Mathematical Problems in Thin Elastic Sheets: Scaling Limits, Packing, Crumpling and Singularities

  • Chapter
  • First Online:
Vector-Valued Partial Differential Equations and Applications

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2179))

  • 1627 Accesses

Abstract

Thin elastic objects have fascinated mathematicians and engineers for centuries and more recently have also become an object of intense study in theoretical physics, biology and material design. While there have been a number of mathematical theories for thin elastic objects for a long time, a new rigorous variational approach has only emerged more recently. In these lectures I will review some of the variational tools which have emerged and discuss a number of open and challenging problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 37.44
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 44.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Abels, M.G. Mora, S. Müller, Large time existence for thin vibrating plates. Commun. Partial Differ. Equ. 36 (12), 2062–2102 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Abels, M.G. Mora, S. Müller, The time-dependent von Kármán plate equation as a limit of 3d nonlinear elasticity. Calc. Var. 41 (1–2), 241–259 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. E. Acerbi, G. Buttazzo, D. Percivale, A variational definition of the strain energy for an elastic string. J. Elast. 25 (2), 137–148 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  4. G Alberti, Variational models for phase transitions, an approach via Γ-convergence, in Calculus of Variations and Partial Differential Equations (Pisa, 1996) (Springer, Berlin, 2000), pp. 95–114

    Google Scholar 

  5. S.S. Antman, Nonlinear problems of elasticity. Applied Mathematical Sciences, 2nd edn., vol. 107. (Springer, New York, 2005)

    Google Scholar 

  6. M. Arroyo, L. Heltai, D. Millán, A. DeSimone, Reverse engineering the euglenoid movement. Proc. Natl. Acad. Sci. U. S. A. 109 (44), 17874–17879 (2012)

    Article  Google Scholar 

  7. B. Audoly, A. Boudaoud, Self-similar structures near boundaries in strained systems. Phys. Rev. Lett. 91 (8), 086105 (2003)

    Google Scholar 

  8. B. Audoly, Y. Pomeau, Elasticity and Geometry - from Hair Curls to the Non-linear Response of Shells (Oxford University Press, Oxford, 2010)

    MATH  Google Scholar 

  9. J.M. Ball, Minimizers and the Euler-Lagrange equations, in Trends and Applications of Pure Mathematics to Mechanics (Palaiseau, 1983) (Springer, Berlin, 1984), pp. 1–4

    Google Scholar 

  10. J.M. Ball, Some open problems in elasticity, in Geometry, Mechanics and Dynamics (Marsden Festschrift) (Springer, New York, 2002), pp. 3–59

    Book  Google Scholar 

  11. J. Bedrossian, R.V. Kohn, Blister patterns and energy minimization in compressed thin films on compliant substrates. Commun. Pure Appl. Math. 68 (3), 472–510 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Bella, R.V. Kohn, Metric-induced wrinkling of a thin elastic sheet. J. Nonlinear Sci. 24 (6), 1147–1176 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. P. Bella, R.V. Kohn, Wrinkles as the result of compressive stresses in an annular thin film. Commun. Pure Appl. Math. 67 (5), 693–747 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Bella, R.V. Kohn, The coarsening of folds in hanging drapes (2015). ar**v.org, 1507.08034v1

    Google Scholar 

  15. H. Ben Belgacem, S. Conti, A. DeSimone, S. Müller, Rigorous bounds for the Föppl-von Kármán theory of isotropically compressed plates. J. Nonlinear Sci. 10 (6), 661–683 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Ben Belgacem, S. Conti, A. DeSimone, S. Müller, Energy scaling of compressed elastic films - three-dimensional elasticity and reduced theories. Arch. Ration. Mech. Anal. 164 (1), 1–37 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. K. Bhattacharya, M. Lewicka, M. Schäffner, Plates with incompatible prestrain. Arch. Ration. Mech. Anal. 221 (1), 143–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Bourne, S. Conti, S. Müller, Folding patterns in partially delaminated thin films (2015). ar**v.org, 1512.06320v1

    Google Scholar 

  19. D.P. Bourne, S. Conti, S. Müller, Energy bounds for a compressed elastic film on a substrate. J. Nonlinear Sci. 27, 453–494 (2017)

    Article  MathSciNet  Google Scholar 

  20. A. Braides, Γ-convergence for beginners. Oxford Lecture Series in Mathematics and Its Applications, vol. 22. (Oxford University Press, Oxford, 2002)

    Google Scholar 

  21. J. Brandman, R.V. Kohn, H.-M. Nguyen, Energy scaling laws for conically constrained thin elastic sheets. J. Elast. 113 (2), 251–264 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. E. Cerda, L. Mahadevan, Conical surfaces and crescent singularities in crumpled sheets. Phys. Rev. Lett. 80 (11), 2358–2361 (1998)

    Article  Google Scholar 

  23. E. Cerda, L. Mahadevan, Confined developable elastic surfaces: cylinders, cones and the Elastica. Proc. R Soc. A-Math. Phys. Eng. Sci. 461 (2055), 671–700 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. E. Cerda, L. Mahadevan, J.M. Pasini, The elements of dra**. Proc. Natl. Acad. Sci. U. S. A. 101 (7), 1806–1810 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  25. P.G. Ciarlet, A justification of the von Kármán equations. Arch. Ration. Mech. Anal. 73 (4), 349–389 (1980)

    Article  MATH  Google Scholar 

  26. P.G. Ciarlet, Mathematical elasticity. Vol. II. Studies in Mathematics and Its Applications, vol. 27 (North-Holland, Amsterdam, 1997)

    Google Scholar 

  27. S. Conti, Low energy deformations of thin elastic plates: isometric embeddings and branching patterns. Habilitation thesis, University Leipzig, 2003

    MATH  Google Scholar 

  28. S. Conti, F. Maggi, Confining thin elastic sheets and folding paper. Arch. Ration. Mech. Anal. 187 (1), 1–48 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. S. Conti, F. Maggi, S. Müller, Rigorous derivation of Föppl’s theory for clamped elastic membranes leads to relaxation. SIAM J. Math. Anal. 38 (2), 657–680 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. S. Conti, G. Dolzmann, S. Müller, Korn’s second inequality and geometric rigidity with mixed growth conditions. Calc. Var. 50 (1–2), 437–454 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. S. Conti, H. Olbermann, I. Tobasco, Symmetry breaking in indented elastic cones. Math. Models Methods Appl. Sci. 27 (2), 291–321 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  32. G. Dal Maso, An Introduction to Γ-convergence. Progress in Nonlinear Differential Equations and their Applications, vol. 8 (Birkhäuser, Boston, 1993)

    Google Scholar 

  33. B. Davidovitch, R.D Schroll, D. Vella, M. Adda-Bedia, E.A. Cerda, Prototypical model for tensional wrinkling in thin sheets. Proc. Natl. Acad. Sci. U. S. A. 108 (45), 18227–18232 (2011)

    Google Scholar 

  34. E. De Giorgi, T. Franzoni, Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend. 58 (6), 842–850 (1975)

    MathSciNet  MATH  Google Scholar 

  35. C. De Lellis, S. Müller, Optimal rigidity estimates for nearly umbilical surfaces. J. Differ. Geom. 69, 75–110 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. C. De Lellis, S. Müller, A C 0 estimate for nearly umbilical surfaces. Calc. Var. 26 (3), 283–296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. E. Efrati, E. Sharon, R. Kupferman, Elastic theory of unconstrained non-Euclidean plates. J. Mech. Phys. Solids 57 (4), 762–775 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. E.T. Filipov, T. Tachi, G.H. Paulino, Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials. Proc. Natl. Acad. Sci. U. S. A. 112 (40), 12321–12326 (2015)

    Article  Google Scholar 

  39. A. Föppl, Vorlesungen über technische Mechanik, vol. 5. (B.G. Teubner, Leipzig, 1907)

    MATH  Google Scholar 

  40. G. Friesecke, R.D. James, S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Commun. Pure Appl. Math. 55 (11), 1461–1506 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  41. G. Friesecke, R.D. James, M.G. Mora, S. Müller, Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by Gamma-convergence. C.R. Math. Acad. Sci. Paris 336 (8), 697–702 (2003)

    Google Scholar 

  42. G. Friesecke, R.D. James, S. Müller, A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence. Arch. Ration. Mech. Anal. 180 (2), 183–236 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. J. Gemmer, E. Sharon, T. Shearman, S.C. Venkataramani, Isometric immersions, energy minimization and self-similar buckling in non-Euclidean elastic sheets (2016). ar**v.org, 1601.06863v2

    Google Scholar 

  44. G. Gioia, M. Ortiz, Delamination of compressed thin films. Adv. Appl. Mech. 33, 119–192 (1997)

    Article  MATH  Google Scholar 

  45. Y. Grabovsky, D. Harutyunyan, Exact scaling exponents in Korn and Korn-type inequalities for cylindrical shells. SIAM J. Math. Anal. 46 (5), 3277–3295 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Y. Grabovsky, D. Harutyunyan, Rigorous derivation of the formula for the buckling load in axially compressed circular cylindrical shells. J. Elast. 120 (2), 249–276 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. Y. Grabovsky, D. Harutyunyan, Korn inequalities for shells with zero Gaussian curvature (2016). ar**v.org, 1602.03601v1

    Google Scholar 

  48. R.M. Head, E.J. Sechler, Normal pressure tests on unstiffened flat plates. Technical Report, National Advisory Committee for Aeronautics, 1944 Available from the NASA technical reports server, http://ntrs.nasa.gov/search.jsp?R=19930086088.

  49. P. Hornung, Approximation of flat W 2, 2 isometric immersions by smooth ones. Arch. Ration. Mech. Anal. 199 (3), 1015–1067 (2011)

    Google Scholar 

  50. P. Hornung, Euler-Lagrange equation and regularity for flat minimizers of the Willmore functional. Commun. Pure Appl. Math. 64 (3), 367–441 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. W. **, P. Sternberg, Energy estimates for the von Kármán model of thin-film blistering. J. Math. Phys. 42 (1), 192–199 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  52. F. John, Rotation and strain. Commun. Pure Appl. Math. 14, 391–413 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  53. F. John, Bounds for deformations in terms of average strains, in Inequalities, III (Proc. Third Sympos., Univ. California, Los Angeles, Calif., 1969; dedicated to the memory of Theodore S. Motzkin) (Academic Press, New York, 1972), pp. 129–144

    Google Scholar 

  54. B. Kirchheim, Rigidity and geometry of microstructures. Habilitation thesis, University Leipzig, 2001; See also Lecture Notes MPI Mathematics in the Sciences, vol. 16, Leipzig, 2003 http://www.mis.mpg.de/publications/other-series/ln/lecturenote-1603.html.

  55. G. Kirchhoff, Über das Gleichgewicht und die Bewegung einer elastischen Scheibe. J. Reine Angew. Math. [Crelle’s J.] 40, 55–88 (1850)

    Google Scholar 

  56. Y. Klein, E. Efrati, E. Sharon, Sha** of elastic sheets by prescription of non-Euclidean metrics. Science 315 (5815), 1116–1120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  57. Y. Klein, S. Venkataramani, E. Sharon, Experimental study of shape transitions and energy scaling in thin non-Euclidean plates. Phys. Rev. Lett. 106 (11) (2011)

    Google Scholar 

  58. R.V. Kohn, New integral estimates for deformations in terms of their nonlinear strains. Arch. Ration. Mech. Anal. 78 (2), 131–172 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  59. R.V. Kohn, H.-M. Nguyen, Analysis of a compressed thin film bonded to a compliant substrate: the energy scaling law. J. Nonlinear Sci. 23 (3), 343–362 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  60. E.M. Kramer, T.A. Witten, Stress condensation in crushed elastic manifolds. Phys. Rev. Lett. 78 (7), 1303–1306 (1997)

    Article  Google Scholar 

  61. N.H. Kuiper, On C 1-isometric imbeddings. I, II. Nederl. Akad. Wetensch. Proc. Ser. A. 17, 545–556, 683–689 (1955); (Indag. Math. vol. 58).

    Google Scholar 

  62. R. Kupferman, C. Maor, Limits of elastic models of converging Riemannian manifolds. Calc. Var. Partial Differ. Eqn. 55 (2), Article ID 40, 22 p. (2016). doi:10.1007/s00526-016-0979-6

    Google Scholar 

  63. R. Kupferman, J.P. Solomon, A Riemannian approach to reduced plate, shell, and rod theories. J. Funct. Anal. 266 (5), 2989–3039 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  64. H. Le Dret, A. Raoult, Le modèle de membrane non linéaire comme limite variationnelle de l’élasticité non linéaire tridimensionnelle. C. R. Seances Acad. Sci. D. Sér. I. Math. 317 (2), 221–226 (1993)

    MATH  Google Scholar 

  65. H. Le Dret, A. Raoult, The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. Neuvième Série 74 (6), 549–578 (1995)

    MathSciNet  MATH  Google Scholar 

  66. H. Le Dret, A. Raoult, The membrane shell model in nonlinear elasticity: a variational asymptotic derivation. J. Nonlinear Sci. 6 (1), 59–84 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  67. M. Lecumberry, S. Müller, Stability of slender bodies under compression and validity of the von Kármán theory. Arch. Ration. Mech. Anal. 193 (2), 255–310 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  68. M. Lewicka, H. Li, Convergence of equilibria for incompressible elastic plates in the von Kármán regime. Commun. Pure Appl. Anal. 14 (1), 143–166 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  69. M. Lewicka, M.R. Pakzad, The infinite hierarchy of elastic shell models: some recent results and a conjecture, in Infinite Dimensional Dynamical Systems. Fields Institute Communications, vol. 64 (Springer, New York, 2013), pp. 407–420

    Google Scholar 

  70. M. Lewicka, L. Mahadevan, M.R. Pakzad, The Föppl-von Kármán equations for plates with incompatible strains. R. Soc. Lond. Proc. Ser A. Math. Phys. Eng. Sci. 467 (2126), 402–426 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  71. M. Lewicka, M.G. Mora, M.R. Pakzad, The matching property of infinitesimal isometries on elliptic surfaces and elasticity of thin shells. Arch. Ration. Mech. Anal. 200 (3), 1023–1050 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  72. M. Lewicka, P. Ochoa, M.R. Pakzad, Variational models for prestrained plates with Monge-Ampère constraint. Differ. Integral Equ. 28 (9–10), 861–898 (2015)

    MATH  Google Scholar 

  73. T. Liang, T.A. Witten, Crescent singularities in crumpled sheets. Phys. Rev. E. Statistical, Nonlinear Soft Matter Phys. 71 (1), 016612 (2005)

    Google Scholar 

  74. F.C. Liu, A Luzin type property of Sobolev functions. Indiana Univ. Math. J. 26 (4), 645–651 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  75. A. Lobkovsky, S. Gentges, H. Li, D. Morse, T.A. Witten, Scaling properties of stretching ridges in a crumpled elastic sheet. Science 270 (5241), 1482–1485 (1995)

    Article  Google Scholar 

  76. A. Mielke, Saint-Venant’s problem and semi-inverse solutions in nonlinear elasticity. Arch. Ration. Mech. Anal. 102 (3), 205–229 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  77. R. Monneau, Justification of the nonlinear Kirchhoff-Love theory of plates as the application of a new singular inverse method. Arch. Ration. Mech. Anal. 169 (1), 1–34 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  78. M.G. Mora, S. Müller, Derivation of the nonlinear bending-torsion theory for inextensible rods by Gamma-convergence. Calc. Var. 18 (3), 287–305 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  79. M.G. Mora, S. Müller, A nonlinear model for inextensible rods as a low energy Gamma-limit of three-dimensional nonlinear elasticity. Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (3), 271–293 (2004)

    MathSciNet  MATH  Google Scholar 

  80. M.G. Mora, S. Müller, Convergence of equilibria of three-dimensional thin elastic beams. Proc. R. Soc. Edinb. Sec. A. Math. 138 (4), 873–896 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  81. M.G. Mora, L. Scardia, Convergence of equilibria of thin elastic plates under physical growth conditions for the energy density. J. Differ. Equ. 252 (1), 35–55 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  82. M.G. Mora, S. Müller, M.G. Schultz, Convergence of equilibria of planar thin elastic beams. Indiana Univ. Math. J. 56 (5), 2413–2438 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  83. M. Moshe, I. Levin, H. Aharoni, R. Kupferman, E. Sharon, Geometry and mechanics of two-dimensional defects in amorphous materials. Proc. Natl. Acad. Sci. U. S. A. 112 (35), 10873–10878 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  84. S. Müller, H. Olbermann, Energy scaling for conical singularities in thin elastic sheets. Oberwolfach Rep. 9 (3), 2233–2236 (2012); Abstracts from the workshop held July 22–28, 2012, Organized by Camillo De Lellis, Gerhard Huisken and Robert Jerrard

    Google Scholar 

  85. S. Müller, H. Olbermann, Almost conical deformations of thin sheets with rotational symmetry. SIAM J. Math. Anal. 46 (1), 25–44 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  86. S. Müller, H. Olbermann, Conical singularities in thin elastic sheets. Cal. Var. 49 (3–4), 1177–1186 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  87. S. Müller, M.R. Pakzad, Convergence of equilibria of thin elastic plates–the von Kármán case. Commun. Partial Differ. Equ. 33 (4–6), 1018–1032 (2008)

    Article  MATH  Google Scholar 

  88. S. Müller, M. Röger, Confined structures of least bending energy. J. Differ. Geom. 97 (1), 109–139 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  89. F. Murat, Compacité par compensation. Ann. Sc. Norm. Super. Pisa Cl. Sci. Ser. IV 5 (3), 489–507 (1978)

    MathSciNet  MATH  Google Scholar 

  90. J. Nash, C 1 isometric imbeddings. Ann. of Math. (2) 60, 383–396 (1954)

    Google Scholar 

  91. H. Olbermann, The one-dimensional model for d-cones revisited. Adv. Calc. Var. 9 (3), 201–215 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  92. H. Olbermann, Energy scaling law for a single disclination in a thin elastic sheet. Arch. Ration. Mech. Anal. 224 (3), 985–1019 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  93. H. Olbermann, Energy scaling law for the regular cone. J. Nonlinear Sci. 26 (2), 287–314 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  94. H. Olbermann, The shape of low energy configurations of a thin sheet with a single disclination (2017). ar**v.org, 1702.06468v1

    Google Scholar 

  95. M. Ortiz, G. Gioia, The morphology and folding patterns of buckling-driven thin-film blisters. J. Mech. Phys. Solids 42 (3), 531–559 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  96. M.R. Pakzad, On the Sobolev space of isometric immersions. J. Differ. Geom. 66 (1), 47–69 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  97. O. Pantz, Une justification partielle du modèle de plaque en flexion par Γ-convergence. C. R. Seances Acad. Sci. Ser. I. Math 332 (6), 587–592 (2001)

    MathSciNet  MATH  Google Scholar 

  98. O. Pantz, Le modèle de poutre inextensionnelle comme limite de l’elasticité non-linéaire tridimensionnelle, pp. 1–16. Preprint 2002

    Google Scholar 

  99. O. Pantz, On the justification of the nonlinear inextensional plate model. Arch. Ration. Mech. Anal. 167 (3), 179–209 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  100. A.C. Pipkin, Continuously distributed wrinkles in fabrics. Arch. Ration. Mech. Anal. 95 (2), 93–115 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  101. A.C. Pipkin, The relaxed energy density for isotropic elastic membranes. IMA J. Appl. Math. 36 (1), 85–99 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  102. P.M. Reis, F.L. Jimenez, J. Marthelot, Transforming architectures inspired by origami. Proceedings Of The National Academy Of Sciences Of The United States Of America, 112(40):12234–12235, 2015.

    Article  Google Scholar 

  103. E. Reissner, On tension field theory, in 5th International Congress for Applied Mechanics (1938), pp. 88–92

    Google Scholar 

  104. E. Reissner, Selected Works in Applied Mechanics and Mathematics (Jones and Bartlett, London, 1996)

    MATH  Google Scholar 

  105. Y.G. Reshetnyak, Liouville’s theorem on conformal map**s for minimal regularity assumptions. Sib. Math. J. 8, 631–634 (1967)

    Article  MATH  Google Scholar 

  106. Y.G. Reshetnyak, On the stability of conformal map**s in multidimensional spaces. Sib. Math. J. 8, 69–85 (1967)

    Article  MATH  Google Scholar 

  107. Y.G. Reshetnyak, Stability estimates in Liouville’s theorem and the L p integrability of the derivatives of quasi-conformal map**s. Sib. Math. J. 17, 653–674 (1976)

    Article  MATH  Google Scholar 

  108. E. Sharon, B. Roman, M. Marder, G.S. Shin, H.L. Swinney, Mechanics: buckling cascades in free sheets - wavy leaves may not depend only on their genes to make their edges crinkle. Nature 419 (6907), 579–579 (2002)

    Article  Google Scholar 

  109. E. Sharon, M. Marder, H.L. Swinney, Leaves, flowers and garbage bags: making waves. Am. Sci. 92 (3), 254–261 (2004)

    Article  Google Scholar 

  110. J.L. Silverberg, A.A. Evans, L. McLeod, R.C. Hayward, T. Hull, C.D. Santangelo, I. Cohen, Using origami design principles to fold reprogrammable mechanical metamaterials. Science 345 (6197), 647–650 (2014)

    Article  Google Scholar 

  111. L. Tartar, Compensated compactness and applications to partial differential equations, in Nonlinear Analysis and Mechanics: Heriot-Watt Symposium, Vol. IV. Research Notes in Mathematics, vol. 39 (Pitman, Boston, 1979), pp. 136–212

    Google Scholar 

  112. I. Tobasco, Axial compression of a thin elastic cylinder: bounds on the minimum energy scaling law (2016). ar**v.org, 1604.08574v2

    Google Scholar 

  113. C. Truesdell, Some challenges offered to analysis by rational thermomechanics. in Contemporary Developments in Continuum Mechanics and Partial Differential Equations (Proc. Internat. Sympos., Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro) (North-Holland, Amsterdam, 1978), pp. 495–603

    Google Scholar 

  114. S.C. Venkataramani, Lower bounds for the energy in a crumpled elastic sheet—a minimal ridge. Nonlinearity 17 (1), 301–312 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  115. H. Wagner, Ebene Blechwandträger mit sehr dünnem Steigblech. Z. Flugtechnik u. Motorluftschiffahrt 20, 200–207, 227–233, 256–262, 279–284, 306–314 (1929)

    Google Scholar 

  116. T.A. Witten, Stress focusing in elastic sheets. Rev. Mod. Phys. 79 (2), 643–675 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  117. A. Yavari, A. Goriely, Riemann-Cartan geometry of nonlinear dislocation mechanics. Arch. Ration. Mech. Anal. 205 (1), 59–118 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  118. W.P. Ziemer, Weakly differentiable functions. Graduate Texts in Mathematics, vol. 120 (Springer, New York, 1989)

    Google Scholar 

Download references

Acknowledgements

The work reported here would not have been possible without the support and inspiration of many colleagues and friends over a long period of time, in particular S. Conti, G. Friesecke, R.D. James, R.V. Kohn and H. Olbermann. I thank J. M. Ball, P. Marcellini and E. Mascolo for their invitation to prepare these lecture notes and for providing such a delightful and stimulating atmosphere at the C.I.M.E. summer school at Cetraro. I also thank H. Olbermann and R.V. Kohn for a careful reading of the notes and their very helpful suggestions for improvements. In particular R.V. Kohn suggested the structuring into different classes of problems described at the end of Sect. 1.1. Of course responsibility for all remaining errors, omissions and inadequacies rests solely with me.

My work has been supported by the DFG through the CRC 1060 ‘The mathematics of emergent effects’ and the excellence cluster EXC 59 ‘Mathematics: foundations, models, applications’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Müller, S. (2017). Mathematical Problems in Thin Elastic Sheets: Scaling Limits, Packing, Crumpling and Singularities. In: Ball, J., Marcellini, P. (eds) Vector-Valued Partial Differential Equations and Applications. Lecture Notes in Mathematics(), vol 2179. Springer, Cham. https://doi.org/10.1007/978-3-319-54514-1_3

Download citation

Publish with us

Policies and ethics

Navigation