Structure and Regulation of AMPK

  • Chapter
  • First Online:
AMP-activated Protein Kinase

Part of the book series: Experientia Supplementum ((EXS,volume 107))

Abstract

AMP-activated protein kinase is a family of heterotrimeric serine/threonine protein kinases that come in twelve different flavors. They serve an essential function in all eukaryotes of conserving cellular energy levels. AMPK complexes are regulated by changes in cellular AMP:ATP or ADP:ATP ratios and by a number of neutraceuticals and some of the widely-used diabetes medications such as metformin and thiazolinonediones. Moreover, biochemical activities of AMPK are tightly regulated by phosphorylation or dephosphorylation by upstream kinases and phosphatases respectively. Efforts are underway in many pharmaceutical companies to discover direct AMPK activators for the treatment of cardiovascular and metabolic diseases such as diabetes, non-alcoholic steatohepatitis (NASH) and diabetic nephropathy. Many advances have been made in the AMPK structural biology arena over the last few years that are beginning to provide detailed molecular insights into the overall topology of these fascinating enzymes and how binding of small molecules elicit subtle conformational changes leading to their activation and protection from dephosphorylation. In the brief review below on AMPK structure and function, we have focused on the recent crystallographic results especially on specific molecular interactions of direct synthetic AMPK activators which lead to biased activation of a sub-family of AMPK isoforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahn J, Lee H, Kim S, Park J, Ha T (2008) The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways. Biochem Biophys Res Commun 373:545–549

    Article  CAS  PubMed  Google Scholar 

  • Amodeo GA, Rudolph MJ, Tong L (2007) Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1. Nature 449:492–495

    Article  CAS  PubMed  Google Scholar 

  • Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K et al (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calabrese MF, Rajamohan F, Harris MS, Caspers NL, Magyar R, Withka JM, Wang H, Borzilleri KA, Sahasrabudhe PV, Hoth LR et al (2014) Structural basis for AMPK activation: natural and synthetic ligands regulate kinase activity from opposite poles by different molecular mechanisms. Structure 22:1161–1172

    Article  CAS  PubMed  Google Scholar 

  • Carling D, Viollet B (2015) Beyond energy homeostasis: the expanding role of AMP-activated protein kinase in regulating metabolism. Cell Metab 21:799–804

    Article  CAS  PubMed  Google Scholar 

  • Carling D, Zammit VA, Hardie DG (1987) A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett 223:217–222

    Article  CAS  PubMed  Google Scholar 

  • Carling D, Clarke PR, Zammit VA, Hardie DG (1989) Purification and characterization of the AMP-activated protein kinase. Copurification of acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl-CoA reductase kinase activities. Eur J Biochem 182:129–136

    Article  Google Scholar 

  • Chen L, Jiao ZH, Zheng LS, Zhang YY, **e ST, Wang ZX, Wu JW (2009) Structural insight into the autoinhibition mechanism of AMP-activated protein kinase. Nature 459:1146–1149

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Wang J, Zhang YY, Yan SF, Neumann D, Schlattner U, Wang ZX, Wu JW (2012) AMP-activated protein kinase undergoes nucleotide-dependent conformational changes. Nat Struct Mol Biol 19:716–718

    Article  CAS  PubMed  Google Scholar 

  • Chen L, **n FJ, Wang J, Hu J, Zhang YY, Wan S, Cao LS, Lu C, Li P, Yan SF et al (2013) Conserved regulatory elements in AMPK. Nature 498:E8–E10

    Article  CAS  PubMed  Google Scholar 

  • Cheung PC, Salt IP, Davies SP, Hardie DG, Carling D (2000) Characterization of AMP-activated protein kinase γ-subunit isoforms and their role in AMP binding. Biochem J 346:659–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cool B, Zinker B, Chiou W, Kifle L, Cao N, Perham M, Dickinson R, Adler A, Gagne G, Iyengar R et al (2006) Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome. Cell Metab 3:403–416

    Article  CAS  PubMed  Google Scholar 

  • Corton JM, Gillespie JG, Hawley SA, Hardie DG (1995) 5-Aminoimidazole-4-Carboxamide Ribonucleoside. Eur J Biochem 229:558–565

    Article  CAS  PubMed  Google Scholar 

  • Crute BE, Seefeld K, Gamble J, Kemp BE, Witters LA (1998) Functional domains of the alpha1 catalytic subunit of the AMP-activated protein kinase. J Biol Chem 273:35347–35354

    Article  CAS  PubMed  Google Scholar 

  • Dale S, Wilson WA, Edelman AM, Hardie DG (1995) Similar substrate recognition motifs for mammalian AMP-activated protein kinase, higher plant HMG-CoA reductase kinase-A, yeast SNF1, and mammalian calmodulin-dependent protein kinase I. FEBS Lett 361:191–195

    Article  CAS  PubMed  Google Scholar 

  • Davies SP, Helps NR, Cohen PT, Hardie DG (1995) 5′-AMP inhibits dephosphorylation, as well as promoting phosphorylation, of the AMP-activated protein kinase. Studies using bacterially expressed human protein phosphatase-2C alpha and native bovine protein phosphatase-2AC. FEBS Lett 377:421–425

    Article  CAS  PubMed  Google Scholar 

  • Day P, Sharff A, Parra L, Cleasby A, Williams M, Horer S, Nar H, Redemann N, Tickle I, Yon J (2007) Structure of a CBS-domain pair from the regulatory gamma1 subunit of human AMPK in complex with AMP and ZMP. Acta Crystallogr D Biol Crystallogr 63:587–596

    Article  CAS  PubMed  Google Scholar 

  • Fryer LG, Parbu-Patel A, Carling D (2002) The Anti-diabetic drugs rosiglitazone and metformin stimulate AMP-activated protein kinase through distinct signaling pathways. J Biol Chem 277:25226–25232

    Article  CAS  PubMed  Google Scholar 

  • Gómez-Galeno JE, Dang Q, Nguyen TH, Boyer SH, Grote MP, Sun Z, Chen M, Craigo WA, van Poelje PD, MacKenna DA et al (2010) A potent and selective AMPK activator that inhibits de novo lipogenesis. ACS Med Chem Lett 1:478–482

    Article  PubMed  PubMed Central  Google Scholar 

  • Goransson O, McBride A, Hawley SA, Ross FA, Shpiro N, Foretz M, Viollet B, Hardie DG, Sakamoto K (2007) Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase. J Biol Chem 282:32549–32560

    Article  PubMed  PubMed Central  Google Scholar 

  • Gowans GJ, Hawley SA, Ross FA, Hardie DG (2013) AMP is a true physiological regulator of AMP-activated protein kinase by both allosteric activation and enhancing net phosphorylation. Cell Metab 18:556–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ (2008) AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30:214–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handa N, Takagi T, Saijo S, Kishishita S, Takaya D, Toyama M, Terada T, Shirouzu M, Suzuki A, Lee S et al (2011) Structural basis for compound C inhibition of the human AMP-activated protein kinase alpha2 subunit kinase domain. Acta Crystallogr D Biol Crystallogr 67:480–487

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG (2016) Regulation of AMP-activated protein kinase by natural and synthetic activators. Acta Pharm Sin B 6:1–19

    Article  Google Scholar 

  • Hawley SA, Davison M, Davies SP, Beri RK, Carling D, Hardie DG (1996) Characterization of the AMP-activated protein kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem 271:27879–27887

    Article  CAS  PubMed  Google Scholar 

  • Hawley SA, Gadalla AE, Olsen GS, Hardie DG (2002) The antidiabetic drug metformin activates the AMP-activated protein kinase cascade via an adenine nucleotide-independent mechanism. Diabetes 51:2420–2425

    Article  CAS  PubMed  Google Scholar 

  • Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP, Alessi DR, Hardie DG (2003) Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2:28

    Article  PubMed  PubMed Central  Google Scholar 

  • Hawley SA, Pan DA, Mustark KJ, Ross L, Bain J, Edelman AM, Frenquelli BG, Hardie DG (2005) Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab 2:9–19

    Article  CAS  PubMed  Google Scholar 

  • Hawley SA, Ross FA, Chevtzoff C, Green KA, Evans A, Fogarty S, Towler MC, Brown LJ, Ogunbayo OA, Evans AM et al (2010) Use of cells expressing gamma subunit variants to identify diverse mechanisms of AMPK activation. Cell Metab 11:554–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawley SA, Fullerton MD, Ross FA, Schertzer JD, Chevtzoff C, Walker KJ, Peggie MW, Zibrova D, Green KA, Mustard KJ et al (2012) The ancient drug salicylate directly activates AMP-activated protein kinase. Science 336:918–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter RW, Foretz M, Bultot L, Fullerton MD, Deak M, Ross FA, Hawley SA, Shpiro N, Viollet B, Barron D et al (2014) Mechanism of action of compound-13: an α1-selective small molecule activator of AMPK. Chem Biol 21:866–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, Witters LA (2005) The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J Biol Chem 280:29060–29066

    Article  CAS  PubMed  Google Scholar 

  • Hwang JT, Park IJ, Shin JI, Lee YK, Lee SK, Baik HW, Ha J, Park OJ (2005) Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem Biophys Res Commun 338:694–699

    Article  CAS  PubMed  Google Scholar 

  • Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115:577–590

    Article  CAS  PubMed  Google Scholar 

  • Jensen TE, Ross FA, Kleinert M, Sylow L, Knudsen JR, Gowans GJ, Hardie DG, Richter EA (2015) PT-1 selectively activates AMPK-gamma1 complexes in mouse skeletal muscle, but activates all three gamma subunit complexes in cultured human cells by inhibiting the respiratory chain. Biochem J 467:461–472

    Article  CAS  PubMed  Google Scholar 

  • ** X, Townley R, Shapiro L (2007) Structural insight into AMPK regulation: ADP comes into play. Structure 15:1285–1295

    Article  CAS  PubMed  Google Scholar 

  • Kemp BE, Oakhill JS, Scott JW (2007) AMPK structure and regulation from three angles. Structure 15:1161–1163

    Article  CAS  PubMed  Google Scholar 

  • Koay A, Rimmer KA, Mertens HDT, Gooley PR, Stapleton D (2007) Oligosaccharide recognition and binding to the carbohydrate binding module of AMP‐activated protein kinase. FEBS Lett 581:5055–5059

    Article  CAS  PubMed  Google Scholar 

  • Koay A, Woodcroft B, Petrie EJ, Yue H, Emanuelle S, Bieri M, Bailey MF, Hargreaves M, Park J-T, Park K-H et al (2010) AMPK β subunits display isoform specific affinities for carbohydrates. FEBS Lett 584:3499–3503

    Article  CAS  PubMed  Google Scholar 

  • Kudo N, Gillespie JG, Kung L, Witters LA, Schulz R, Clanachan AS, Lopaschuk GD (1996) Characterization of 5′AMP-activated protein kinase activity in the heart and its role in inhibiting acetyl-CoA carboxylase during reperfusion following ischemia. Biochim Biophys Acta 1301:67–75

    Article  PubMed  Google Scholar 

  • Landgraf RR, Goswami D, Rajamohan F, Harris MS, Calabrese MF, Hoth LR, Magyar R, Pascal BD, Chalmers MJ, Busby SA et al (2013) Activation of AMP-activated protein kinase revealed by hydrogen/deuterium exchange mass spectrometry. Structure 21:1942–1953

    Article  CAS  PubMed  Google Scholar 

  • Langendorf CG, Kemp BE (2015) Choreography of AMPK activation. Cell Res 25:5–6

    Article  CAS  PubMed  Google Scholar 

  • Langendorf CG, Ngoei KR, Scott JW, Ling NX, Issa SM, Gorman MA, Parker MW, Sakamoto K, Oakhill JS, Kemp BE (2016) Structural basis of allosteric and synergistic activation of AMPK by furan-2-phosphonic derivative C2 binding. Nat Commun 7:10912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YS, Kim WS, Kim KH, Yoon MJ, Cho HJ, Shen Y, Ye JM, Lee CH, Oh WK, Kim CT et al (2006) Berberine, a natural plant product, activates AMP-activated protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. Diabetes 55:2256–2264

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wang L, Zhou XE, Ke J, de Waal PW, Gu X, Tan MH, Wang D, Wu D, Xu HE et al (2015) Structural basis of AMPK regulation by adenine nucleotides and glycogen. Cell Res 25:50–66

    Article  PubMed  Google Scholar 

  • Littler DR, Walker JR, Davis T, Wybenga-Groot LE, Finerty PJ Jr, Newman E, Mackenzie F, Dhe-Paganon S (2010) A conserved mechanism of autoinhibition for the AMPK kinase domain: ATP-binding site and catalytic loop refolding as a means of regulation. Acta Crystallogr Sect F Struct Biol Cryst Commun 66:143–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer FV, Heath R, Underwood E, Sanders MJ, Carmena D, McCartney RR, Leiper FC, **ao B, **g C, Walker PA et al (2011) ADP regulates SNF1, the Saccharomyces cerevisiae homolog of AMP-activated protein kinase. Cell Metab 14:707–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McBride A, Hardie DG (2009) AMP-activated protein kinase—a sensor of glycogen as well as AMP and ATP? Acta Physiol (Oxf) 196:99–113

    Article  CAS  Google Scholar 

  • McBride A, Ghilagaber S, Nikolaev A, Hardie DG (2009) The glycogen-binding domain on the AMPK β subunit allows the kinase to act as a glycogen sensor. Cell Metab 9:23–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mobbs JI, Koay A, Di Paolo A, Bieri M, Petrie EJ, Gorman MA, Doughty L, Parker MW, Stapleton D, Griffin MD et al (2015a) Determinants of oligosaccharide specificity of the carbohydrate binding modules of AMP-activated protein kinase. Biochem J 468:245–257

    Google Scholar 

  • Mobbs JI, Koay A, Di Paolo A, Bieri M, Petrie EJ, Gorman MA, Doughty L, Parker MW, Stapleton DI, Griffin MD et al (2015b) Determinants of oligosaccharide specificity of the carbohydrate-binding modules of AMP-activated protein kinase. Biochem J 468:245–257

    Google Scholar 

  • Mounier R, Theret M, Lantier L, Foretz M, Viollet B (2015) Expanding roles for AMPK in skeletal muscle plasticity. Trends Endocrinol Metab 26:275–286

    Article  CAS  PubMed  Google Scholar 

  • Nayak V, Zhao K, Wyce A, Schwartz MF, Lo WS, Berger SL, Marmorstein R (2006) Structure and dimerization of the kinase domain from yeast Snf1, a member of the Snf1/AMPK protein family. Structure 14:477–485

    Article  CAS  PubMed  Google Scholar 

  • Neumann D, Woods A, Carling D, Wallimann T, Schlattner U (2003) Mammalian AMP-activated protein kinase: functional, heterotrimeric complexes by co-expression of subunits in Escherichia coli. Protein Expr Purif 30:230–237

    Article  CAS  PubMed  Google Scholar 

  • Neumann D, Wallimann T, Rider MH, Tokarska-Schlattner M, Hardie DG, Schlattner U (2007) Signaling by AMP-activated protein kinase. In: Saks V (ed) Molecular system bioenergetics. Wiley, Weinheim, pp 303–338

    Chapter  Google Scholar 

  • Oakhill JS, Chen Z-P, Scott JW, Steel R, Castelli LA, Ling N, Macaulay SL, Kemp BE (2010) β-Subunit myristoylation is the gatekeeper for initiating metabolic stress sensing by AMP-activated protein kinase (AMPK). Proc Natl Acad Sci USA 107:19237–19241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oakhill JS, Steel R, Chen Z-P, Scott JW, Ling N, Tam S, Kemp BE (2011) AMPK is a direct adenylate charge-regulated protein kinase. Science 332:1433–1435

    Article  CAS  PubMed  Google Scholar 

  • Oakhill JS, Scott JW, Kemp BE (2012) AMPK functions as an adenylate charge-regulated protein kinase. Trends Endocrinol Metab 23:125–132

    Article  CAS  PubMed  Google Scholar 

  • Pang T, Zhang ZS, Gu M, Qiu BY, Yu LF, Cao PR, Shao W, Su MB, Li JY, Nan FJ et al (2008) Small molecule antagonizes autoinhibition and activates AMP-activated protein kinase in cells. J Biol Chem 283:16051–16060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polekhina G, Gupta A, Michell BJ, van Denderen B, Murthy S, Feil SC, Jennings IG, Campbell DJ, Witters LA, Parker MW et al (2003) AMPK β subunit targets metabolic stress sensing to glycogen. Curr Biol 13:867–871

    Article  CAS  PubMed  Google Scholar 

  • Polekhina G, Gupta A, van Denderen BJ, Feil SC, Kemp BE, Stapleton D, Parker MW (2005) Structural basis for glycogen recognition by AMP-activated protein kinase. Structure 10:1453–1462

    Article  Google Scholar 

  • Rajamohan F, Harris MS, Frisbie RK, Hoth LR, Geoghegan KF, Valentine JJ, Reyes AR, Landro JA, Qiu X, Kurumbail RG (2010) Escherichia coli expression, purification and characterization of functional full-length recombinant α2β2γ3 heterotrimeric complex of human AMP-activated protein kinase. Protein Expr Purif 73:189–197

    Article  CAS  PubMed  Google Scholar 

  • Rajamohan F, Reyes AR, Frisbie RK, Hoth LR, Sahasrabudhe P, Magyar R, Landro JA, Withka JM, Caspers NL, Calabrese MF et al (2015) Probing the enzyme kinetics, allosteric modulation and activation of alpha-1 and alpha-2 subunit containing AMP-activated protein kinase (AMPK) heterotrimeric complexes by pharmacological and physiological activators. Biochem J 473:581–592

    Google Scholar 

  • Riek U, Scholz R, Konarev P, Rufer A, Suter M, Nazabal A, Ringler P, Chami M, Muller SA, Neumann D et al (2008) Structural properties of AMP-activated protein kinase: dimerization, molecular shape, and changes upon ligand binding. J Biol Chem 283:18331–18343

    Article  CAS  PubMed  Google Scholar 

  • Ross FA, Jensen TE, Hardie DG (2016a) Differential regulation by AMP and ADP of AMPK complexes containing different γ subunit isoforms. Biochem J 473:189–199

    Google Scholar 

  • Ross FA, MacKintosh C, Hardie DG (2016b) AMP-activated protein kinase: a cellular energy sensor that comes in twelve flavours. FEBS J. doi:10.1111/febs.13698

    Google Scholar 

  • Rudolph MJ, Amodeo GA, Iram SH, Hong SP, Pirino G, Carlson M, Tong L (2007) Structure of the Bateman2 domain of yeast Snf4: dimeric association and relevance for AMP binding. Structure 15:65–74

    Article  CAS  PubMed  Google Scholar 

  • Rudolph MJ, Amodeo GA, Tong L (2010) An inhibited conformation for the protein kinase domain of the Saccharomyces cerevisiae AMPK homolog Snf1. Acta Crystallogr Sect F Struct Biol Cryst Commun 66:999–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders MJ, Ali ZS, Hegarty BD, Heath R, Snowden MA, Carling D (2007) Defining the mechanism of activation of AMP-activated protein kinase by the small molecule A-769662, a member of the thienopyridone family. J Biol Chem 282:32539–32548

    Article  CAS  PubMed  Google Scholar 

  • Scott JW, van Denderen BJ, Jorgensen SB, Honeyman JE, Steinberg GR, Oakhill JS, Iseli TJ, Koay A, Gooley PR, Stapleton D et al (2008) Thienopyridone drugs are selective activators of AMP-activated protein kinase β1-containing complexes. Chem Biol 15:1220–1230

    Article  CAS  PubMed  Google Scholar 

  • Scott JW, Ling N, Issa SMA, Dite TA, O’Brien MT, Chen ZP, Galic S, Langendorf CG, Steinberg GR, Kemp BE et al (2014) Small molecule drug A-769662 and AMP synergistically activate naive AMPK independent of upstream kinase signaling. Chem Biol 21:1–9

    Article  Google Scholar 

  • Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, Cantley LC (2004) The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci 101:3329–3335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinberg GR, Kemp BE (2009) AMPK in health and disease. Physiol Rev 89:1025–1078

    Article  CAS  PubMed  Google Scholar 

  • Suter M, Riek U, Tuerk R, Schlattner U, Wallimann T, Neumann D (2006) Dissecting the role of 5′-AMP for allosteric stimulation, activation, and deactivation of AMP-activated protein kinase. J Biol Chem 281:32207–32216

    Article  CAS  PubMed  Google Scholar 

  • Townley R, Shapiro L (2007) Crystal structures of the adenylate sensor form fission yeast AMP-activated protein kinase. Science 315:1726–1729

    Article  CAS  PubMed  Google Scholar 

  • Walker JR, Wybenga-Groot L, Finerty Jr PJ, Newman E, Mackenzie FM, Weigelt J, Sundstrom M, Arrowsmith C, Edwards A, Bochkarev A, Structural Genomics Consortium et al (2005) Structure of the glycogen-binding domain of the AMP-activated protein kinase beta2 subunit, PDB accession code, 2F15

    Google Scholar 

  • Warden SM, Richardson C, O’Donnell J Jr, Stapleton D, Kemp BE, Witters LA (2001) Post-translational modifications of the β1 subunit of AMP-activated protein kinase affect enzyme activity and cellular localization. Biochem J 354:275–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D, Schlattner U, Wallimann T, Carlson M, Carling D (2003a) LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 13:2004–2008

    Article  CAS  PubMed  Google Scholar 

  • Woods A, Vertommen D, Neumann D, Turk R, Bayliss J, Schlattner U, Wallimann T, Carling D, Rider MH (2003b) Identification of phosphorylation sites in AMP-activated protein kinase (AMPK) for upstream AMPK kinases and study of their roles by site-directed mutagenesis. J Biol Chem 278:28434–28443

    Article  CAS  PubMed  Google Scholar 

  • Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, Carlson M, Carling D (2005) Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab 2:21–33

    Article  CAS  PubMed  Google Scholar 

  • **ao B, Heath R, Saiu P, Leiper FC, Leone P, **g C, Walker PA, Haire L, Eccleston JF, Davis CT et al (2007) Structural basis for AMP binding to mammalian AMP-activated protein kinase. Nature 449:496–500

    Article  CAS  PubMed  Google Scholar 

  • **ao B, Sanders MJ, Underwood E, Heath R, Mayer FV, Carmena D, **g C, Walker PA, Eccleston JF, Haire LF et al (2011) Structure of mammalian AMPK and its regulation by ADP. Nature 472:230–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **ao B, Sanders MJ, Carmena D, Bright NJ, Haire LF, Underwood E, Patel BR, Heath RB, Walker PA, Hallen S et al (2013) Structural basis of AMPK regulation by small molecule activators. Nat Commun 4:2017

    Google Scholar 

  • **n FJ, Wang J, Zhao RQ, Wang ZX, Wu JW (2013) Coordinated regulation of AMPK activity by multiple elements in the alpha-subunit. Cell Res 10:1237–1240

    Article  Google Scholar 

  • Yu LF, Li YY, Su MB, Zhang M, Zhang W, Zhang LN, Pang T, Zhang RT, Liu B, Li JY et al (2013) Development of novel alkene oxindole derivatives as orally efficacious AMP-activated protein kinase activators. ACS Med Chem Lett 4:475–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, Wu M, Ventre J, Doebber T, Fujii N et al (2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 108:1167–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu L, Chen L, Zhou XM, Zhang YY, Zhang YJ, Zhao J, Ji SR, Wu JW, Wu Y (2011) Structural insights into the architecture and allostery of full-length AMP-activated protein kinase. Structure 19:515–522

    Article  CAS  PubMed  Google Scholar 

  • Zong H, Ren JM, Young LH, Pypaert M, Mu J, Birnbaum MJ, Shulman GI (2002) AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation. Proc Natl Acad Sci USA 99:15983–15987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi G. Kurumbail .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kurumbail, R.G., Calabrese, M.F. (2016). Structure and Regulation of AMPK. In: Cordero, M., Viollet, B. (eds) AMP-activated Protein Kinase. Experientia Supplementum, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-43589-3_1

Download citation

Publish with us

Policies and ethics

Navigation