Biobased and Biodegradable Plastics

  • Reference work entry
  • First Online:
Handbook of Ecomaterials

Abstract

Because of the increasing environmental issues, the world has moved to the greener side, i.e., on zero or low emission side. The same case has been followed in the case of the composites development. Green composite is the main answer to this problem, as the name itself tells that the composite which is fabricated by reinforcing the natural fibers in the polymer matrix, which may be thermoset or thermoplastics. But if we want to make this composite as a fully biodegradable type, then we will have to use polymers derived from the cereals such as starch, Soy, PLA (poly lactic acid). These biopolymers degraded with respect to time so named as biodegradable type. In this chapter, we described a brief introduction of these biopolymers and their mechanical and morphological studies. Some of the applications of these biocomposites have also been described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 979.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wedin R (2004) Chemistry on a high-carb diet. American Chemical Society, Washington, DC, pp 30–35

    Google Scholar 

  2. Gross RA, Karla B (2002) Biodegradable polymers for environment. Science 297:803–807

    Article  Google Scholar 

  3. Mohanty AK, Misra M, Hinrichsen G (2000) Biofibers, biodegradable polymers and biocomposites: an overview. Macromol Mater Eng 276/277:1–25

    Article  Google Scholar 

  4. Mohanty AK, Misra M, Drzal LT (2002) Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ 10:19–26

    Article  Google Scholar 

  5. Mohanty AK, Misra M, Drzal LT (2005) Natural fibers, biopolymers, and biocomposites. CRC Press, Taylor and Francis, Boca Raton

    Book  Google Scholar 

  6. Lipinsky ES, Sinclair RG (1986) Chem Eng Prog 82:26–32

    Google Scholar 

  7. Enomoto K, Ajioka M, Yamaguchi A. US Patent 5,310,865, 1995; Kashima, T., Kameoka, T., Ajioka, M., and Yamaguchi, A., US Patent 5,428,126, 1995; Ichikawa, F., Kobayashi, M., Ohta, M., Yoshida, Y., Obuchi, S., and Itoh, H., US Patent 5,440,008, 1995; Ohta, M., Obuchi, S., and Yoshida, Y., U.S. Patent 5,440,143, 1995

    Google Scholar 

  8. Ellis RP et al (1998) Starch production and industrial use. J Sci Food Agric 77:289

    Article  Google Scholar 

  9. Zobel HF (1988) Molecules to granules: a comprehensive starch review. Starch 40:44

    Article  Google Scholar 

  10. Whistler RL, Daniel JR (1984) In: Whistler RL, BeMiller JN, Paschall EF (eds) Molecular structure of starch, in starch, chemistry and technology, 2nd edn. Academic Press, Inc., Orlando, Chapter 6

    Google Scholar 

  11. Jenkins PJ, Donald AM (1998) Gelatinization of starch: a combined SAXS/WAXS/DSC and SANS study. Carbohydr Res 308:133

    Article  Google Scholar 

  12. NinEo KA et al (1999) Extruded plastics containing starch and chitin: physical properties and evaluation of biodegradability, Chapter 12. In: Imam SH, Greene RV, Zaidi BR (eds) Biopolymers: utilizing Nature’s advanced materials, ACS symposium series, ACS publications, vol 723

    Google Scholar 

  13. Bastioli C et al (1993) Biodegradable articles based on starch and process for producing them, US Patent 5,262,458

    Google Scholar 

  14. Liang C et al (1997) Starch-polyvinyl alcohol crosslinked films: performance and biodegradation. J Environ Polym Degrad 5:111

    Article  Google Scholar 

  15. Mao L et al (2000) Extruded cornstarch-glycerol-polyvinyl alcohol blends: mechanical properties, morphology and biodegradability. J Polym Environ 8:205

    Article  Google Scholar 

  16. Creighton TE (1992) Protein folding. W.H. Freeman and Company, New York

    Google Scholar 

  17. http://class.fst.ohio-state.edu/FST822

  18. Sears JK, Darby JR (1982) The technology of plasticizers. Wiley-interscience, New York, p 35

    Google Scholar 

  19. Entwistle CA, Rowe RC (1978) Plasticization of cellulose ethers used in the film coating of tablets. J Pharm Pharmacol 31:269

    Article  Google Scholar 

  20. Schausberger A, Ahrer IV (1995) On the time-concentration superposition of the linear viscoelastic properties of plasticized polystyrene melts using the free volume concept. Macromol Chem Phys 196:2161

    Article  Google Scholar 

  21. Hildebrand JH, Scott RL (1950) The solubility of non-electrolytes, 3rd edn. Van Nostrand-Reinhold, Princeton

    Google Scholar 

  22. Flory PJ (1942) Thermodynamics of high-polymer solutions. J Chem Phys 10:51

    Article  Google Scholar 

  23. Huggins ML (1942) Some properties of solutions of long-chain compounds. J Phys Chem 46:151

    Article  Google Scholar 

  24. Tummala P et al (2003) Eco-composite materials from novel soy protein-based bioplastics and natural fibers. In: Proceedings of the 14th international conference on composite materials (ICCM-14), San Diego, July 14–18, 2003

    Google Scholar 

  25. Van Krevelen DW, Hoftyzer PJ (1972) Properties of polymers: correlation with chemical structure. Elsevier, New York

    Google Scholar 

  26. Mo X, Sun X (2002) Plasticization of soy protein polymer by polyol-based plasticizers. J Am Oil Chem Soc 79:197

    Article  Google Scholar 

  27. Wang S, Sue HJ, Jane J (1996) Effects of polyhydric alcohols on the mechanical properties of soy protein plastics. J Macromol Sci Pure Appl Chem A33:557

    Article  Google Scholar 

  28. Kim KM et al (2003) Influence of sorghum wax, glycerin, and sorbitol on physical properties of soy protein isolate films. J Am Oil Chem Soc 80:71

    Article  Google Scholar 

  29. Wu Q, Zhang L (2001) Properties and structure of soy protein isolate-ethylene glycol sheets obtained by compression molding. Ind Eng Chem Res 40:1879

    Article  Google Scholar 

  30. Vaz CM et al (2003) In vitro degradation behaviour of biodegradable soy plastics: effects of crosslinking with glyoxal and thermal treatment. Polym Degrad Stab 81:65

    Article  Google Scholar 

  31. Zhang J, Mungara P, Jane J (1998) Effects of plasticization and crosslinking on properties of soy protein-based plastics. Polym Prep 39:162

    Google Scholar 

  32. Zhang J, Mungara P, Jane J (2001) Mechanical and thermal properties of extruded soy protein sheets. Polymers 42:2569

    Article  Google Scholar 

  33. Zhang J, Mungara P, Jane J (1998) Effects of Plasticization and Crosslinking on Properties of Soy Protein-Based Plastics. In: 216th ACS National Meeting, POLY-402, Boston, 23–27 Aug 1998

    Google Scholar 

  34. Otaigbe JU, Adams DO (1997) Bioabsorbable soy protein plastic composites: effects of polyphosphate filler on water absorption and mechanical properties. J Environ Polym Degrad 5:199

    Article  Google Scholar 

  35. Mo X, Sun XS, Wang Y (1999) Effects of molding temperature and pressure on properties of soy protein polymers. J Appl Polym Sci 73:2595

    Article  Google Scholar 

  36. Liang F, Wang Y, Sun XS (1999) Curing process and mechanical properties of protein-based polymers. J Polym Eng 19:383

    Article  Google Scholar 

  37. Jane J-L, Wang S (1996) Soy protein-based thermoplastic composition for preparing molded articles, U.S. Patent 5523293

    Google Scholar 

  38. Huang H (1994) Ph.D. thesis. Iowa State University, Ames

    Google Scholar 

  39. Paetau I, Chen C-Z, Jane J (1994) Biodegradable plastic made from soybean products. Effect of preparation and processing on mechanical properties and water absorption. Ind Eng Chem Res 33:1821

    Article  Google Scholar 

  40. Omrani E, Barari B, Moghadam AD, Rohatgi PK, Krishna MP (2015) Mechanical and tribological properties of self-lubricating bio-based carbon-fabric epoxy composites made using liquid composite molding. Tribol Int 92:222–232

    Article  Google Scholar 

  41. Essabir H, Bensalahb MO, Rodriguec D, Bouhfida R, Qaissa A (2016) Structural, mechanical and thermal properties of bio-based hybrid composites from waste coir residues: fibers and shell particles. Mech Mater 93:134–144

    Article  Google Scholar 

  42. Paul V, Kanny K, Redhi GG (2015) Mechanical, thermal and morphological properties of a bio-based composite derived from banana plant source. Compos Part A 68:90–100

    Article  Google Scholar 

  43. Pan P, Zhu B, Kai W, Serizawa S, Iji M, Inoue Y (2007) Crystallization behavior and mechanical properties of bio-based green composites based on poly(L-lactide) and Kenaf fiber. Wiley Inter Science. J of App Poly Sci 105:1511–1520

    Google Scholar 

  44. Mavrakis C, Kiosseoglou V (2008) The structural characteristics and mechanical properties of biopolymer/mastic gum microsized particles composites. Food Hydrocoll 22:854–861

    Article  Google Scholar 

  45. Ma X, Li R, Zhao X, Ji Q, **ng Y, Sunarso J, **a Y (2017) Biopolymer composite fibres composed of calcium alginate reinforced with nanocrystalline cellulose. Compos Part A 96:155–163

    Article  Google Scholar 

  46. Dahy H (2017) Biocomposite materials based on annual natural fibres and biopolymers design, fabrication and customized applications in architecture. Constr Build Mater 147:212–220

    Article  Google Scholar 

  47. Wang R, Zhang J, Kang H, Zhang L (2016) Design, preparation and properties of bio-based elastomer compositesaiming at engineering applications. Compos Sci Technol 133:136–156

    Article  Google Scholar 

  48. Castillo LA, Lopez OV, Ghilardi J, Villar MA, Barbosa SE, Alejandra García M (2015) Thermoplastic starch/talc bionanocomposites. Influence of particle morphology on final properties. Food Hydrocoll 51:432–440

    Article  Google Scholar 

  49. Frollini E, Bartolucci N, Sisti L, Celli A (2015) Biocomposites based on poly(butylene succinate) and curaua: mechanical and morphological properties. Polym Test 45:168–173

    Article  Google Scholar 

  50. Wang Y, Yu L, **e F, Zhang L, Liao L, Liu H, Chen L (2016) Morphology and properties of thermal/cooling-gel bi-phasic systems based on hydroxypropyl methylcellulose and hydroxypropyl starch. Compos Part B 101:46

    Article  Google Scholar 

  51. Zhilong Y, Alsammarraie FK, Nayigiziki FX, Wang W, Vardhanabhuti B, Azlin Mustapha Ν, Lin M (2017) Effect and mechanism of cellulose nanofibrils on the active functions ofbiopolymer-based nanocomposite films. Food Res Int 99:166–172

    Article  Google Scholar 

  52. Chen Y, Shen C, Rashid S, Li S, Ali BA, Liu J (2017) Biopolymer-induced morphology control of brushite for enhanced defluorination of drinking water. J Colloid Interface Sci 491:207–215

    Article  Google Scholar 

  53. Enriquez E, Mohanty AK, Misra M (2016) Biobased polymer blends of poly(trimethylene terephthalate) and high density polyethylene. Mater Des 90:984–990

    Article  Google Scholar 

  54. Torres-Tello EV, Robledo-Ortíz JR, González-García Y, Pérez-Fonseca AA, Jasso-Gastinel CF, Mendizábal E (2017) Effect of agave fiber content in the thermal and mechanical properties of green composites based on polyhydroxybutyrate or poly(hydroxybutyrate-co-hydroxyvalerate). Ind Crop Prod 99:117–125

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Verma, D., Fortunati, E. (2019). Biobased and Biodegradable Plastics. In: Martínez, L., Kharissova, O., Kharisov, B. (eds) Handbook of Ecomaterials. Springer, Cham. https://doi.org/10.1007/978-3-319-68255-6_103

Download citation

Publish with us

Policies and ethics

Navigation