013) Stomatal encryption by epicuticular waxes as a plastic trait modifying gas exchange in a Mediterranean evergreen species (Quercus coccifera L.). Plant, Cell Environ 36:579–589

    Article  Google Scholar 

  • Rubio de Casas R, Vargas P, Pérez-Corona E, Cano E, Manrique E, García-Verdugo C, Balaguer L (2009) Variation in sclerophylly among Iberian populations of Quercus coccifera L. is associated with genetic differentiation across contrasting environments. Plant Biology 11:464–472

    Article  CAS  PubMed  Google Scholar 

  • Rundel PW, Arroyo MTK, Cowling RM, Keeley JE, Lamont BB, Vargas P (2016) Mediterranean biomes: evolution of their vegetation, floras, and climate. Ann Rev Ecol Evol S 47:383–407

    Google Scholar 

  • Sack L, Scoffoni C, McKown AD, Frole K, Rawls M, Havran JC, Tran H, Tran T (2012) Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nat Commun 3:837

    Google Scholar 

  • Salleo S, Gullo Lo (1990) Sclerophylly and plant water relations in three Mediterranean Quercus species. Ann Bot 65:259–270

    Article  Google Scholar 

  • Salleo S, Nardini A, Lo Gullo MA (1997) Is sclerophylly of Mediterranean evergreens an adaptation to drought? New Phytol 135:603–612

    Article  Google Scholar 

  • Salleo S, Nardini A (2000) Sclerophylly: evolutionary advantage or mere epiphenomenon? Plant Biosyst 134:247–259

    Article  Google Scholar 

  • Salleo S, Pitt F, Nardini A, Hamzé M, Jomaa I (2002) Differential drought resistance of two Mediterranean oaks growing in the Bekaa Valley (Lebanon). Plant Biosyst 136:91–99

    Article  Google Scholar 

  • Sánchez de Dios R, Benito-Garzón M, Sainz-Ollero H (2009) Present and future extension of the Iberian submediterranean territories as determined from the distribution of marcescent oaks. Plant Ecol 204:189–205

    Article  Google Scholar 

  • Sancho-Knapik D, Alvarez-Arenas TG, Peguero-Pina JJ, Fernández V, Gil-Pelegrín E (2011) Relationship between ultrasonic properties and structural changes in the mesophyll during leaf dehydration. J Exp Bot 62:3637–3645

    Article  CAS  PubMed  Google Scholar 

  • Sardans J, Rodá F, Peñuelas J (2004) Phosphorus limitation and competitive capacities of Pinus halepensis and Quercus ilex subsp. rotundifolia on different soils. Plant Ecol 174:305–317

    Article  Google Scholar 

  • Sardans J, Peñuelas J (2013) Plant-soil interactions in Mediterranean forest and shrublands: impacts of climatic change. Plant Soil 365:1–33

    Article  CAS  Google Scholar 

  • Savé R, Castell C, Terradas J (1999) Gas exchange and water relations. In: Roda F, Retana J, Gracia CA, Bellot J (eds) Ecology of Mediterranean Evergreen Oak forests. Ecological studies 137. Springer, Berlin, pp 135–146

    Google Scholar 

  • Savé R, Biel C, de Herralde F (2000) Leaf pubescence, water relations and chlorophyll fluorescence in two subspecies of Lotus creticus L. Biol Plant 43:239–244

    Article  Google Scholar 

  • Scarascia-Mugnozza G, Oswald H, Piussi P, Radoglou K (2000) Forests of the Mediterranean region: gaps in knowledge and research needs. Forest Ecol Manag 132:97–109

    Article  Google Scholar 

  • Scareli-Santos C, Sánchez-Mondragón ML, González-Rodríguez A, Oyama K (2013) Foliar micromorphology of Mexican oaks (Quercus: Fagaceae). Acta Bot Mex 104:31–52

    Article  Google Scholar 

  • Schimper AFW (1903) Plant-geography on a physiological basis. Clarendon Press, Oxford

    Book  Google Scholar 

  • Schreuder MDJ, Brewer CA, Heine C (2001) Modelled influences of non-exchanging trichomes on leaf boundary layers and gas exchange. J Theor Biol 210:23–32

    Article  CAS  PubMed  Google Scholar 

  • Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011) Decline of leaf hydraulic conductance with dehydration: relationship to leaf size and venation architecture. Plant Physiol 156:832–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seddon G (1974) Xerophytes, xeromorphs and sclerophylls: the history of some concepts in ecology. Biol J Linn Soc 6:65–87

    Article  CAS  Google Scholar 

  • Serrano L, Peñuelas J, Ogaya R, Savé R (2005) Tissue-water relations of two co-occurring evergreen Mediterranean species in response to seasonal and experimental drought conditions. J Plant Res 118:263–269

    Article  PubMed  Google Scholar 

  • Serrano-Muela MP, Nadal-Romero E, Lana-Renault N, González-Hidalgo JC, López-Moreno JI, Beguería S, Sanjuan Y, García-Ruiz JM (2013) An exceptional rainfall event in the central western Pyrenees: spatial patterns in discharge and impact. Land Degrad Dev 26(3):249–262

    Article  Google Scholar 

  • Shmida A (1981) Mediterranean vegetation in California and Israel: similarities and differences. Israel J Bot 30:105–123

    Google Scholar 

  • Shmida A, Whittaker RH (1984) Convergence and non-convergence of Mediterranean type communities in the old and the new world. In: Margaris NS, Arianoustou-Farragitaki M, Oechel WC (eds) Being alive on land. Dr W. Junk, The Hague, pp 5–11

    Chapter  Google Scholar 

  • Siam AMJ, Radoglou KM, Noitsakis B, Smiris P (2009) Differences in ecophysiological responses to summer drought between seedlings of three deciduous oak species. Forest Ecol Manag 258:35–42

    Article  Google Scholar 

  • Singh SP, Zobel DB, Garkoti SC, Tewari A, Negi CMS (2006) Patterns in water relations of central Himalayan trees. Trop Ecol 47:159–182

    Google Scholar 

  • Sisó S, Camarero JJ, Gil-Pelegrín E (2001) Relationship between hydraulic resistance and leaf morphology in broadleaf Quercus species: a new interpretation of leaf lobation. Trees 15:341–345

    Article  Google Scholar 

  • Sperry JS, Tyree MT (1988) Mechanism of water-stress induced embolism. Plant Physiol 88:581–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperry JS, Christman MA, Torres-Ruiz JM, Taneda H, Smith DD (2012) Vulnerability curves by centrifugation: is there an open vessel artefact, and are ‘r’ shaped curves necessarily invalid? Plant, Cell Environ 35:601–610

    Article  Google Scholar 

  • Sobrado MA, Medina E (1980) General Morphology, anatomical structure, and nutrient content of sclerophyllous leaves of the ‘Bana’ vegetation of amazonas. Oecologia 45:341–345

    Article  CAS  PubMed  Google Scholar 

  • Suc JP (1984) Origin and evolution of the Mediterranean vegetation and climate in Europe. Nature 307:429–432

    Article  Google Scholar 

  • Sultan SE, Bazzaz FA (1993) Phenotypic plasticity in Polygonum persicaria. II. Norms of reaction to soil-moisture and the maintenance of genetic diversity. Evolution 47:1032–1049

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD (2005) Plant Evolution in the Mediterranean. Oxford University Press, Oxford

    Book  Google Scholar 

  • Tobin MF, Pratt RB, Jacobsen AL, De Guzman ME (2013) Xylem vulnerability to cavitation can be accurately characterised in species with long vessels using a centrifuge method. Plant Biol 15:496–504

    Article  CAS  PubMed  Google Scholar 

  • Tognetti R, Longobucco A, Raschi A (1998) Vulnerability of xylem to embolism in relation to plant hydraulic resistance in Quercus pubescens and Quercus ilex co-occurring in a Mediterranean coppice stand in central Italy. New Phytol 139:347–448

    Article  Google Scholar 

  • Tognetti R, Longobucco A, Raschi A (1999) Seasonal embolism and xylem vulnerability in deciduous and evergreen Mediterranean trees influenced by proximity to a carbon dioxide spring. Tree Physiol 19:271–277

    Article  PubMed  Google Scholar 

  • Tognetti R, Cherubini P, Marchi S, Raschi A (2007) Leaf traits and tree rings suggest different water-use and carbon assimilation strategies by two co-occurring Quercus species in a Mediterranean mixed-forest stand in Tuscany, Italy. Tree Physiol 27:1741–1751

    Article  CAS  PubMed  Google Scholar 

  • Traiser C, Klotz S, Uhl D, Mosbrugger V (2005) Environmental signals from leaves—a physiognomic analysis of European vegetation. New Phytol 166:465–484

    Article  PubMed  Google Scholar 

  • Trigo RM, García-Herrera R, Díaz J, Trigo IF, Valente A (2005) How exceptional was the early August 2003 heatwave in France. Geophys Res Lett 32:L10701

    Article  Google Scholar 

  • Trouet V, Taylor AH, Carleton AM et al (2009) Interannual variations in fire weather, fire extent, and synoptic-scale circulation patterns in northern California and Oregon. Theor Appl Climatol 95:349

    Article  Google Scholar 

  • Turner IM (1994) Sclerophylly: primarily protective? Funct Ecol 8:669–675

    Article  Google Scholar 

  • Tyree MT, Cochard H (1996) Summer and winter embolism in oak. Impact on water relations. Ann Sci Forest 53:173–180

    Article  Google Scholar 

  • Urbieta IR, Zavala MA, Marañón T (2008) Human and non-human determinants of forest composition in Southern Spain: evidence of shifts towards cork oak dominance as a result of management over the ast century. J Biogeogr 35:1688–1700

    Article  Google Scholar 

  • Urli M, Porté AJ, Cochard H, Guengant Y, Burlett R, Delzon S (2013) Xylem embolism threshold for catastrophic hydraulic failure in angiosperm trees. Tree Physiol 33:672–683

    Article  CAS  PubMed  Google Scholar 

  • Valero-Galván J, González-Fernández R, Navarro-Cerrillo R, Gil-Pelegrín E, Jorrín-Novo JV (2013) Physiological and proteomic analyses of drought stress response in holm oak rovenances. J Proteome Res 12:5110–5123

    Article  PubMed  CAS  Google Scholar 

  • Valero-Galván J, Valledor L, Navarro-Cerrillo R, Gil-Pelegrín E, Jorrín-Novo JV (2011) Studies of variability in Holm oak (Quercus ilex subsp. ballota [Desf.] Samp.) through acorn protein profile analysis. J Proteomics 74:1244–1255

    Article  PubMed  CAS  Google Scholar 

  • Valiente-Banuet A, Rumebe AV, Verdú M, Callaway RM (2006) Modern quaternary plant lineages promote diversity through facilitation of ancient tertiary lineages. PNAS 103:16812–16817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vankat JL (1982) A gradient perspective on the vegetation of Sequoia National Park, California. Madrorño 29:200–214

    Google Scholar 

  • Vaz M, Pereira JS, Gazarini LC, David TS, David JS, Rodrigues A, Maroco J, Chaves MM (2010) Drought-induced photosynthetic inhibition and autumn recovery in two Mediterranean oak species (Quercus ilex and Quercus suber). Tree Physiol 30:946–956

    Article  CAS  PubMed  Google Scholar 

  • Vaz M, Cochard H, Gazarini L, Graça J, Chaves MM, Pereira JS (2012) Cork oak (Quercus suber L.) seedlings acclimate to elevated CO2: photosynthesis, growth, wood anatomy and hydraulic conductivity. Trees 26:1145–1157

    Article  CAS  Google Scholar 

  • Venturas MD, Rodriguez-Zaccaro FD, Percolla MI, Crous CJ, Jacobsen AL, Pratt RB (2016a) Single vessel air injection estimates of xylem resistance to cavitation are affected by vessel network characteristics and sample length. Tree Physiol 36:1247–1259

    Article  PubMed  Google Scholar 

  • Venturas MD, MacKinnon ED, Dario HL, Jacobsen AL, Pratt RB, Davis SD (2016b) Chaparral shrub hydraulic traits, size, and life history types relate to species mortality during California’s historic drought of 2014. PLoS ONE 11(7):e0159145

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verdú M, Dávila P, García-Fayos P, Flores-Hernández N, Valiente-Banuet A (2003) ‘Convergent’ traits of Mediterranean woody plants belong to pre-Mediterranean lineages. Biol J Linn Soc 78:415–427

    Article  Google Scholar 

  • Verdú M, Pausas JG, Segarra-Moragues JG, Ojeda F (2007) Burning phylogenies: fire, molecular evolutionary rates, and diversification. Evolution 61:2195–2204

    Google Scholar 

  • Verheye W, de la Rosa D (2005) Mediterranean soils. In: Land use and land cover from encyclopedia of life support systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford, UK

    Google Scholar 

  • Vertovec M, Sakçali S, Ozturk M, Salleo S, Giacomich P, Feoli E, Nardini A (2001) Diagnosing plant water status as a tool for quantifying water stress, on a regional basis in Mediterranean drylands. Ann For Sci 58:113–125

    Article  Google Scholar 

  • Vilagrosa A, Cortina J, Gil-Pelegrín E, Bellot J (2003a) Suitability of drought-preconditioning techniques in Mediterranean climate. Restor Ecol 11:208–216

    Article  Google Scholar 

  • Vilagrosa A, Bellot J, Vallejo VR, Gil-Pelegrín E (2003b) Cavitation, stomatal conductance, and leaf dieback in seedlings of two co-occurring Mediterranean shrubs during an intense drought. J Exp Bot 54:2015–2024

    Article  CAS  PubMed  Google Scholar 

  • Vilagrosa A, Morales F, Abadía A, Bellot J, Cochard H, Gil-Pelegrin E (2010) Are symplast tolerance to intense drought conditions and xylem vulnerability to cavitation coordinated? An integrated analysis of photosynthetic, hydraulic and leaf level processes in two Mediterranean drought-resistant species. Environ Exp Bot 69:233–242

    Article  Google Scholar 

  • Vilagrosa A, Chirino E, Peguero-Pina JJ, Barigah TS, Cochard H, Gil-Pelegrín E (2012) Xylem cavitation and embolism in plants living in water-limited ecosystems. In: Aroca R (ed) Plant responses to drought stress. Springer, Berlin, pp 63–109

    Chapter  Google Scholar 

  • Villar R, Merino J (2001) Comparison of leaf construction costs in woody species with differing leaf life-spans in contrasting ecosystems. New Phytol 151:213–226

    Article  Google Scholar 

  • Villar-Salvador P, Planelles R, Oliet J, Peñuelas-Rubira JL, Jacobs DF, González M (2004) Drought tolerance and transplanting performance of holm oak (Quercus ilex) seedlings after drought hardening in the nursery. Tree Physiol 4:1147–1155

    Article  Google Scholar 

  • Vogel S (2009) Leaves in the lowest and highest winds: temperature, force and shape. New Phytol 183:13–26

    Article  PubMed  Google Scholar 

  • Wagner GJ, Wang E, Shepherd RW (2004) New approaches for studying and exploiting an old protuberance, the plant trichome. Ann Bot 93:3–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace JM, Gutzler DS (1981) Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon Weather Rev 109:784–812

    Google Scholar 

  • Wallen CC (1970) Climates of Central and Southern Europe. World survey of climatology Volume 6. Elsevier Scientific Publishing Co, Amsterdam

    Google Scholar 

  • Walter H (1985) Vegetation of the Earth and ecological systems of the geo-biosphere, 3rd edn. Springer, Berlin, p 318

    Book  Google Scholar 

  • Westbrook JW, Kitajima K, Burleigh JG, Kress WJ, Erickson DL, Wright SJ (2011) What makes a leaf tough? Patterns of correlated evolution between leaf toughness traits and demographic rates among 197 shade-tolerant woody species in a neotropical forest. Am Nat 177:800–811

    Article  PubMed  Google Scholar 

  • Withington JM, Reich PB, Oleksyn j, Eissenstat DM (2006) Comparisons of structure and life Span in roots and leaves among temperate trees. Ecol Monogr 76:381–397

    Google Scholar 

  • Witkowski ETF, Lamont BB (1991) Leaf specific mass confounds leaf density and thickness. Oecologia 88:486–493

    Article  CAS  PubMed  Google Scholar 

  • Wright W, Vincent JFV (1996) Herbivory and the mechanics of fracture in plants. Biol Rev Camb Philos Soc 71:401–413

    Article  Google Scholar 

  • Xu L, Baldocchi DD (2003) Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiol 23:865–877

    Article  PubMed  Google Scholar 

  • Yates MJ, Verboom GA, Rebelo AG, Cramer MD (2010) Ecophysiological significance of leaf size variation in Proteaceae from the Cape Floristic Region. Funct Ecol 24:485–492

    Article  Google Scholar 

  • Zhang SB, Zhou ZK, Hu H, Xu K, Yan N, Li SY (2005) Photosynthetic performances of Quercus pannosa vary with altitude in the Hengduan Mountains, Southwest China. Forest Ecol Manag 212:291–30

    Google Scholar 

  • Zhang YJ, Rockwell FE, Graham AC, Alexander T, Holbrook NM (2016) Reversible leaf xylem collapse: a potential “circuit breaker” against cavitation. Plant Physiol 172:2261–2274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu F, Yoh M, Gilliam FS, Lu X, Mo J (2013) Nutrient limitation in three lowland tropical forests in southern China receiving high nitrogen deposition: insights from fine root responses to nutrient additions. PLoS ONE 8(12):e82661

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank Elena Martí Beltrán for her valuable help in the search of the species distribution. We thank also Francisco Garin García for his meaningful support in the recollection of oak leaves and identification of the species. We thank Jardín Botánico de Iturrarán for allowing us the recollection of the oak species used in the analysis on this chapter. Work of D S-K is supported by a DOC INIA contract co-funded by INIA and ESF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eustaquio Gil-Pelegrín .

Editor information

Editors and Affiliations

Appendices

Appendix 5.1

List of Quercus species (scientific name, infrageneric group according to Denk and Grimm (2009) and distribution) used in the figures of the chapter. Species are classified into six groups according to: (i) their leaf habit (evergreen or winter deciduous ) and (ii) their climatic distribution conditions (Temperate , Tropical , Mediterranean or Arid ). For this purpose, geographical distribution coordinates for each species were obtained from herbarian data (Appendix 5.2) and overlapped on the climatic Köppen map. Köppen categories and zonobiomes sensu Walter (in brackets) are classified in four main groups: (i) temperate , without dry season (green); (ii) tropical , dry winter (blue); (iii) mediterranean, dry summer (red); and (iv) arid , arid (orange). For each group, represented by a particular colour, Köppen categories are listed according to their respective relevance.

Appendix 5.2

List of data sources for species distribution.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gil-Pelegrín, E., Saz, M.Á., Cuadrat, J.M., Peguero-Pina, J.J., Sancho-Knapik, D. (2017). Oaks Under Mediterranean-Type Climates: Functional Response to Summer Aridity. In: Gil-Pelegrín, E., Peguero-Pina, J., Sancho-Knapik, D. (eds) Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L.. Tree Physiology, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-69099-5_5

Download citation

Publish with us

Policies and ethics

Navigation