Innate Immune Mechanisms and Herpes Simplex Virus Infection and Disease

  • Chapter
  • First Online:
Cell Biology of Herpes Viruses

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 223))

Abstract

Innate immune responses play a major role in the control of herpes simplex virus (HSV) infections, and a multiplicity of mechanisms have emerged as a result of human evolution to sense and respond to HSV infections. HSV in turn has evolved a number of ways to evade immune detection and to blunt human innate immune responses. In this review, we summarize the major host innate immune mechanisms and the HSV evasion mechanisms that have evolved. We further discuss how disease can result if this equilibrium between virus and host response is disrupted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abe T, Barber GN (2014) Cytosolic-DNA-mediated, STING-dependent proinflammatory gene induction necessitates canonical NF-kappaB activation through TBK1. J Virol 88(10):5328–5341

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Rohl I, Hopfner KP, Ludwig J, Hornung V (2013) cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature 498(7454):380–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad L, Zhang SY, Casanova JL, Sancho-Shimizu V (2016) Human TBK1: a gatekeeper of neuroinflammation. Trends Mol Med 22(6):511–527

    Article  CAS  PubMed  Google Scholar 

  • Alexander DE, Ward SL, Mizushima N, Levine B, Leib DA (2007) Analysis of the role of autophagy in replication of herpes simplex virus in cell culture. J Virol 81:12128–12134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aravalli RN, Hu S, Rowen TN, Palmquist JM, Lokensgard JR (2005) Cutting edge: TLR2-mediated proinflammatory cytokine and chemokine production by microglial cells in response to herpes simplex virus. J Immunol 175(7):4189–4193

    Article  CAS  PubMed  Google Scholar 

  • Bieniasz PD (2004) Intrinsic immunity: a front-line defense against viral attack. Nat Immunol 5:1109–1115

    Article  CAS  PubMed  Google Scholar 

  • Biswas PS, Rouse BT (2005) Early events in HSV keratitis—setting the stage for a blinding disease. Microbes Infect 7(4):799–810

    Article  CAS  PubMed  Google Scholar 

  • Boutell C, Everett RD (2013) Regulation of alphaherpesvirus infections by the ICP0 family of proteins. J Gen Virol 94:465–481

    Article  CAS  PubMed  Google Scholar 

  • Brinkmann MM, Spooner E, Hoebe K, Beutler B, Ploegh HL, Kim YM (2007) The interaction between the ER membrane protein UNC93B and TLR3, 7, and 9 is crucial for TLR signaling. J Cell Biol 177(2):265–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carty M, Reinert L, Paludan SR, Bowie AG (2014) Innate antiviral signalling in the central nervous system. Trends Immunol 35(2):79–87

    Article  CAS  PubMed  Google Scholar 

  • Casrouge A, Zhang SY, Eidenschenk C, Jouanguy E, Puel A, Yang K, Alcais A, Picard C, Mahfoufi N, Nicolas N, Lorenzo L, Plancoulaine S, Senechal B, Geissmann F, Tabeta K, Hoebe K, Du X, Miller RL, Heron B, Mignot C, Billette de Villemeur T, Lebon P, Dulac O, Rozenberg F, Beutler B, Tardieu M, Abel L, Casanova JL (2006) Herpes simplex virus encephalitis in human UNC-93B deficiency. Science 314:308–312

    Article  CAS  PubMed  Google Scholar 

  • Catez F, Picard C, Held K, Gross S, Rousseau A, Theil D, Sawtell N, Labetoulle M, Lomonte P (2012) HSV-1 genome Subnuclear positioning and associations with host-cell PML-NBs and centromeres regulate LAT locus transcription during latency in neurons. PLoS Pathog 8:e1002852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chee AV, Lopez P, Pandolfi PP, Roizman B (2003) Promyelocytic leukemia protein mediates interferon-based anti-herpes simplex virus 1 effects. J Virol 77:7101–7105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chelbi-Alix MK, de The H (1999) Herpes virus induced proteasome-dependent degradation of the nuclear bodies-associated PML and Sp100 proteins. Oncogene 18:935–941

    Article  CAS  PubMed  Google Scholar 

  • Cheshenko N, Del Rosario B, Woda CV, Mercellimo D, Satlin LM, Herold BC (2003) Herpes simplex virus triggers activation of calcium-signaling pathways. J Cell Biol 163:283–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiu YH, Macmillan JB, Chen ZJ (2009) RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell Biochem Biophys 138:576–591

    CAS  Google Scholar 

  • Chou J, Kern ER, Whitley RJ, Roizman B (1990) Map** of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. Science 250(4985):1262–1266

    Article  CAS  PubMed  Google Scholar 

  • Choubey D, Snoddy J, Chaturvedi V, Toniato E, Opdenakker G, Thakur A, Samanta H, Engel DA, Lengyel P (1989) Interferons as gene activators. Indications for repeated gene duplication during the evolution of a cluster of interferon-activatable genes on murine chromosome 1. J Biol Chem 264(29):17182–17189

    CAS  PubMed  Google Scholar 

  • Christensen MH, Jensen SB, Miettinen JJ, Luecke S, Prabakaran T, Reinert LS, Mettenleiter T, Chen ZJ, Knipe DM, Sandri-Goldin RM, Enquist LW, Hartmann R, Mogensen TH, Rice SA, Nyman TA, Matikainen S, Paludan SR (2016) HSV-1 ICP27 targets the TBK1-activated STING signalsome to inhibit virus-induced type I IFN expression. EMBO J 35(13):1385–1399

    Article  CAS  PubMed  Google Scholar 

  • Collins SE, Noyce RS, Mossman KL (2004) Innate cellular response to virus particle entry requires IRF3 but not virus replication. J Virol 78:1706–1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrady CD, Zheng M, Fitzgerald KA, Liu C, Carr DJ (2012) Resistance to HSV-1 infection in the epithelium resides with the novel innate sensor, IFI-16. Mucosal Immunol 5:173–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuchet-Lourenco D, Anderson G, Sloan E, Orr A, Everett RD (2013) The viral ubiquitin ligase ICP0 is neither sufficient nor necessary for degradation of the cellular DNA sensor IFI16 during herpes simplex virus 1 infection. J Virol 87(24):13422–13432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davey GM, Wojtasiak M, Proietto AI, Carbone FR, Heath WR, Bedoui S (2010) Cutting edge: priming of CD8 T cell immunity to herpes simplex virus type 1 requires cognate TLR3 expression in vivo. J Immunol 184(5):2243–2246

    Article  CAS  PubMed  Google Scholar 

  • de Weerd N, Samarajiwa S, Hertzog P (2007) Type I interferon receptors: biochemistry and biological functions. J Biol Chem 282:20053–20057

    Article  PubMed  CAS  Google Scholar 

  • Diner EJ, Burdette DL, Wilson SC, Monroe KM, Kellenberger CA, Hyodo M, Hayakawa Y, Hammond MC, Vance RE (2013) The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep 3(5):1355–1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubin G, Socolof E, Frank I, Friedman HM (1991) Herpes simplex virus type 1 Fc receptor protects infected cells from antibody-dependent cellular cytotoxicity. J Virol 65:7046–7050

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta D, Dutta S, Veettil MV, Roy A, Ansari MA, Iqbal J, Chikoti L, Kumar B, Johnson KE, Chandran B (2015) BRCA1 regulates IFI16 mediated nuclear innate sensing of herpes viral DNA and subsequent induction of the innate inflammasome and interferon-beta responses. PLoS Pathog 11(6):e1005030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Everett RD, Freemont P, Saitoh H, Dasso M, Orr A, Kathoria M, Parkinson J (1998) The disruption of ND10 during herpes simplex virus infection correlates with the Vmw110- and proteasome-dependent loss of several PML isoforms. J Virol 72:6581–6591

    CAS  PubMed  PubMed Central  Google Scholar 

  • Everett RD, Murray J (2005) ND10 components relocate to sites associated with herpes simplex virus type 1 nucleoprotein complexes during virus infection. J Virol 79(8):5078–5089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Everett RD, Rechter S, Papior P, Tavalai N, Stamminger T, Orr A (2006) PML contributes to a cellular mechanism of repression of herpes simplex virus type 1 infection that is inactivated by ICP0. J Virol 80:7995–8005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandez MA, Evans IA, Hassan EH, Carbone FR, Jones CA (2008) Neonatal CD8+ T cells are slow to develop into lytic effectors after HSV infection in vivo. Eur J Immunol 38(1):102–113

    Article  CAS  PubMed  Google Scholar 

  • Frank Y, Lim W, Kahn E (1989) Multiple ischemic infarcts in a child with acquired immunodeficiency syndrome, varicella zoster infection, and cerebral vasculitis. Pediatr Neurol 5:64–67

    Article  CAS  PubMed  Google Scholar 

  • Freeman EE, Weiss HA, Glynn JR, Cross PL, Whitworth JA, Hayes RJ (2006) Herpes simplex virus 2 infection increases HIV acquisition in men and women: systematic review and meta-analysis of longitudinal studies. AIDS 20:73–83

    Article  PubMed  Google Scholar 

  • Friedman HM, Cohen GH, Eisenberg RJ, Seidel CA, Cines DB (1984) Glycoprotein C of herpes simplex virus 1 acts as a receptor for the C3b complement component on infected cells. Nature 309:633–635

    Article  CAS  PubMed  Google Scholar 

  • Friedman HM, Glorioso JC, Cohen GH, Hastings JC, Harris SL, Eisenberg RJ (1986) Binding of complement component C3b to glycoprotein gC of herpes simplex virus type 1: map** of gC-binding sites and demonstration of conserved C3b binding in low-passage clinical isolates. J Virol 60:470–475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gianni T, Campadelli-Fiume G (2014) The epithelial alphavbeta3-integrin boosts the MYD88-dependent TLR2 signaling in response to viral and bacterial components. PLoS Pathog 10(11):e1004477

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gianni T, Leoni V, Campadelli-Fiume G (2013) Type I interferon and NF-kappaB activation elicited by herpes simplex virus gH/gL via alphavbeta3 integrin in epithelial and neuronal cell lines. J Virol 87(24):13911–13916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glass M, Everett RD (2013) Components of promyelocytic leukemia nuclear bodies (ND10) act cooperatively to repress herpesvirus infection. J Virol 87:2174–2185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Audry M, Ciancanelli M, Alsina L, Azevedo J, Herman M, Anguiano E, Sancho-Shimizu V, Lorenzo L, Pauwels E, Philippe PB, Perez de Diego R, Cardon A, Vogt G, Picard C, Andrianirina ZZ, Rozenberg F, Lebon P, Plancoulaine S, Tardieu M, Valerie D, Jouanguy E, Chaussabel D, Geissmann F, Abel L, Casanova JL, Zhang SY (2011) Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. J Exp Med 208:2083–2098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo H, Omoto S, Harris PA, Finger JN, Bertin J, Gough PJ, Kaiser WJ, Mocarski ES (2015) Herpes simplex virus suppresses necroptosis in human cells. Cell Host Microbe 17(2):243–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hare DN, Collins SE, Mukherjee S, Loo YM, Gale M Jr, Janssen LJ, Mossman KL (2016) Membrane perturbation-associated Ca2+ signaling and incoming genome sensing are required for the host response to low-level enveloped virus particle entry. J Virol 90(6):3018–3027

    Article  CAS  PubMed Central  Google Scholar 

  • He B, Gross M, Roizman B (1997) The gamma (1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1 alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci USA 94:843–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herman M, Ciancanelli M, Ou YH, Lorenzo L, Klaudel-Dreszler M, Pauwels E, Sancho-Shimizu V, Perez de Diego R, Abhyankar A, Israelsson E, Guo Y, Cardon A, Rozenberg F, Lebon P, Tardieu M, Heropolitanska-Pliszka E, Chaussabel D, White MA, Abel L, Zhang SY, Casanova JL (2012) Heterozygous TBK1 mutations impair TLR3 immunity and underlie herpes simplex encephalitis of childhood. J Exp Med 209(9):1567–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holm CK, Jensen SB, Jakobsen MR, Cheshenko N, Horan KA, Moeller HB, Gonzalez-Dosal R, Rasmussen SB, Christensen MH, Yarovinsky TO, Rixon FJ, Herold BC, Fitzgerald KA, Paludan SR (2012) Virus-cell fusion as a trigger of innate immunity dependent on the adaptor STING. Nat Immunol 13(8):737–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horan KA, Hansen K, Jakobsen MR, Holm CK, Soby S, Unterholzner L, Thompson M, West JA, Iversen MB, Rasmussen SB, Ellermann-Eriksen S, Kurt-Jones E, Landolfo S, Damania B, Melchjorsen J, Bowie AG, Fitzgerald KA, Paludan SR (2013) Proteasomal degradation of herpes simplex virus capsids in macrophages releases DNA to the cytosol for recognition by DNA sensors. J Immunol 190(5):2311–2319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, Latz E, Fitzgerald KA (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsiung GD, Mayo DR, Lucia HL, Landry ML (1984) Genital herpes: pathogenesis and chemotherapy in the Guinea pig model. Rev Infect Dis 6(1):33–50

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa H, Ma Z, Barber GN (2009) STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461:788–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishov AM, Maul GG (1996) The periphery of nuclear domain 10 (ND10) as site of DNA virus deposition. J Cell Biol 134(4):815–826

    Article  CAS  PubMed  Google Scholar 

  • Jacquemont B, Roizman B (1975) Ribonucleic acid synthesis in cells infected with herpes simplex virus: characterization of viral high molecular weight nuclear RNA. J Gen Virol 29:155–165

    Article  CAS  PubMed  Google Scholar 

  • Johnson KE, Knipe DM (2010) Herpes simplex virus-1 infection causes the secretion of a type I interferon-antagonizing protein and inhibits signaling at or before Jak-1 activation. Virology 396(1):21–29

    Article  CAS  PubMed  Google Scholar 

  • Johnson KE, Song B, Knipe DM (2008) Role for herpes simplex virus 1 ICP27 in the inhibition of type I interferon signaling. Virology 374(2):487–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson KE, Chikoti L, Chandran B (2013) Herpes simplex virus 1 infection induces activation and subsequent inhibition of the IFI16 and NLRP3 inflammasomes. J Virol 87(9):5005–5018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson KE, Bottero V, Flaherty S, Dutta S, Singh VV, Chandran B (2014) IFI16 restricts HSV-1 replication by accumulating on the HSV-1 genome, repressing HSV-1 gene expression, and directly or indirectly modulating histone modifications. PLoS Pathog 10(11):e1004503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karaba AH, Kopp SJ, Longnecker R (2012) Herpesvirus entry mediator is a serotype specific determinant of pathogenesis in ocular herpes. Proc Natl Acad Sci USA 109(50):20649–20654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katzenell S, Leib DA (2016) Herpes simplex virus and interferon signaling induce novel autophagic clusters in sensory neurons. J Virol 90(9):4706–4719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kerur N, Veettil MV, Sharma-Walia N, Bottero V, Sadagopan S, Otageri P, Chandran B (2011) IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection. Cell Host Microbe 9(5):363–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khoury-Hanold W, Yordy B, Kong P, Kong Y, Ge W, Szigeti-Buck K, Ralevski A, Horvath TL, Iwasaki A (2016) Viral spread to enteric neurons links genital HSV-1 infection to toxic megacolon and lethality. Cell Host Microbe 19(6):788–799

    Article  CAS  PubMed  Google Scholar 

  • Kim YM, Brinkmann MM, Paquet ME, Ploegh HL (2008) UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes. Nature 452(7184):234–238

    Article  CAS  PubMed  Google Scholar 

  • Knipe DM (2015) Nuclear sensing of viral DNA, epigenetic regulation of herpes simplex virus infection, and innate immunity. Virology 479-480:153–159

    Article  CAS  PubMed  Google Scholar 

  • Kollias CM, Huneke RB, Wigdahl B, Jennings SR (2015) Animal models of herpes simplex virus immunity and pathogenesis. J Neurovirol 21(1):8–23

    Article  CAS  PubMed  Google Scholar 

  • Kopp SJ, Banisadr G, Glajch K, Maurer UE, Grunewald K, Miller RJ, Osten P, Spear PG (2009) Infection of neurons and encephalitis after intracranial inoculation of herpes simplex virus requires the entry receptor nectin-1. Proc Natl Acad Sci USA 106:17916–17920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopp SJ, Karaba AH, Cohen LK, Banisadr G, Miller RJ, Muller WJ (2013) Pathogenesis of neonatal herpes simplex 2 disease in a mouse model is dependent on entry receptor expression and route of inoculation. J Virol 87(1):474–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopp SJ, Ranaivo HR, Wilcox DR, Karaba AH, Wainwright MS, Muller WJ (2014) Herpes simplex virus serotype and entry receptor availability alter CNS disease in a mouse model of neonatal HSV. Pediatr Res 76(6):528–534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krug A, Luker GD, Barchet W, Leib DA, Akira S, Colonna M (2004) Herpes simplex virus type 1 activates murine natural interferon-producing cells through toll-like receptor 9. Blood 103:1433–1437

    Article  CAS  PubMed  Google Scholar 

  • Kumar H, Kawai T, Akira S (2011) Pathogen recognition by the innate immune system. Int Rev Immunol 30(1):16–34

    Article  CAS  PubMed  Google Scholar 

  • Kurt-Jones E, Knipe DM, unpublished results.

    Google Scholar 

  • Kurt-Jones EA, Chan M, Zhou S, Wang J, Reed G, Bronson R, Arnold MM, Knipe DM, Finberg RW (2004) Herpes simplex virus 1 interaction with toll-like receptor 2 contributes to lethal encephalitis. Proc Natl Acad Sci USA 101(5):1315–1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurt-Jones EA, Belko J, Yu C, Newburger PE, Wang J, Chan M, Knipe DM, Finberg RW (2005) The role of toll-like receptors in herpes simplex infection in neonates. J Infect Dis 191:746–748

    Article  CAS  PubMed  Google Scholar 

  • Kwong AD, Frenkel N (1989) The herpes simplex virus virion host shutoff function. J Virol 63(11):4834–4839

    CAS  PubMed  PubMed Central  Google Scholar 

  • Labzin LI, Lauterbach MA, Latz E (2016) Interferons and inflammasomes: cooperation and counterregulation in disease. J Allergy Clin Immunol 138(1):37–46

    Article  CAS  PubMed  Google Scholar 

  • Lafaille FG, Pessach IM, Zhang SY, Ciancanelli MJ, Herman M, Abhyankar A, Ying SW, Keros S, Goldstein PA, Mostoslavsky G, Ordovas-Montanes J, Jouanguy E, Plancoulaine S, Tu E, Elkabetz Y, Al-Muhsen S, Tardieu M, Schlaeger TM, Daley GQ, Abel L, Casanova JL, Studer L, Notarangelo LD (2012) Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature 491:769–773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leib DA, Harrison TE, Laslo KM, Machalek MA, Moorman NJ, Virgin HW (1999) Interferons regulate the phenotype of wild-type and mutant herpes simplex viruses in vivo. J Exp Med 189(4):663–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leib DA, Machalek MA, Williams BR, Silverman RH, Virgin HW (2000) Specific phenotypic restoration of an attenuated virus by knockout of a host resistance gene. Proc Natl Acad Sci USA 97(11):6097–6101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T, Diner BA, Chen J, Cristea IM (2012) Acetylation modulates cellular distribution and DNA sensing ability of interferon-inducible protein IFI16. Proc Natl Acad Sci USA 109(26):10558–10563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li XD, Wu J, Gao D, Wang H, Sun L, Chen ZJ (2013) Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341(6152):1390–1394

    Article  CAS  PubMed  Google Scholar 

  • Li L, Li Z, Wang E, Yang R, **ao Y, Han H, Lang F, Li X, **a Y, Gao F, Li Q, Fraser NW, Zhou J (2016) Herpes simplex virus 1 infection of tree shrews differs from that of mice in the severity of acute infection and viral transcription in the peripheral nervous system. J Virol 90(2):790–804

    Article  CAS  Google Scholar 

  • Liang L, Roizman B (2006) Herpes simplex virus 1 precludes replenishment of the short-lived receptor of tumor necrosis factor alpha by virion host shutoff-dependent degradation of its mRNA. J Virol 80:7756–7759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lilley CE, Chaurushiya MS, Boutell C, Landry S, Suh J, Panier S, Everett RD, Stewart GS, Durocher D, Weitzman MD (2010) A viral E3 ligase targets RNF8 and RNF168 to control histone ubiquitination and DNA damage responses. EMBO J 29(5):943–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu P, Li K, Garofalo RP, Brasier AR (2008) Respiratory syncytial virus induces RelA release from cytoplasmic 100-kDa NF-kappa B2 complexes via a novel retinoic acid-inducible gene-I{middle dot}NF- kappa B-inducing kinase signaling pathway. J Biol Chem 283(34):23169–23178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lund J, Sato A, Akira S, Medzhitov R, Iwasaki A (2003) Toll-like receptor 9-mediated recognition of herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med 198:513–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma JZ, Russell TA, Spelman T, Carbone FR, Tscharke DC (2014) Lytic gene expression is frequent in HSV-1 latent infection and correlates with the engagement of a cell-intrinsic transcriptional response. PLoS Pathog 10(7):e1004237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Medici MA, Sciortino MT, Perri D, Amici C, Avitabile E, Ciotti M, Balestrieri E, De Smaele E, Franzoso G, Mastino A (2003) Protection by herpes simplex virus glycoprotein D against Fas-mediated apoptosis: role of nuclear factor kappaB. J Biol Chem 278:36059–36067

    Article  CAS  PubMed  Google Scholar 

  • Melchjorsen J, Rintahaka J, Soby S, Horan KA, Poltajainen A, Ostergaard L, Paludan SR, Matikainen S (2010) Early innate recognition of herpes simplex virus in human primary macrophages is mediated via the MDA5/MAVS-dependent and MDA5/MAVS/RNA polymerase III-independent pathways. J Virol 84(21):11350–11358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melroe GT, DeLuca NA, Knipe DM (2004) Herpes simplex virus 1 has multiple mechanisms for blocking virus-induced interferon production. J Virol 78(16):8411–8420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melroe GT, Silva L, Schaffer PA, Knipe DM (2007) Recruitment of activated IRF-3 and CBP/p300 to herpes simplex virus ICP0 nuclear foci: potential role in blocking IFN-beta induction. Virology 360:305–321

    Article  CAS  PubMed  Google Scholar 

  • Menasria R, Boivin N, Lebel M, Piret J, Gosselin J, Boivin G (2013) Both TRIF and IPS-1 adaptor proteins contribute to the cerebral innate immune response against herpes simplex virus 1 infection. J Virol 87(13):7301–7308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merkl P, Knipe DM, manuscript in preparation.

    Google Scholar 

  • Michael BD, Griffiths MJ, Granerod J, Brown D, Keir G, Wnek G, Cox DJ, Vidyasagar R, Borrow R, Parkes LM, Solomon T (2016) The interleukin-1 balance during encephalitis is associated with clinical severity, blood-brain barrier permeability, neuroimaging changes, and disease outcome. J Infect Dis 213(10):1651–1660

    Article  PubMed  Google Scholar 

  • Orvedahl A, Alexander D, Talloczy Z, Sun Q, Wei Y, Zhang W, Burns D, Leib DA, Levine B (2007) HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe 1:23–35

    Article  CAS  PubMed  Google Scholar 

  • Orzalli MH, Knipe DM (2014) Cellular sensing of viral DNA and viral evasion mechanisms. Annu Rev Microbiol 68:477–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orzalli MH, Knipe DM, unpublished results.

    Google Scholar 

  • Orzalli MH, DeLuca NA, Knipe DM (2012) Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein. Proc Natl Acad Sci USA 109(44):E3008–E3017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orzalli MH, Conwell SE, Berrios C, Decaprio JA, Knipe DM (2013) Nuclear interferon-inducible protein 16 promotes silencing of herpesviral and transfected DNA. Proc Natl Acad Sci USA 110(47):E4492–E4501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orzalli MH, Broekema NM, Diner BA, Hancks DC, Elde NC, Cristea IM, Knipe DM (2015) cGAS-mediated stabilization of IFI16 promotes innate signaling during herpes simplex virus infection. Proc Natl Acad Sci USA 112(14):E1773–E1781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orzalli MH, Broekema NM, Knipe DM (2016) Varying roles of herpes simplex virus 1 ICP0 and vhs in loss of cellular IFI16 in different cell types. J Virol 90:8351–8359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paladino P, Cummings DT, Noyce RS, Mossman KL (2006) The IFN-independent response to virus particle entry provides a first line of antiviral defense that is independent of TLRs and retinoic acid-inducible gene I. J Immunol 177:8008–8016

    Article  CAS  PubMed  Google Scholar 

  • Paladino P, Collins SE, Mossman KL (2010) Cellular localization of the herpes simplex virus ICP0 protein dictates its ability to block IRF3-mediated innate immune responses. PLoS One 5:e10428

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paludan SR, Bowie AG, Horan KA, Fitzgerald KA (2011) Recognition of herpesviruses by the innate immune system. Nat Rev Immunol 11(2):143–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papaianni E, El Maadidi S, Schejtman A, Neumann S, Maurer U, Marino-Merlo F, Mastino A, Borner C (2015) Phylogenetically distant viruses use the same BH3-only protein puma to trigger Bax/Bak-dependent apoptosis of infected mouse and human cells. PLoS One 10(6):e0126645

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parker ZM, Murphy AA, Leib DA (2015) Role of the DNA sensor STING in protection from lethal infection following corneal and Intracerebral challenge with herpes simplex virus 1. J Virol 89(21):11080–11091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parkinson J, Lees-Miller SP, Everett RD (1999) Herpes simplex virus type 1 immediate-early protein vmw110 induces the proteasome-dependent degradation of the catalytic subunit of DNA-dependent protein kinase. J Virol 73:650–657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pasieka TJ, Lu B, Crosby SD, Wylie KM, Morrison LA, Alexander DE, Menachery VD, Leib DA (2008) Herpes simplex virus virion host shutoff attenuates establishment of the antiviral state. J Virol 82:5527–5535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasieka TJ, Collins L, O’Connor MA, Chen Y, Parker ZM, Berwin BL, Piwnica-Worms DR, Leib DA (2011) Bioluminescent imaging reveals divergent viral pathogenesis in two strains of Stat1-deficient mice, and in alphassgamma interferon receptor-deficient mice. PLoS One 6(9):e24018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peri P, Mattila RK, Kantola H, Broberg E, Karttunen HS, Waris M, Vuorinen T, Hukkanen V (2008) Herpes simplex virus type 1 Us3 gene deletion influences toll-like receptor responses in cultured monocytic cells. Virol J 5:140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petermann P, Rahn E, Thier K, Hsu MJ, Rixon FJ, Kopp SJ, Knebel-Morsdorf D (2015) Role of nectin-1 and herpesvirus entry mediator as cellular receptors for herpes simplex virus 1 on primary murine dermal fibroblasts. J Virol 89(18):9407–9416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piret J, Boivin G (2015) Innate immune response during herpes simplex virus encephalitis and development of immunomodulatory strategies. Rev Med Virol 25(5):300–319

    Article  PubMed  Google Scholar 

  • Rasmussen SB, Sorensen LN, Malmgaard L, Ank N, Baines JD, Chen ZJ, Paludan SR (2007) Type I interferon production during herpes simplex virus infection is controlled by cell-type-specific viral recognition through toll-like receptor 9, the mitochondrial antiviral signaling protein pathway, and novel recognition systems. J Virol 81:13315–13324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rasmussen SB, Jensen SB, Nielsen C, Quartin E, Kato H, Chen ZJ, Silverman RH, Akira S, Paludan SR (2009) Herpes simplex virus infection is sensed by both toll-like receptors and retinoic acid-inducible gene-like receptors, which synergize to induce type I interferon production. J Gen Virol 90:74–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rathinam VA, Jiang Z, Waggoner SN, Sharma S, Cole LE, Waggoner L, Vanaja SK, Monks BG, Ganesan S, Latz E, Hornung V, Vogel SN, Szomolanyi-Tsuda E, Fitzgerald KA (2010) The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol 11:395–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reinert LS, Harder L, Holm CK, Iversen MB, Horan KA, Dagnaes-Hansen F, Ulhoi BP, Holm TH, Mogensen TH, Owens T, Nyengaard JR, Thomsen AR, Paludan SR (2012) TLR3 deficiency renders astrocytes permissive to herpes simplex virus infection and facilitates establishment of CNS infection in mice. J Clin Invest 122(4):1368–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reszka N, Zhou C, Song B, Sodroski JG, Knipe DM (2010) Simian TRIM5alpha proteins reduce replication of herpes simplex virus. Virology 398:243–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rice SA, Knipe DM (1990) Genetic evidence for two distinct transactivation functions of the herpes simplex virus alpha protein ICP27. J Virol 64(4):1704–1715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts-Thomson PJ, Esiri MM, Young AC, Maclennan IC (1976) Cerebrospinal fluid immunoglobulin quotients, kappa/lambda ratios, and viral antibody titres in neurological disease. J Clin Pathol 29(12):1105–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roizman B, Knipe DM, Whitley RJ (2013) Herpes simplex viruses. In: Knipe DM, Howley PM (eds) Fields virology, 6th edn. Lippincott Williams & Wilkins, Philadelphia, pp 1823–1897

    Google Scholar 

  • Rosato PC, Leib DA (2015) Neuronal interferon signaling is required for protection against herpes simplex virus replication and pathogenesis. PLoS Pathog 11(7):e1005028

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Royer DJ, Carr DJ (2016) A STING-dependent innate-sensing pathway mediates resistance to corneal HSV-1 infection via upregulation of the antiviral effector tetherin. Mucosal Immunol 9(4):1065–1075

    Article  CAS  PubMed  Google Scholar 

  • Sancho-Shimizu V, Perez de Diego R, Jouanguy E, Zhang SY, Casanova JL (2011) Inborn errors of anti-viral interferon immunity in humans. Curr Opin Virol 1(6):487–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato A, Linehan MM, Iwasaki A (2006) Dual recognition of herpes simplex viruses by TLR2 and TLR9 in dendritic cells. Proc Natl Acad Sci USA 103:17343–17348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider WM, Chevillotte MD, Rice CM (2014) Interferon-stimulated genes: a complex web of host defenses. Annu Rev Immunol 32:513–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoggins JW, Rice CM (2011) Interferon-stimulated genes and their antiviral effector functions. Curr Opin Virol 1(6):519–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoggins JW, MacDuff DA, Imanaka N, Gainey MD, Shrestha B, Eitson JL, Mar KB, Richardson RB, Ratushny AV, Litvak V, Dabelic R, Manicassamy B, Aitchison JD, Aderem A, Elliott RM, Garcia-Sastre A, Racaniello V, Snijder EJ, Yokoyama WM, Diamond MS, Virgin HW, Rice CM (2014) Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 505(7485):691–695

    Article  CAS  PubMed  Google Scholar 

  • Schoggins JW, MacDuff DA, Imanaka N, Gainey MD, Shrestha B, Eitson JL, Mar KB, Richardson RB, Ratushny AV, Litvak V, Dabelic R, Manicassamy B, Aitchison JD, Aderem A, Elliott RM, Garcia-Sastre A, Racaniello V, Snijder EJ, Yokoyama WM, Diamond MS, Virgin HW, Rice CM (2015) Corrigendum: pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature 525(7567):144

    Google Scholar 

  • Sen J, Liu X, Roller R, Knipe DM (2013) Herpes simplex virus US3 tegument protein inhibits toll-like receptor 2 signaling at or before TRAF6 ubiquitination. Virology 439(2):65–73

    Article  CAS  PubMed  Google Scholar 

  • Shen G, Wang K, Wang S, Cai M, Li ML, Zheng C (2014) Herpes simplex virus 1 counteracts viperin via its virion host shutoff protein UL41. J Virol 88(20):12163–12166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Slots J (2010) Herpesviral-bacterial interactions in periodontal diseases. Periodontol 52:117–140

    Article  Google Scholar 

  • Soberman RJ, MacKay CR, Vaine CA, Ryan GB, Cerny AM, Thompson MR, Nikolic B, Primo V, Christmas P, Sheiffele P, Aronov L, Knipe DM, Kurt-Jones EA (2012) CD200R1 supports HSV-1 viral replication and licenses pro-inflammatory signaling functions of TLR2. PLoS One 7(10):e47740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song B, Yeh KC, Liu JJ, Knipe DM (2001) Herpes simplex virus gene products required for viral inhibition of expression of G1-phase functions. Virology 290:320–328

    Article  CAS  PubMed  Google Scholar 

  • Sorensen LN, Reinert LS, Malmgaard L, Bartholdy C, Thomsen AR, Paludan SR (2008) TLR2 and TLR9 synergistically control herpes simplex virus infection in the brain. J Immunol 181:8604–8612

    Article  CAS  PubMed  Google Scholar 

  • Stock AT, Mueller SN, van Lint AL, Heath WR, Carbone FR (2004) Cutting edge: prolonged antigen presentation after herpes simplex virus-1 skin infection. J Immunol 173(4):2241–2244

    Article  CAS  PubMed  Google Scholar 

  • Stratmann SA, Morrone SR, van Oijen AM, Sohn J (2015) The innate immune sensor IFI16 recognizes foreign DNA in the nucleus by scanning along the duplex. Elife 4:e11721

    Article  PubMed  PubMed Central  Google Scholar 

  • Stremlau M, Owens CM, Perron MJ, Kiessling M, Autissier P, Sodroski J (2004) The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in old world monkeys. Nature 427(6977):848–853

    Article  CAS  PubMed  Google Scholar 

  • Strittmatter GE, Sand J, Sauter M, Seyffert M, Steigerwald R, Fraefel C, Smola S, French LE, Beer HD (2016) IFN-gamma primes keratinocytes for HSV-1-induced inflammasome activation. J Invest Dermatol 136(3):610–620

    Article  CAS  PubMed  Google Scholar 

  • Stuart PM, Keadle TL (2012) Recurrent herpetic stromal keratitis in mice: a model for studying human HSK. Clin Dev Immunol 2012:728480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Su C, Zhan G, Zheng C (2016) Evasion of host antiviral innate immunity by HSV-1, an update. Virol J 13:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun L, Wu J, Du F, Chen X, Chen ZJ (2013) Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339(6121):786–791

    Article  CAS  PubMed  Google Scholar 

  • Taylor JM, Lin E, Susmarski N, Yoon M, Zago A, Ware CF, Pfeffer K, Miyoshi J, Takai Y, Spear PG (2007) Alternative entry receptors for herpes simplex virus and their roles in disease. Cell Host Microbe 2:19–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor KE, Chew MV, Ashkar AA, Mossman KL (2014) Novel roles of cytoplasmic ICP0: proteasome-independent functions of the RING finger are required to block interferon-stimulated gene production but not to promote viral replication. J Virol 88(14):8091–8101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thompson MR, Kaminski JJ, Kurt-Jones EA, Fitzgerald KA (2011) Pattern recognition receptors and the innate immune response to viral infection. Viruses 3(6):920–940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson MR, Sharma S, Atianand M, Jensen SB, Carpenter S, Knipe DM, Fitzgerald KA, Kurt-Jones EA (2014) Interferon gamma-inducible protein (IFI) 16 transcriptionally regulates type i interferons and other interferon-stimulated genes and controls the interferon response to both DNA and RNA viruses. J Biol Chem 289(34):23568–23581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trapani JA, Browne KA, Dawson MJ, Ramsay RG, Eddy RL, Show TB, White PC, Dupont B (1992) A novel gene constitutively expressed in human lymphoid cells is inducible with interferon-gamma in myeloid cells. Immunogenetics 36:369–376

    Article  CAS  PubMed  Google Scholar 

  • Tsalenchuck Y, Steiner I, Panet A (2016) Innate defense mechanisms against HSV-1 infection in the target tissues, skin and brain. J Neurovirol 22:641–649

    Article  CAS  PubMed  Google Scholar 

  • Unterholzner L (2013) The interferon response to intracellular DNA: why so many receptors? Immunobiology 218(11):1312–1321

    Article  CAS  PubMed  Google Scholar 

  • Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, Sharma S, Sirois CM, ** T, Latz E, **ao TS, Fitzgerald KA, Paludan SR, Bowie AG (2010) IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol 11(11):997–1004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Lint AL, Ayers M, Brooks AG, Coles RM, Heath WR, Carbone FR (2004) Herpes simplex virus-specific CD8+ T cells can clear established lytic infections from skin and nerves and can partially limit the early spread of virus after cutaneous inoculation. J Immunol 172(1):392–397

    Article  PubMed  Google Scholar 

  • van Lint AL, Murawski MR, Goodbody RE, Severa M, Fitzgerald KA, Finberg RW, Knipe DM, Kurt-Jones EA (2010) Herpes simplex virus immediate-early ICP0 protein inhibits toll-like receptor 2-dependent inflammatory responses and NF-kappaB signaling. J Virol 84:10802–10811

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Vliet KE, De Graaf-Miltenburg LA, Verhoef J, van Strijp JA (1992) Direct evidence for antibody bipolar bridging on herpes simplex virus-infected cells. Immunology 77:109–115

    PubMed  PubMed Central  Google Scholar 

  • Veeranki S, Choubey D (2012) Interferon-inducible p200-family protein IFI16, an innate immune sensor for cytosolic and nuclear double-stranded DNA: regulation of subcellular localization. Mol Immunol 49(4):567–571

    Article  CAS  PubMed  Google Scholar 

  • Verpooten D, Ma Y, Hou S, Yan Z, He B (2009) Control of TANK-binding kinase 1-mediated signaling by the gamma(1)34.5 protein of herpes simplex virus 1. J Biol Chem 284(2):1097–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilkuna-Rautiainen T, Pussinen PJ, Roivainen M, Petays T, Jousilahti P, Hovi T, Vartiainen E, Asikainen S (2006) Serum antibody response to periodontal pathogens and herpes simplex virus in relation to classic risk factors of cardiovascular disease. Int J Epidemiol 35:1486–1494

    Article  PubMed  Google Scholar 

  • Wald A, Link K (2002) Risk of human immunodeficiency virus infection in herpes simplex virus type 2-seropositive persons: a meta-analysis. J Infect Dis 185:45–52

    Article  PubMed  Google Scholar 

  • Wallach D, Kang TB, Dillon CP, Green DR (2016) Programmed necrosis in inflammation: toward identification of the effector molecules. Science 352(6281):aaf2154

    Google Scholar 

  • Wang JP, Bowen GN, Zhou S, Cerny A, Zacharia A, Knipe DM, Finberg RW, Kurt-Jones EA (2012) Role of specific innate immune responses in herpes simplex virus infection of the central nervous system. J Virol 86(4):2273–2281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Sun L, Su L, Rizo J, Liu L, Wang LF, Wang FS, Wang X (2014a) Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell 54(1):133–146

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Li Y, Liu S, Yu X, Li L, Shi C, He W, Li J, Xu L, Hu Z, Yu L, Yang Z, Chen Q, Ge L, Zhang Z, Zhou B, Jiang X, Chen S, He S (2014b) Direct activation of RIP3/MLKL-dependent necrosis by herpes simplex virus 1 (HSV-1) protein ICP6 triggers host antiviral defense. Proc Natl Acad Sci USA 111(43):15438–15443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Majumdar T, Kessler P, Ozhegov E, Zhang Y, Chattopadhyay S, Barik S, Sen GC (2016) STING requires the adaptor TRIF to trigger innate immune responses to microbial infection. Cell Host Microbe 20(3):329–341

    Article  CAS  PubMed  Google Scholar 

  • Ware CF (2009) Targeting the LIGHT-HVEM pathway. Adv Exp Med Biol 647:146–155

    Article  CAS  PubMed  Google Scholar 

  • Webre JM, Hill JM, Nolan NM, Clement C, McFerrin HE, Bhattacharjee PS, Hsia V, Neumann DM, Foster TP, Lukiw WJ, Thompson HW (2012) Rabbit and mouse models of HSV-1 latency, reactivation, and recurrent eye diseases. J Biomed Biotechnol 2012:612316

    Article  PubMed  PubMed Central  Google Scholar 

  • West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM, Lang SM, Bestwick M, Duguay BA, Raimundo N, MacDuff DA, Kaech SM, Smiley JR, Means RE, Iwasaki A, Shadel GS (2015) Mitochondrial DNA stress primes the antiviral innate immune response. Nature 520(7548):553–557

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • **ao TS, Fitzgerald KA (2013) The cGAS-STING pathway for DNA sensing. Mol Cell 51(2):135–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **ng J, Ni L, Wang S, Wang K, Lin R, Zheng C (2013) Herpes simplex virus 1-encoded tegument protein VP16 abrogates the production of beta interferon (IFN) by inhibiting NF-kappaB activation and blocking IFN regulatory factor 3 to recruit its coactivator CBP. J Virol 87(17):9788–9801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **ong W, Candolfi M, Liu C, Muhammad AK, Yagiz K, Puntel M, Moore PF, Avalos J, Young JD, Khan D, Donelson R, Pluhar GE, Ohlfest JR, Wawrowsky K, Lowenstein PR, Castro MG (2010) Human Flt3L generates dendritic cells from canine peripheral blood precursors: implications for a dog glioma clinical trial. PLoS One 5(6):e11074

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu P, Mallon S, Roizman B (2016) PML plays both inimical and beneficial roles in HSV-1 replication. Proc Natl Acad Sci USA 113(21):E3022–E3028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan Z, Liu X, Knipe DM (manuscript in preparation) Herpesvirus UL37 tegument protein activates NF-κB signaling through TRAF6 ubiquitination.

    Google Scholar 

  • Yordy B, Iijima N, Huttner A, Leib D, Iwasaki A (2012) A neuron-specific role for autophagy in antiviral defense against herpes simplex virus. Cell Host Microbe 12(3):334–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zenner HL, Mauricio R, Banting G, Crump CM (2013) Herpes simplex virus 1 counteracts tetherin restriction via its virion host shutoff activity. J Virol 87(24):13115–13123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang SY, Casanova JL (2015) Inborn errors underlying herpes simplex encephalitis: from TLR3 to IRF3. J Exp Med 212(9):1342–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Wang K, Wang S, Zheng C (2013) Herpes simplex virus 1 E3 ubiquitin ligase ICP0 protein inhibits tumor necrosis factor alpha-induced NF-kappaB activation by interacting with p65/RelA and p50/NF-kappaB1. J Virol 87(23):12935–12948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Patrick T. Waters and Melanie Trombly for their assistance in preparation of the manuscript. Research in the laboratory of D.M.K. on this topic is supported by NIH grants AI106934, DE023909, and AI098681. MHO is supported by NIAID T32 training grant AI007512.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Evelyn A. Kurt-Jones or David M. Knipe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Kurt-Jones, E.A., Orzalli, M.H., Knipe, D.M. (2017). Innate Immune Mechanisms and Herpes Simplex Virus Infection and Disease. In: Osterrieder, K. (eds) Cell Biology of Herpes Viruses. Advances in Anatomy, Embryology and Cell Biology, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-319-53168-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-53168-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-53167-0

  • Online ISBN: 978-3-319-53168-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation