Arbuscular Mycorrhiza Mediated Control of Plant Pathogens

  • Chapter
  • First Online:
Mycorrhiza - Nutrient Uptake, Biocontrol, Ecorestoration

Abstract

The application of pesticides in agriculture significantly reduces crop losses by protecting the plant from several diseases, caused by a variety of attackers including fungi, bacteria, plant-parasite nematodes and insects. However, excessive use of these agrochemicals has become a serious cause of concern in agriculture as these not only pose a potential risk to beneficial soil microbes, which play a pivotal role in maintaining the soil-fertility but also, result in serious implications to human health and environment. Researchers are exploring environment-friendly approaches of plant protection that could minimize the side effects associated with the use of pesticides. The biocontrol is a process by which an undesirable organism is controlled with the help of another organism. Among soil microorganisms, arbuscular mycorrhizal fungi (AMF) have demonstrated a considerable potential to reduce crop damages from infectious organisms, whose applications in agriculture have not yet been adopted to a large extent. In view of the importance of AMF in agriculture, we have described the bioprotective role of AMF against various plant pathogens and the possible mechanisms involved in the biological control of crop diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Aberra MB, Seah S, Sivasithamparam K (1998) Supression of the takeall fungus (Gaeumannomyces graminis var. tritici) by a sterile red fungus through induced resistance in wheat (Triticum aestivum) seedling roots. Soil Biol Biochem 30:1457–1461

    CAS  Google Scholar 

  • Akhtar MS, Siddiqui MA (2008) Arbuscular mycorrhizal fungi as potential bioprotectants against plant pathogens. In: Siddiqui ZA, Akhtar S, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer, Netherlands, pp 61–98

    Google Scholar 

  • Akiyama K, Ki M, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    CAS  PubMed  Google Scholar 

  • Alban R, Guerrero R, Toro M (2013) Interactions between a root-knot nematode (Meloidogyne exigua) and arbuscular mycorrhizae in coffee plant development (Coffea arabica). Am J Plant Sci 4:19–23

    Google Scholar 

  • Allen MF (2011) Linking water and nutrients through the vadose zone: a fungal interface between the soil and plant systems: linking water and nutrients through the vadose zone: a fungal interface between the soil and plant systems. J Arid Land 3:155–163

    Google Scholar 

  • Anandaraj M, Ramana KV, Sharma, YR (1990) Interaction between vesicular arbuscular mycorrhizal fungi and Meloidogyne incognita in black pepper. In: Bagyaraj DJ, Manjunath A (eds) Mycorrhizal symbiosis and plant growth, Proc Sec Nat Conf on Mycorrhiza, 21–23 November, Banglore, India, pp 110–112

    Google Scholar 

  • Atilano RA, Menge JA, Vangundy SD (1981) Interaction between Meloidogyne arenaria and Glomus fasciculatus in grape. J Nematol 13:52–57

    CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson D, Berta G, Hooker JE (1994) Impact of mycorrhizal colonisation on root architecture, root longevity and the formation of growth regulators. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser, Basel, pp 89–99

    Google Scholar 

  • Auge RM, Toler HD, Saxton AM (2014) Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: a meta-analysis. Front Plant Sci 5:562–574

    PubMed  PubMed Central  Google Scholar 

  • Azcon-Aguilar C, Barea JM (1996) Arbuscular mycorrhizas and biological controlof soil-borne plant pathogens – An overview of the mechanisms involved. Mycorrhiza 6:457–464

    Google Scholar 

  • Azcon-Aguilar C, Jaizme-Vega MC, Calvet C (2002) The contribution of arbuscular mycorrhizal fungi to the control of soil-borne plant pathogens. In: Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds) Mycorrhizal technology in agriculture. Birkhäuser, Basel, pp 187–197

    Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    CAS  PubMed  Google Scholar 

  • Bagyaraj DJ (2014) Mycorrhizal fungi. Proc Ind Nat Sci Acad 80:415–428

    Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    CAS  PubMed  Google Scholar 

  • Balestrini R, Lumini E, Borriello R, Bianciotto V (2015) Plant-soil biota interactions. In: Paul EA (ed) Soil microbiology, ecology and biochemistry. Academic Press/Elsevier, Burligton, MA/Oxford, pp 311–338

    Google Scholar 

  • Bansal M, Mukerji KG (1994) Positive correlation between VAM induced changes in root exudation and mycorrhizosphere mycoflora. Mycorrhiza 5:39–44

    Google Scholar 

  • Bartlem DG, Jones MGK, Hammes UZ (2014) Vascularization and nutrient delivery at root-knot nematode feeding sites in host roots. J Exp Bot 65:1789–1798. https://doi.org/10.1093/jxb/ert415

    Article  CAS  PubMed  Google Scholar 

  • Benhamou N, Fortin JA, Hamel C, St-Arnaud M, Shatilla A (1994) Resistance responses of mycorrhizal Ri T-DNA-transformed carrot roots to infection by Fusarium oxysporum f. sp chrysanthemi. Phytopathol 84:958–968

    CAS  Google Scholar 

  • Berruti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes, review. Front Microbiol 6:1559. https://doi.org/10.3389/fmicb.2015.01559

    Article  PubMed  PubMed Central  Google Scholar 

  • Berta G, Trotta A, Fusconi A, Hooker M, Munro D, Atkinson M, Govionetti S, Morini P, Fortuna B, Tisserant V, Gianinazzi-Pearson V, Gianinazzi S (1995) Arbuscular mycorrhizal induced changes to plant growth and root system morphology in Prunus cerasifera. Tree Physiol 15:281–293

    CAS  PubMed  Google Scholar 

  • Berta G, Sampo S, Gamalero E, Massa N, Lemanceau P (2005) Suppression of Rhizoctonia root-rot of tomato by Glomus mossae BEG12 and Pseudomonas fluorescens A6RI is associated with their effect on the pathogen growth and on the root morphogenesis. Euro J Plant Pathol 111:279–288

    Google Scholar 

  • Bharadwaj DP, Sadhna Alström S, Lundquist P (2012) Interactions among Glomus irregulare, arbuscular mycorrhizal spore-associated bacteria, and plant pathogens under in vitro conditions. Mycorrhiza 22:437–447

    PubMed  Google Scholar 

  • Bodker L, Kjoller R, Rosendahl S (1998) Effect of phosphate and arbuscular mycorrhizal fungus Glomus intraradices on disease severity of root rot of peas (Pisum sativum) caused by Aphanomyces euteiches. Mycorrhiza 8:169–174

    CAS  Google Scholar 

  • Borah A, Phukan PN (2003) Effect of interaction of Glomus fasciculatum and Meloidogyne incognita on growth of brinjal. Ann Plant Prot Sci 11:352–354

    Google Scholar 

  • Borowicz VA (2001) Do arbuscular mycorrhizal fungi alter plant–pathogen relations? Ecology 82:3057–3068

    Google Scholar 

  • Cameron D, Neal A, van Wees S, Ton J (2013) Mycorrhiza-induced resistance: more than the sum of its parts? Trends Plant Sci 18:539–545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carling DE, Roncadori RW, Hussey RS (1996) Interactions of arbuscular mycorrhizae, Meloidogyne arenaria, and phosphorus fertilization on peanut. Mycorrhiza 6:9–13

    Google Scholar 

  • Caron M, Fortin JA, Richard C (1986) Effect of inoculation sequence on the interaction between Glomus intraradices and Fusarium oxysporum f. sp. radicis-lycopersici in tomatoes. Can J Plant Pathol 8:12–16

    Google Scholar 

  • Castellanos-Morales V, Keiser C, Cardenas-Navarro R, Grausgruber H, Glauninger J, Garcia-Garrido JM, Steinkellner S, Sampedro I, Hage-Ahmed K, Illana A, Ocampo JA, Vierheilig H (2011) The bioprotective effect of AM root colonization against the soil-borne fungal pathogen Gaeumannomyces graminis var. tritici in barley depends on the barley variety. Soil Biol Biochem 43:831–834

    CAS  Google Scholar 

  • Citernesi AS, Fortuna P, Filippi C, Bagnoli G, Giovannetti M (1996) The occurrence of antagonistic bacteria in Glomus mosseaepot cultures. Agronomie 16:671–677

    Google Scholar 

  • Cordier C, Gianinazzi S, Gianinazzi-Pearson V (1996) Colonisation patterns of root tissues by fungus Glomus mosseae in tomato plants. Plant Soil 185:199–209

    Google Scholar 

  • Cordier C, Pozo MJ, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (1998) Cell defense responses associated with localized and systemic resistance to Phytophthora induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant Microbe Interact 11:1017–1028

    CAS  Google Scholar 

  • Curtis R, Robinson A, Perry R (2009) Hatch and host location. In: Perry RN, Moens M, Starr JL (eds) Root-knot Nematodes. CAB International, Wallingford, pp 139–162

    Google Scholar 

  • Davis RM (1980) Influence of Glomus fasciculatus on Thielaviopsis basicola root rot of citrus. Plant Dis 64:839–840

    Google Scholar 

  • Davis RM, Menge JA (1980) Influence of Glomus fasciculatus and soil phosphorus on Phytophthora root rot of citrus. Phytopathol 70:447–452

    CAS  Google Scholar 

  • Declerck S, Risede JM, Rufyikiri G, Delvaux B (2002) Effects of arbuscular mycorrhizal fungi on the severity of root rot of bananas caused by Cylindrocladium spathiphylli. Plant Pathol 51:109–115

    Google Scholar 

  • Dehne HW (1982) Interaction between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathol 72:1115–1119

    Google Scholar 

  • Diederichs C (1987) Interaction between five endomycorrhizal fungi and root-knot nematode and Meloidogyne hapla on Allium cepa in organic soils. J Nematol 17:55–60

    Google Scholar 

  • Diedhiou PM, Hallmann J, Oerke EC, Dehne HW (2003) Effects of arbuscular mycorrhizal fungi and a non-pathogenic Fusarium oxysporum on Meloidogyne incognita infestation of tomato. Mycorrhiza 13:199–204

    CAS  PubMed  Google Scholar 

  • Doley K, Jite PK (2013) Management of stem-rot of groundnut (Arachis hypogaea L.) cultivar in field. Not Sci Biol 5:316–324

    Google Scholar 

  • Dos Anjos ÉCT, Cavalcante UMT, Gonçalves DMC, Pedrosa EMR, dos Santos VF, Maia LC (2010) Interactions between an arbuscular mycorrhizal fungus (Scutellospora heterogama) and the root-knot nematode (Meloidogyne incognita) on sweet passion fruit (Passiflora alata). Braz Arch Biol Technol 53:801–809

    Google Scholar 

  • Dugassa GD, von Alten H, Schonbeck F (1996) Effects of arbuscular mycorrhiza (AM) on health of Linum usitatissimum L infected by fungal pathogens. Plant Soil 185:173–182

    CAS  Google Scholar 

  • Dumas-Gaudot E, Gollotte A, Cordier C, Gianinazzi S, Gianinazzi-Pearson V (2000) Modulation of host defense systems. In: Kapulnik Y, Douds DD Jr (eds) Arbuscular mycorrhizas: physiology and function. Kluwer, Dordrecht, pp 173–200

    Google Scholar 

  • Elsen A, Declerck S, De Wasele D (2002) Effects of three arbuscular mycorrhizal fungi on root knot nematode (Meloidogyne spp.) infection of Musa. Infomusa 11:21–23

    Google Scholar 

  • Elsen A, Baimey H, Swennen R, De Waele D (2003a) Relative mycorrhizal dependency and mycorrhiza-nematode interaction in banana cultivars (Musa spp.) differing in nematode susceptibility. Plant Soil 256:303–313

    CAS  Google Scholar 

  • Elsen A, Beeterens R, Swennen R, De Waele D (2003b) Effects of an arbuscular mycorrhizal fungus and two plant-parasitic nematodes on Musa genotypes differing in root morphology. Biol Fertil Soils 38:367–376

    Google Scholar 

  • Elsen A, Declerck S, De Waele D (2003c) Use of root organ cultures to investigate the interaction between Glomus intraradices and Pratylenchus coffeae. Appl Environ Microbiol 69:4308–4311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elsen A, Gervacio D, Swennen R, De Waele D (2008) AMF-induced biocontrol against plant-parasitic nematodes in Musa sp.: a systemic effect. Mycorrhiza 18:251–256

    CAS  PubMed  Google Scholar 

  • Evelin H, Kapoor R, Giri B (2009) Arbuscular mycorrhizal fungi in alleviation of salt stress: a review. Ann Bot 104:1263–1280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fiorilli V, Catoni M, Francia D, Cardinale F, Lanfranco L (2011) The arbuscular mycorrhizal symbiosis reduces disease severity in tomato plants infected by Botrytis cinerea. J Plant Pathol 93:237–242

    Google Scholar 

  • Fritz M, Jakobsen I, Lyngkjaer MF, Thordal-Christensen H, Pons-Kühnemann J (2006) Arbuscular mycorrhiza reduces susceptibility of tomato to Alternaria solani. Mycorrhiza 16:413–419

    PubMed  Google Scholar 

  • Fusconi A (2014) Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation? Ann Bot 13:19–33

    Google Scholar 

  • Fusconi A, Gnavi E, Trotta A, Berta G (1999) Apical meristems of tomato roots and their modifications induced by arbuscular mycorrhizal and soilborne pathogenic fungi. New Phytol 142:505–516

    Google Scholar 

  • Gamalero E, Pivato B, Bona E, Copetta A, Avidano L, Lingua G (2010) Interactions between a fluorescent pseudomonad, an arbuscular mycorrhizal fungus and a hypovirulent isolate of Rhizoctonia solani affect plant growth and root architecture of tomato plants. Plant Biosyst Int J Deal Asp Plant Biol 144:582–591

    Google Scholar 

  • García-Chapa M, Batlle A, Laviña A, Camprubí A, Estaún V, Calvet C (2004) Tolerance increase to pear decline phytoplasma in mycorrhizal OHF-333 pear rootstock. Acta Hortic (ISHS) 657:437–441

    Google Scholar 

  • García-Garrido JM, Ocampo JA (2002) Regulation of the plant defence response in arbuscular mycorrhizal symbiosis. J Exp Bot 53:1377–1386

    PubMed  Google Scholar 

  • Gernns H, Von Alten H, Poehling HM (2001) Arbuscular mycorrhiza increased the activity of a biotrophic leaf pathogen-is a compensation possible? Mycorrhiza 11:237–243

    CAS  Google Scholar 

  • Gheysen G, Mitchum MG (2011) How nematodes manipulate plant development pathways for infection. Curr Opin Plant Biol 14:415–421. https://doi.org/10.1016/j.pbi.2011.03.012

    Article  PubMed  Google Scholar 

  • Gianinazzi-Pearson V, Gollotte A, Dumas-Gaudot E, Franken P, Gianinazzi S (1994) Gene expression and molecular modifications associated with plant responses to infection by arbuscular mycorrhizal fungi. In: Daniels M, Downic JA, Osbourn AE (eds) Advances in molecular genetics of plant-microbe interactions. Kluwer, Dordrecht, pp 179–186

    Google Scholar 

  • Giri B, Giang PH, Kumari R, Prasad R, Sachdev M, Garg AP, Oelmuller R, Varma A (2005) Mycorrhizosphere: strategies and functions. In: Buscot F, Varma A (eds) Microorganisms in soils: roles in genesis and functions. Springer, Heidelberg, pp 213–252

    Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    CAS  PubMed  Google Scholar 

  • Goltapeh EM, Danesh YR, Prasad R, Varma A (2008) Mycorrhizal fungi: what we know and what should we know. In: Varma A (ed) Mycorrhiza, 3rd edn. Springer, Heidelberg, pp 3–28

    Google Scholar 

  • Graham JH (2001) What do root pathogens see in mycorrhizas? New Phytol 149:357–359

    PubMed  Google Scholar 

  • Hage-Ahmed K, Moyses A, Voglgruber A, Hadacek F, Steinkellner S (2013) Alterations in root exudation of intercropped tomato mediated by the arbuscular mycorrhizal fungus Glomus mosseae and the soilborne pathogen Fusarium oxysporum f.sp. lycopersici. J Phytopathol 161:763–773

    CAS  Google Scholar 

  • Hao Z, Fayolle L, van Tuinen D, Chatagnier O, **aolin L, Gianinazzi S, Gianinazzi-Pearson V (2012) Local and systemic mycorrhiza-induced protection against the ectoparasitic nematode **phinema index involves priming of defence gene responses in grapevine. J Exp Bot 63:3657–3672

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harrier LA, Watson CA (2004) The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Manag Sci 60:149–157

    CAS  PubMed  Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    CAS  PubMed  Google Scholar 

  • Hause B, Schaarschmidt S (2009) The role of jasmonates in mutualistic symbioses between plants and soil-borne microorganisms. Phytochem 70:1589–1599

    CAS  Google Scholar 

  • Hause B, Mrosk C, Isayenkov S, Strack C (2007) Jasmonates in arbuscular mycorrhizal interactions. Phytochem 68:101–110

    CAS  Google Scholar 

  • Hiltner L (1904) Uber neuere Erfahrungen und Probleme auf dem Gebiete der Bodenbakteriologie unter besonderden berucksichtigung und Brache. Arb Dtsch Landwirtsch Gesellschaft 98:59–78

    Google Scholar 

  • Hodge A, Berta G, Doussan C, Merchan F, Crespi M (2009) Plant root growth, architecture and function. Plant Soil 321:153–187

    CAS  Google Scholar 

  • Hol WHG, Cook R (2005) An overview of arbuscular mycorrhizal fungi-nematode interactions. Basic Appl Ecol 6:489–503

    Google Scholar 

  • Hooker JE, Jaizme-Vega M, Atkinson D (1994) Biocontrol of plant pathogens using arbuscular mycorrhizal fungi. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser, Basel, pp 191–200

    Google Scholar 

  • Hussey R, Roncadori R (1978) Interaction of Pratylenchus brachyurus and Gigaspora margarita on cotton. J Nematol 10:16–20

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ijdo M, Cranenbrouck S, Declerck S (2011) Methods for large-scale production of AM fungi: past, present, and future. Mycorrhiza 21:1–16

    CAS  PubMed  Google Scholar 

  • Jabaji-Hare SH, Stobbs LW (1984) Electron microscopic examination of tomato roots coinfected with Glomus sp. and tobacco mosaic virus. Phytopathol 74:277–279

    Google Scholar 

  • Jain RK, Sethi CL (1988) Influence of endomycorrhizal fungi Glomus fasciculatum and G. epigaeus on penetration and development of Heterodera cajani on cowpea. Ind J Nematol 18:89–93

    Google Scholar 

  • Jaiti F, Kassami M, Meddich A, El Hadrami I (2008) Effect of arbuscular mycorrhization on the accumulation of hydroxycinnamic acid derivatives in date palm seedlings challenged with Fusarium oxysporum f. sp. albedinis. J Phytopathol 156:641–646

    CAS  Google Scholar 

  • Jayaram J, Kumar D (1995) Influence of mungbean yellow mosaic virus on mycorrhizal fungi associated with Vigna radiata var. PS 16. Ind Phytopathol 48:108–110

    Google Scholar 

  • Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480

    CAS  PubMed  Google Scholar 

  • Jones JT, Haegeman A, Danchin EGJ, Gaur HS, Helder J, Jones MG, Kikuchi T, Manzanilla-López R, Palomares-Rius JE, Wesemael WM, Perry RN (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14:946–961

    PubMed  PubMed Central  Google Scholar 

  • Jung SC, Martinez-Medina A, Lopez-Raez JA, Pozo MJ (2012) Mycorrhiza-induced resistance and priming ofplant defenses. J Chem Ecol 38:651–664

    CAS  PubMed  Google Scholar 

  • KamiÅ„ska M, Klamkowski K, Berniak H, Sowik I (2010) Response of mycorrhizal periwinkle plants to aster yellows phytoplasma infection. Mycorrhiza 20:161–166

    PubMed  Google Scholar 

  • Kantharaju V, Krishnappa K, Ravichardra NG, Karuna K (2005) Management of root-knot nematode, Meloidogyne incognita on tomato by using indigenous isolates of AM fungus, Glomus fasciculatum. Ind J Nematol 35:32–36

    Google Scholar 

  • Kareem TA, Hassan MS (2014) Evaluation of Glomus mosseae as biocontrol agents against Rhizoctonia solani on Tomato. J Biol Agric Healthcare 4:15–19

    Google Scholar 

  • Khaosaad T, García-Garrido JM, Steinkellner S, Vierheilig H (2007) Take-all disease is systemically reduced in roots of mycorrhizal barley plants. Soil Biol Biochem 39:727–734

    CAS  Google Scholar 

  • Kobra N, Jalil K, Youbert G (2009) Effects of three Glomus species as biocontrol agents against Verticillium-induced wilt in cotton. J Plant Prot Res 49:185–189

    Google Scholar 

  • Koffi MC, Vos C, Draye X, Declerck S (2013) Effects of Rhizophagus irregularis MUCL 41833 on the reproduction of Radopholus similis in banana plantlets grown under in vitro culture conditions. Mycorrhiza 23:279–288. https://doi.org/10.1007/s00572-012-0467-6

    Article  CAS  PubMed  Google Scholar 

  • Koide RT, Schreiner RP (1992) Regulation of the vesicular arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 43:557–581

    CAS  Google Scholar 

  • Kotcon JB, Bird GW, Rose LM, Dimoff K (1985) Influence of Glomus fasciculatum and Meloidogyne hapla on Allium cepa in organic soils. J Nematol 17:55–60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Labeena P, Sreenivasa MN, Lingaraju S (2002) Interaction effects between arbuscular mycorrhizal fungi and root-knot nematode Meloidogyne incognita on tomato. Ind J Nematol 32:118–120

    Google Scholar 

  • Larsen J, Ravnskov S, Jakobsen I (2003) Combined effect of an arbuscularmycorrhizal fungus and a biocontrol bacterium against Pythium ultimum in soil. Folia Geobotanica 38:145–154

    Google Scholar 

  • Lee CS, Lee YJ, Jeun YC (2005) Observations of infection structures on the leaves of cucumber plants pre-treated with arbuscular mycorrhiza Glomus intraradices after challenge inoculation with Colletotrichum orbiculare. Plant Pathol J 21:237–243

    Google Scholar 

  • Li HY, Yang GD, Shu HR, Yang YT, Ye BX, Nishida I, Zheng CC (2006) Colonization by the arbuscular mycorrhizal fungus Glomus versiformeinduces a defense response against the root-knot nematode Meloidogyne incognita in the grapevine (Vitis amurensis Rupr), which includes transcriptional activation of the class III chitinase gene VCH3. Plant Cell Physiol 47:154–163

    CAS  PubMed  Google Scholar 

  • Li HY, Yanagi A, Miyawaki Y, Okada T, Matsubara Y (2010) Disease tolerance and changes in antioxidative abilities in mycorrhizal strawberry plants. J Jpn Soc Hortic Sci 79:174–178

    Google Scholar 

  • Linderman RG (1988) Mycorrhizal Interactions with the rhizosphere microflora–the mycorrhizosphere effect. Phytopathol 78:366–371

    Google Scholar 

  • Linderman RG (1994) Role of VAM fungi in biocontrol. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and plant health. APS, St Paul, pp 1–26

    Google Scholar 

  • Lingua G, D’Agostino G, Massa N, Antosiano M, Berta G (2002) Mycorrhiza-induced differential response to a yellows disease in tomato. Mycorrhiza 12:191–198

    PubMed  Google Scholar 

  • Lioussanne L (2010) The role of the arbuscular mycorrhiza-associated rhizobacteria in the biocontrol of soilborne phytopathogens. Span J Agric Res 8(S1):S51–S61

    Google Scholar 

  • Lioussanne L, Jolicoeur M, St-Arnaud M (2008) Mycorrhizal colonization with Glomus intraradices and development stage of transformed tomato roots significantly modify the chemotactic response of zoospores of the pathogen Phytophthora nicotianae. Soil Biol Biochem 40:2217–2224

    CAS  Google Scholar 

  • Liu RJ (1995) Effect of vesicular-arbuscular mycorrhizal fungi on Verticillium wilt of cotton. Mycorrhiza 5:293–297

    Google Scholar 

  • Liu RJ, Li HF, Shen CY, Chiu WF (1995) Detection of pathogenesis-related proteins in cotton plants. Physiol Mol Plant Pathol 47:357–363

    CAS  Google Scholar 

  • Liu J, Maldonado-Mendoza I, Lopez-Meyer M, Cheung F, Town CD, Harrison MJ (2007) Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. Plant J 50:529–544

    CAS  PubMed  Google Scholar 

  • Lopez-Raez JA, Verhage A, Fernandez I, Gracia JM, Azcon-Aguilar C, Flors V (2010) Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. J Exp Bot 61:2589–2601

    CAS  PubMed  PubMed Central  Google Scholar 

  • MacGuidwin A, Bird G, Safir G (1985) Influence of Glomus fasciculatum on Meloidogyne hapla infecting Allium cepa. J Nematol 17:389–395

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maffei G, Miozzi L, Fiorilli V, Novero M, Lanfranco L, Accotto GP (2014) The arbuscular mycorrhizal symbiosis attenuates symptom severity and reduces virus concentration in tomato infected by Tomato yellow leaf curl Sardinia virus (TYLCSV). Mycorrhiza 24:179–186

    CAS  PubMed  Google Scholar 

  • Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748

    CAS  PubMed  Google Scholar 

  • Malik RJ, Dixon MH, Bever JD (2016) Mycorrhizal composition can predict foliar pathogen colonization in soybean. Biol Control 103:46–53

    CAS  Google Scholar 

  • Marro N, Lax P, Cabello M, Doucet ME, Becerra AG (2014) Use of the arbuscular mycorrhizal fungus Glomus intraradices as biological control agent of the nematode Nacobbus aberrans parasitizing tomato. Braz Arch Biol Technol 57:668–675

    Google Scholar 

  • Masadeh B, von Alten H, Grunewaldt-Stoecker G, Sikora RA (2004) Biocontrol of root knot nematodes using the arbuscular mycorrhizal fungus Glomus intraradices and the antagonistic Trichoderma viridae in two tomato cultivars differing in their suitability as hosts for the nematodes. J Plant Dis Prot 111:322–333

    Google Scholar 

  • McArthur DA, Knowles NR (1992) Resistance responses of potato to vesicular-arbuscular mycorrhizal fungi under varying abiotic phosphorus levels. Plant Physiol 100:341–351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller RM, Reinhardt DR, Jastrow JD (1995) External hyphalproduction of vesicular-arbuscular mycorrhizal fungi in pastureand tallgrass prairie communities. Oecologia 103:17–23

    CAS  PubMed  Google Scholar 

  • Miozzi L, Catoni M, Fiorilli V, Philip MM, Accotto GP, Lanfranco L (2011) Arbuscular mycorrhizal symbiosis limits foliar transcriptional responses to viral infection and favors long-term virus accumulation. Mol Plant Microbe Interact 24:1562–1572

    CAS  PubMed  Google Scholar 

  • Miransari M, Smith DL (2014) Plant hormones and seed germination. Environ Exp Bot 99:110–121

    CAS  Google Scholar 

  • Mukherjee KG, Ane JM (2011) Germinating spore exudates from arbuscular mycorrhizal fungi: molecular and developmental responses in plants and their regulation by ethylene. Mol Plant Microbe Interact 24:260–270

    CAS  PubMed  Google Scholar 

  • Naglaa ASM, Essa TA, Manal AHE, Kamel SM (2016) Efficacy of free and formulated arbuscular mycorrhiza, Trichoderma viride and Pseudomonas fluorescens on controlling tomato root rot diseases. Egypt J Biol Pest Control 26:477–486

    Google Scholar 

  • Nath M, Bhatt D, Prasad R, Gill SS, Anjum NA, Tuteja N (2016) Reactive oxygen species generation-scavenging and signaling during plant-arbuscular mycorrhizal and Piriformospora indica interaction under stress condition. Front Plant Sci 7:1574. https://doi.org/10.3389/fpls.2016.01574

    Article  PubMed  PubMed Central  Google Scholar 

  • Nehra S (2004) VAMF and organic amendments in the management of Meloidogyne incognita infected ginger. J Ind Bot Soc 83:90–97

    Google Scholar 

  • Nemec S, Myhre D (1984) Virus-Glomus etunicatum interactions in Citrus rootstocks. Plant Dis 68:311–314

    Google Scholar 

  • Nicol JM, Turner SJ, Coyne DL, den Nijs L, Hockland S, Tahna Maafi Z (2011) Current nematode threats to world agriculture. In: Jones J, Gheysen G, Fenoll C (eds) Genomics and molecular genetics of plant-nematode interactions. Springer, Heidelberg, pp 21–44

    Google Scholar 

  • Norman JR, Hooker JE (2000) Sporulation of Phytophthora fragariae shows greater stimulation by exudates of non-mycorrhizal than by mycorrhizal strawberry roots. Mycol Res 104:1069–1073

    Google Scholar 

  • Norman J, Atkinson D, Hooker J (1996) Arbuscular mycorrhizal fungal-induced alteration to root architecture in strawberry and induced resistance to the root pathogen Phytophthora fragariae. Plant Soil 185:191–198

    CAS  Google Scholar 

  • O’Bannon J, Nemec S (1979) The response of Citrus limon seedlings to a symbiont, Glomus etunicatus, and a pathogen, Radopholus similis. J Nematol 11:270–275

    PubMed  PubMed Central  Google Scholar 

  • O’Bannon J, Inserra R, Nemec S, Vovlas N (1979) The influence of Glomus mosseae on Tylenchulus semipenetrans-infected and uninfected Citrus limon seedlings. J Nematol 11:247–250

    PubMed  PubMed Central  Google Scholar 

  • Olah B, Briere C, Becard G, Denarie J, Gough C (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J 44:195–207

    CAS  PubMed  Google Scholar 

  • Ozgonen H, Erkilic A (2007) Growth enhancement and Phytophthora blight (Phytophthora capsici L.) control by arbuscular mycorrhizal fungal inoculation in pepper. Crop Prot 26:1682–1688

    Google Scholar 

  • Pandey R (2005) Field application of bio-organics in the management of Meloidogyn incognita in Mentha arvensis. Nematol Mediterr 33:51–54

    CAS  Google Scholar 

  • Paszkowski U, Boller T (2002) The growth defect of lrt1, a maize mutant lacking lateral roots, can be complemented by symbiotic fungi or high phosphate nutrition. Planta 214:584–590

    CAS  PubMed  Google Scholar 

  • Pereira JAP, Vieira IJC, Freitas MSM, Prins CL, Martins MA, Rodrigues R (2016) Effects of arbuscular mycorrhizal fungi on Capsicum spp. J Agric Sci 154:828–849

    Google Scholar 

  • Perry RN, Moens M (2011) Introduction to plant-parasitic nematodes; modes of parasitism. In: Jones JT, Gheysen L, Fenoll C (eds) Genomics and molecular genetics of plant–nematode interactions. Springer, Heidelberg, pp 3–20

    Google Scholar 

  • Pettigrew WT, Meredith WR, Young LD (2005) Potassium fertilization effects on cotton lint yield, yield components, and reniform nematode populations. Agron J 97:1245–1251

    CAS  Google Scholar 

  • Pineda A, Zheng SJ, van Loon JJA, Pieterse CMJ, Dicke M (2010) Hel** plants to deal with insects: the role of beneficial soil-borne microbes. Trends Plant Sci 15:507–514

    CAS  PubMed  Google Scholar 

  • Pinochet J, Calvet C, Camprubí A, Fernández C (1996) Interactions between migratory endoparasitic nematodes and arbuscular mycorrhizal fungi in perennial crops: a review. Plant Soil 185:183–190

    CAS  Google Scholar 

  • Pinochet J, Fernandez C, de Jaimez M, Tenoury P (1997) Micropropagated banana infected with Meloidogyne javanica responds to Glomus intraradices and phosphorus. Hortic Sci 32:35–49

    Google Scholar 

  • Pozo MJ, Azcon-Aguilar C (2007) Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol 10:393–398

    CAS  PubMed  Google Scholar 

  • Pozo MJ, Azcón-Aguilar C, Dumas-Gaudot E, Barea JM (1999) ß-1,3-glucanase activities in tomato roots inoculated witharbuscular mycorrhizal fungi and/or Phytophthora parasitica and their possible involvement in bioprotection. Plant Sci 141:149–157

    CAS  Google Scholar 

  • Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcon-Aguilar C (2002) Localized verses systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534

    CAS  PubMed  Google Scholar 

  • Pozo MJ, Jung SC, Lopez-Raez JA, Azcon-Aguilar C (2010) Impact of arbuscular mycorrhizal symbiosis on plant response to biotic stress: the role of plant defence mechanisms. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Springer, Dordrecht, pp 193–207

    Google Scholar 

  • Prasad R, Bhola D, Akdi K, Cruz C, Sairam KVSS, Tuteja N, Varma A (2017) Introduction to mycorrhiza: historical development. In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza. Springer, Dordrecht, pp 1–7

    Google Scholar 

  • Rao MS, Kerry BR, Gowen SR, Bourne JM, Reddy PP (1997) Management of Meloidogyne incognita in tomato nurseries by integration of Glomus deserticola with Verticillium chlamydosporium. J Plant Dis Prot 104:419–422

    Google Scholar 

  • Rao MS, Reddy PP, Mohandas MS (1998) Bio-intensive management of Meloidogyne incognita on eggplant by integrating Paecilomyces lilacinus and Glomus mosseae. Nematol Mediterr 26:213–216

    Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred million year old vesicular arbuscular mycorrhizae. Proc Natl Acad Sci USA 91:11841–11843

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez A, Sanders IR (2015) The role of community and population ecology in applying mycorrhizal fungi for improved food security. ISME J 9:1053–1061

    PubMed  Google Scholar 

  • Ronsheim ML (2016) Plant genotype influences mycorrhiza benefits and susceptibility to a soil pathogen. Am Midl Nat 175(1):103–112

    Google Scholar 

  • Rosendahl CN, Rosendahl S (1990) The role of vesicular arbuscular mycorrhizal fungi in controlling dam**-off and growth reduction in cucumber caused by Pythium ultimum. Symbiosis 9:363–366

    Google Scholar 

  • Sankaranarayanan C, Sundarababu R (1997) Effect of oil cakes and nematicides on the growth of blackgram (Vigna mungo) inoculate with VAM fungus (Glomus fasciculatum) and root-knot nematode (Meloidogyne incognita). Ind J Nematol 27:128–130

    Google Scholar 

  • Sankaranarayanan C, Sundarababu R (2010) Influence of application methods of arbuscular mycorrhiza Glomus mosseae in the bio-management of root knot nematode, Meloidogyne incognita on black gram (Vigna mungo L.) Hepper. J Biol Control 24:51–57

    Google Scholar 

  • Scannerini S, Fusconi A, Mucciarelli M, Seckback J (2001) The effect of endophytic fungi on host plant morphogenesis. In: Seckback J (ed) Symbiosis: organisms and model systems. Kluwer, Dordrecht, pp 427–447

    Google Scholar 

  • Scheffknecht S, Mammerler R, Steinkellner S, Vierheilig H (2006) Root exudates of mycorrhizal tomato plants exhibit a different effect on microconidia germination of Fusarium oxysporum f. sp. lycopersici than root exudates from non-mycorrhizal tomato plants. Mycorrhiza 16:365–370

    CAS  PubMed  Google Scholar 

  • Scheffknecht S, St-Arnaud M, Khaosaad T, Steinkellner S, Vierheilig H (2007) An altered root exudation pattern through mycorrhization affecting microconidia germination of the highly specialized tomato pathogen Fusarium oxysporum f.sp lycopersici (Fol) is not tomato specific but also occurs in Fol nonhost plants. Can J Bot 85:347–352

    CAS  Google Scholar 

  • Schellenbaum L, Berta G, Raviolanirina F, Tisserant B, Gianinazzi S, Fitter AH (1991) Influence of endomycorrhizal infection on root morphology in a micropropagated woody plant species (Vitis vinifera L.) Ann Bot 68:135–141

    Google Scholar 

  • Schouteden N, De Waele D, Panis B, Vos CM (2015) Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved. Front Microbiol 6:1280

    PubMed  PubMed Central  Google Scholar 

  • Schüßler AH, Gehrig H, Schwarzott D, Walker C (2001) Analysis of partial Glomales SSU rRNA gene sequences: implications for primer design and phylogeny. Mycol Res 105:5–15

    Google Scholar 

  • Shakoor S, Inam-ul-Haq M, Bibi S, Ahmed R (2015) Influence of root inoculations with vasicular arbuscular mycorrhizae and rhizomyx for the management of root rot of chickpea. Pak J Phytopathol 27:153–158

    Google Scholar 

  • Sharma HKP, Mishra SD (2003) Effect of plant growth promoter microbes on root knot nematode Meloidogyne incognita on okra. Curr Nematol 14:57–60

    Google Scholar 

  • Sharma IP, Sharma AK (2016) Physiological and biochemical changes in tomato cultivar PT-3 with dual inoculation of mycorrhiza and PGPR against root-knot nematode. Symbiosis 69. https://doi.org/10.1007/s13199-016-0423-x

    Google Scholar 

  • Shaul O, Galili S, Volpin H, Ginzberg I, Elad Y, Chet I, Kapulnik Y (1999) Mycorrhiza-induced changes in disease severity and PR protein expression in tobacco leaves. Mol Plant Microbe Interact 12:1000–1007

    CAS  PubMed  Google Scholar 

  • Siasou E, Standing D, Killham K, Johnson D (2009) Mycorrhizal fungi increase biocontrol potential of Pseudomonas fluorescens. Soil Biol Biochem 41:1341–1343

    CAS  Google Scholar 

  • Siddiqui ZA, Akhtar MS (2006) Biological control of root-rot disease complex of chickpea by AM fungi. Archiv Phytopathol Plant Prot 39:389–395

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1996) Biological control of Heterodera cajani and Fusarium udum on pigeonpea by Glomus mosseae, Trichoderma harzianum and Verticillium chlamydosporium. Isr J Plant Sci 44:49–56

    Google Scholar 

  • Siddiqui ZA, Singh LP (2005) Effects of fly ash and soil micro-organisms on plant growth, photosynthetic pigments and leaf blight of wheat. J Plant Dis Protect 112:146–155

    Google Scholar 

  • Sikes BA (2010) When do arbuscular mycorrhizal fungi protect plant roots from pathogens? Plant Signal Behav 5:763–765

    PubMed  PubMed Central  Google Scholar 

  • Singh M (2015) Interactions among arbuscular mycorrhizal fungi, Trichoderma harzianum, Aspergillus niger and biocontrol of wilt of tomato. Arch Phytopathol Plant Protect 48:205–211

    Google Scholar 

  • Singh I (2017) Antimicrobials in higher plants: classification, mode of action and bioactivities. Chem Biol Lett 4:48–62

    CAS  Google Scholar 

  • Singh R, Adholeya A, Mukerji KG (2000) Mycorrhiza incontrol of soil borne pathogens. In: Mukerji KG, Chamola BP, Singh J (eds) Mycorrhizal biology. Kluwer Academic/Plenum Publishers, New York, pp 173–196

    Google Scholar 

  • Singh R, Soni SK, Kalra A (2013) Synergy between Glomus fasciculatum and a beneficial Pseudomonas in reducing root diseases and improving yield and forskolin content in Coleus forskohlii Briq. under organic field conditions. Mycorrhiza 23:35–44

    PubMed  Google Scholar 

  • Sipahioglu MH, Demir S, Usta M, Akkopru A (2009) Biological relationship of Potato virus Y and arbuscular mycorrhizal fungus Glomus intraradices in potato. Pest Tech 3:63–66

    Google Scholar 

  • Sitaramaiah K, Sikora RA (1982) Effect of mycorrhizal fungus Glomus fasciculatum on the host parasite relationship of Rotylenchulus reniformis in tomato. Nematologica 28:412–419

    Google Scholar 

  • Smith GS, Kaplan DT (1988) Influence of mycorrhizal fungus, phosphorus and burrowing nematode interactions on growth of rough lemon citrus seedlings. J Nematol 20:539–544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, London

    Google Scholar 

  • Smith SE, Read DJ (2008) Mineral nutrition, toxic element accumulation and water relations of arbuscular mycorrhizal plants. In: Smith SE, Read DJ (eds) Mycorrhizal symbiosis. Academic Press, London, pp 145–148

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystems scales. Annu Rev Plant Biol 63:227–250

    Google Scholar 

  • Sood GS (2003) Chemotactic response of plant-growth-promoting bacteria towards roots of vesicular-arbuscular mycorrhizal tomato plants. FEMS Microbiol Ecol 45:219–227

    Google Scholar 

  • St-Arnaud M, Vujanovic V (2007) Effect of the arbuscular mycorrhizal symbiosis on plant diseases andpests. In: Hamel C, Plenchette C (eds) Mycorrhizaein crop production. Haworth Press, Binghamton, pp 67–122

    Google Scholar 

  • Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint JP, Vierheilig H (2007) Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12:1290–1306

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stoffelen R, Verlinden R, Xuyen NT, De Waele D, Swennen R (2000) Host plant response of Eumusa and Australimusa bananas (Musa spp.) to migratory endoparasitic and root-knot nematodes. Nematol 2:907–916

    Google Scholar 

  • Strobel N, Hussey R, Roncadori R (1982) Interactions of vesicular-arbuscular mycorrhizal fungi, Meloidogyne incognita, and soil fertility on peach. Phytopathol 72:690–694

    Google Scholar 

  • Tahat MM, Kamaruzaman Sijam K, Othman R (2012) The potential of endomycorrhizal fungi in controlling tomato bacterial wilt Ralstonia solanacearum under glasshouse conditions. Afr J Biotechnol 11:13085–13094

    Google Scholar 

  • Torres-Barragan A, Zavaleta-Mejia E, Gonzalez-Chavez C, Ferrera-Cerrato R (1996) The use of arbuscular mycorrhizae to control onion white rot (Sclerotium cepivorum Berk.) under field conditions. Mycorrhiza 6:253–257

    Google Scholar 

  • Trotta A, Varese GC, Gnavi E, Fusconi A, Sampo S, Berta G (1996) Interactions between the soil borne pathogen Phytophthoranicotianae var. parasitica and the arbuscular mycorrhizal fungus Glomus mosseae in tomato plants. Plant Soil 185:199–209

    CAS  Google Scholar 

  • Tylka GL, Hussey RS, Roncadori RW (1991) Interactions of vesicular-arbuscular mycorrhizal fungi, phosphorus and Heterodera glyciens on soybean. J Nematol 23:122–123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Wees SC, Van der Ent S, Pieterse CM (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448

    PubMed  Google Scholar 

  • Veresoglou SD, Rillig MC (2012) Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi. Biol Lett 8:214–217

    PubMed  Google Scholar 

  • Vierheilig H, Steinkellner S, Khaosaad T (2008) The biocontrol effect of mycorrhization on soilborne fungal pathogens and the autoregulation of the AM symbiosis: one mechanism, two effects? In: Varma A (ed) Mycorrhiza. Springer, Berlin, pp 307–320

    Google Scholar 

  • Vigo C, Norman JR, Hooker JE (2000) Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Physiol 49:509–514

    Google Scholar 

  • Vos C (2012) Arbusculaire Mycorrhizenschimmels in De Biocontrole Van Plantenparasitaire Nematoden. University of Leuven (KU Leuven), Leuven

    Google Scholar 

  • Vos C, Schouteden N, Tuinen D, Chatagnier O, Elsen A, De Waele D, Panis B, Gianinazzi-Pearson V (2013) Mycorrhiza-induced resistance against the root-knot nematode Meloidogyne incognita involves priming of defense gene responses in tomato. Soil Biol Biochem 60:45–54

    CAS  Google Scholar 

  • Vos CM, Yang Y, De Coninck B, Cammue BPA (2014) Fungal (-like) biocontrol organisms in tomato disease control. Biol Control 74:65–81

    Google Scholar 

  • Waceke JW, Waudo SW, Sikora R (2001) Suppression of Meloidogyne hapla by arbuscular mycorrhiza fungi (AMF) on pyrethrum in Kenya. Int J Pest Manag 47:135–140

    Google Scholar 

  • Wehner J, Antunes PM, Powell JR, Mazukatow J, Rillig MC (2010) Plant pathogen protection by arbuscular mycorrhizas: a role for fungal diversity? Pedobiologia 53:197–201

    Google Scholar 

  • Wesemael W, Viaene N, Moens M (2011) Root-knot nematodes (Meloidogyne spp.) in Europe. Nematol 13:3–16. https://doi.org/10.1163/138855410X526831

    Article  Google Scholar 

  • Whipps JM (2004) Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198–1227

    Google Scholar 

  • Wyss U (2002) Feeding behaviour of plant-parasitic nematodes. In: Lee DL (ed) Biology of nematodes. Taylor and Francis, London, pp 233–259

    Google Scholar 

  • Xavier LJC, Boyetchko SM (2004) Arbuscular mycorrhizal fungi in plant disease control. In: Arora D, Bridge P, Bhatnagar D (eds) Fungal biotechnology in agricultural, food, and environmental applications. Marcel Dekker, New York, pp 183–194

    Google Scholar 

  • Yang H, Zhang Q, Dai Y, Liu Q, Tang J, Bian X (2014) Effects of arbuscular mycorrhizal fungi on plant growth depend on root system: a meta-analysis. Plant Soil 389:361–374

    Google Scholar 

  • Yao M, Tweddell R, Désilets H (2002) Effect of two vesicular-arbuscular mycorrhizal fungi on the growth of micropropagated potato plantlets and on the extent of disease caused by Rhizoctonia solani. Mycorrhiza 12:235–242

    CAS  PubMed  Google Scholar 

  • Yuan**g L, Zhilei L, Hongyan H, Hong L, **ancan Z, Xuhui L, Chunjie T (2013) Arbuscular mycorrhizal fungi-enhanced resistance against Phytophthora sojae infection on soybean leaves is mediated by a network involving hydrogen peroxide, jasmonic acid, and the metabolism of carbon and nitrogen. Acta Physiol Plant 35:3465–3475

    Google Scholar 

  • Zhu HH, Yao Q (2004) Localized and systemic increase of phenols in tomato roots induced by Glomus versiforme inhibits Ralstonia solanacearum. J Phytopathol 152:537–542

    CAS  Google Scholar 

Download references

Acknowledgements

Authors duly acknowledge the support provided by Dr. Bhawna Saxena, Swami Shraddhanand College, University of Delhi, Delhi, India throughout the preparation of Manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhoopander Giri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, I., Giri, B. (2017). Arbuscular Mycorrhiza Mediated Control of Plant Pathogens. In: Varma, A., Prasad, R., Tuteja, N. (eds) Mycorrhiza - Nutrient Uptake, Biocontrol, Ecorestoration. Springer, Cham. https://doi.org/10.1007/978-3-319-68867-1_7

Download citation

Publish with us

Policies and ethics

Navigation