Morphometrics in Evolutionary Developmental Biology

  • Reference work entry
  • First Online:
Evolutionary Developmental Biology
  • 2319 Accesses

Abstract

Morphometrics, the measurement and statistical analysis of organismal form, has always been a core tool in evolutionary biology. With the advancement of 3D imaging technology and geometric morphometric methodology, it is also increasingly applied in developmental biology. At the interface of these two disciplines, evolutionary developmental biology (evo-devo) seeks to understand how organismal development affects evolutionary change by sha** the phenotypic variation that is subject to selection. Quantification of morphological variation thus is an important part of evo-devo research and bridges the field to quantitative evolutionary theory. Likewise, modern morphometrics enables the quantitative comparison of developmental trajectories across individuals, populations, or environments. Here, I review the current state of the art in morphometrics and provide examples from vertebrate development. I discuss advantages and limitations of current methods and outline directions for future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alberch P, Gould SJ, Oster GF, Wake DB (1979) Size and shape in ontogeny and phylogeny. Paleobiology 5:296–317

    Article  Google Scholar 

  • Arif S, Hilbrant M, Hopfen C, Almudi I, Nunes MDS, Posnien N, Kuncheria L, Tanaka K, Mitteroecker P, Schlotterer C, McGregor AP (2013) Genetic and developmental analysis of differences in eye and face morphology between Drosophila simulans and Drosophila mauritiana. Evol Dev 15(4):257–267

    Article  Google Scholar 

  • Armbruster WS, Pélabon C, Bolstad GH, Hansen TF (2014) Integrated phenotypes: understanding trait covariation in plants and animals. Philos Trans R Soc Lond Ser B Biol Sci 369(1649):20130245

    Article  Google Scholar 

  • Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. NeuroImage 11:805–821

    Article  CAS  Google Scholar 

  • Bookstein F (1991) Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge/New York

    Google Scholar 

  • Bookstein FL (2015) Integration, disintegration, and self-similarity: characterizing the scales of shape variation in landmark data. Evol Biol 42(4):395–426

    Article  Google Scholar 

  • Coquerelle M, Bookstein FL, Braga J, Halazonetis DJ, Weber GW, Mitteroecker P (2011) Sexual dimorphism of the human mandible and its association with dental development. Am J Phys Anthropol 145(2):192–202

    Article  Google Scholar 

  • Dryden IL, Mardia K (1998) Statistical shape analysis. Wiley, New York

    Google Scholar 

  • Green RM, Fish JL, Young NM, Smith FJ, Roberts B, Dolan K, Choi I, Leach CL, Gordon P, Cheverud JM, Roseman CC, Williams TJ, Marcucio RS, Hallgrímsson B (2017) Developmental nonlinearity drives phenotypic robustness. Nat Commun 8(1):1970

    Article  Google Scholar 

  • Gunz P, Mitteroecker P (2013) Semilandmarks: a method for quantifying curves and surfaces. Hystrix 24(1):103–109

    Google Scholar 

  • Hallgrimsson B, Lieberman DE (2008) Mouse models and the evolutionary developmental biology of the skull. Integr Comp Biol 48:373–384

    Article  Google Scholar 

  • Klingenberg CP (2010) Evolution and development of shape: integrating quantitative approaches. Nat Rev Genet 11:623–635

    Article  CAS  Google Scholar 

  • Lele S, Richtsmeier JT (1991) Euclidean distance matrix analysis: a coordinate free approach for comparing biological shapes using landmark data. Am J Phys Anthropol 86:415–428

    Article  CAS  Google Scholar 

  • Lestrel P (1982) A fourier analytic procedure to describe complex morphological shape. In: Dixon A, Sarnat B (eds) Factors and mechanisms influencing bone growth. Alan R. Liss, Los Angeles, pp 393–409

    Google Scholar 

  • MacLeod N (1999) Generalizing and extending the eigenshape method of shape visualization and analysis. Paleobiology 25(1):107–138

    Google Scholar 

  • Martínez-Abadías N, Mateu R, Niksic M, Russo L, Sharpe J (2016) Geometric morphometrics on gene expression patterns within phenotypes: a case example on limb development. Syst Biol 65(2):194–211

    Article  Google Scholar 

  • Mayer C, Metscher BD, Müller GB, Mitteroecker P (2014) Studying developmental variation with geometric morphometric image analysis (gmia). PLoS One 9(12):e115076

    Article  Google Scholar 

  • Mitteroecker P, Gunz P (2009) Advances in geometric morphometrics. Evol Biol 36:235–247

    Article  Google Scholar 

  • Mitteroecker P, Huttegger S (2009) The concept of morphospaces in evolutionary and developmental biology: mathematics and metaphors. Biol Theory 4(1):54–67

    Article  Google Scholar 

  • Mitteroecker P, Gunz P, Bernhard M, Schaefer K, Bookstein FL (2004) Comparison of cranial ontogenetic trajectories among great apes and humans. J Hum Evol 46:679–697

    Article  Google Scholar 

  • Mitteroecker P, Gunz P, Neubauer S, Muller G (2012) How to explore morphological integration in human evolution and development? Evol Biol 39(4):536–553

    Article  Google Scholar 

  • Polly P, McLeod N (2008) Locomotion in fossil carnivora: an application of eigensurface analysis for morphometric comparison of 3D surfaces. Palaeontol Electron 11(2):10A:13p

    Google Scholar 

  • Pomidor BJ, Makedonska J, Slice DE (2016) A landmark-free method for three-dimensional shape analysis. PLoS One 11(3):e0150368

    Article  Google Scholar 

  • Powder KE, Milch K, Asselin G, Albertson RC (2015) Constraint and diversification of developmental trajectories in cichlid facial morphologies. EvoDevo 6:25

    Article  Google Scholar 

  • Ramler D, Mitteroecker P, Shama LNS, Wegner KM, Ahnelt H (2014) Nonlinear effects of temperature on body form and developmental canalization in the threespine stickleback. J Evol Biol 27(3):497–507

    Article  CAS  Google Scholar 

  • Rohlf FJ, Slice DE (1990) Extensions of the procrustes method for the optimal superim-position of landmarks. Syst Zool 39:40–59

    Article  Google Scholar 

  • Rolfe SM, Shapiro LG, Cox TC, Maga AM, Cox LL (2011) A landmark-free framework for the detection and description of shape differences in embryos. Conf Proc IEEE Eng Med Biol Soc 2011:5153–5156

    CAS  PubMed Central  Google Scholar 

  • Salazar-Ciudad I, Jernvall J (2010) A computational model of teeth and the developmental origins of morphological variation. Nature 464(7288):583–586

    Article  CAS  Google Scholar 

  • Shen L, Farid H, McPeek MA (2009) Modeling three-dimensional morphological structures using spherical harmonics. Evolution 63(4):1003–1016

    Article  Google Scholar 

  • Zelditch ML, Lundrigan BL, Garland TJ (2004) Developmental regulation of skull morphology. I. Ontogenetic dynamics of variance. Evol Dev 6(3):194–206

    Article  Google Scholar 

Download references

Acknowledgments

PM is supported by the Austrian Science Fund (FWF P29397).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Mitteröcker .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Mitteröcker, P. (2021). Morphometrics in Evolutionary Developmental Biology. In: Nuño de la Rosa, L., Müller, G.B. (eds) Evolutionary Developmental Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-32979-6_119

Download citation

Publish with us

Policies and ethics

Navigation