Carbon Budgets of Biological Soil Crusts at Micro-, Meso-, and Global Scales

  • Chapter
  • First Online:
Biological Soil Crusts: An Organizing Principle in Drylands

Part of the book series: Ecological Studies ((ECOLSTUD,volume 226))

Abstract

The importance of biocrusts in the ecology of arid lands across all continents is widely recognized. In spite of this broad distribution, contributions of biocrusts to the global biogeochemical cycles have only recently been considered. While these studies opened a new view on the global role of biocrusts, they also clearly revealed the lack of data for many habitats and of overall standards for measurements and analysis. In order to understand carbon cycling in biocrusts and the progress which has been made during the last 15 years, we offer a multiscale approach covering different climatic regions. We also include a discussion on available measurement techniques at each scale: A microscale section focuses on the individual organism level, including modeling based on the combination of field and lab data. The mesoscale section addresses the CO2 exchange of a complete ecosystem or at the community level. Finally, we consider the contribution of biocrusts at a global scale, giving a general perspective of the most relevant findings regarding the role of biological soil crusts in the global terrestrial carbon cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 234.33
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 299.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 299.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Armstrong RA, Bradwell T (2010) Growth of crustose lichens: a review. Geogr Ann A 92:3–17

    Article  Google Scholar 

  • Bader MY, Zotz G, Lange OL (2010) How to minimize the sampling effort for obtaining reliable estimates of diel and annual CO2 budgets in lichens. Lichenologist 42:97–111

    Article  Google Scholar 

  • Belnap J (2002) Nitrogen fixation in biological soil crust from southeast Utah, USA. Biol Fertil Soils 35:128–135

    Article  CAS  Google Scholar 

  • Belnap J, Lange OL (eds) (2003) Biological soil crusts: structure, function and management, vol 150, 2nd edn, Ecological Studies. Springer, New York

    Google Scholar 

  • Billings WD (1987) Carbon balance of Alaskan tundra and taiga ecosystems: past, present and future. Quat Sci Rev 6:165–177

    Article  Google Scholar 

  • Bisbee KE, Gower ST, Norman JM, Nordheim EV (2001) Environmental controls on ground cover species composition and productivity in a boreal black spruce forest. Oecologia 129:261–270

    Article  Google Scholar 

  • Bowling DR, Bethers-Marchetti S, Lunch CK, Grote EE, Belnap J (2010) Carbon, water, and energy fluxes in a semiarid cold desert grassland during and following multiyear drought. J Geophys Res 115:G04026. doi:10.1029/2010JG001322

    Article  Google Scholar 

  • Bowling DR, Grote EE, Belnap J (2011) Rain pulse response of soil CO2 exchange by biological soil crusts and grasslands of the semiarid Colorado Plateau, United States. J Geophys Res 116:G04006. doi:10.1029/2011JG001722

    Google Scholar 

  • Brostoff WN, Sharifi MR, Rundel PW (2005) Photosynthesis of cryptobiotic soil crusts in a seasonally inundated system of pans and dunes in the western Mojave Desert, CA: field studies. Flora 200:592–600

    Article  Google Scholar 

  • Büdel B, Colesie C, Green TGA, Grube M, Lazaro-Suau R, Loewen-Schneider K, Maier S, Peer T, Pintado A, Raggio J, Ruprecht U, Sancho L, Schroeter B, Türk R, Weber B, Wedin M, Westberg M, Williams L, Zheng L (2014) Improved appreciation of the functioning and importance of biological soil crusts in Europe—the Soil Crust International project (SCIN). Biodivers Conserv 23:1639–1658

    Article  PubMed  PubMed Central  Google Scholar 

  • Castillo-Monroy AP, Maestre FT, Rey A, Soliveres S, García-Palacios P (2011) Biological soil crust microsites are the main contributor to soil respiration in semiarid ecosystem. Ecosystems 18:835–847

    Article  Google Scholar 

  • Chapin FS III, Woodwell GM, Randerson JT et al (2006) Reconciling carbon-cycling concepts, terminology and methods. Ecosystems 9:1041–1050

    Article  CAS  Google Scholar 

  • Colesie C, Green TGA, Haferkamp I, Büdel B (2014) Habitat stress initiates changes in composition, CO2 gas exchange and C-allocation as life traits in biological soil crusts. ISME J 8:2104–2115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coxson DS, Marsh J (2001) Lichen chronosequences (postfire and postharvest) in lodgepole pine (Pinus contorta) forests of northern interior British Columbia. Can J Bot 79:1449–1464

    Google Scholar 

  • Darrouzet-Nardi A, Reed SC, Grote EE, Belnap J (2015) Observations of net soil exchange of CO2 in a dryland show experimental warming increases carbon losses in biocrust soils. Biogeochemistry 126(3):363–378

    Article  CAS  Google Scholar 

  • Elbert W, Weber B, Burrows S, Steinkamp J, Büdel B, Andreae MO, Pöschl U (2012) Contribution of cryptogamic covers to the global cycles of carbon and nitrogen. Nat Geosci 5:459–462

    Article  CAS  Google Scholar 

  • Evans RD, Lange OL (2003) Biological soil crusts and ecosystem nitrogen and carbon dynamics. In: Belnap J, Lange OL (eds) Biological soil crusts: structure, function and management, vol 150, 2nd edn, Ecological Studies. Springer, Heidelberg

    Google Scholar 

  • Feng W, Zhang Y, Wu B, Qin S, Lai Z (2014) Influence of environmental factors on carbon dioxide exchange in biological soil crusts in desert areas. Arid Land Res Manag 28:186–196

    Article  CAS  Google Scholar 

  • Fenton JHC (1980) The rate of peat accumulation in Antarctic moss banks. J Ecol 68:211–228

    Article  Google Scholar 

  • García-Pichel F, Belnap J (1996) Microenvironments and microscale productivity of cyanobacteria desert crusts. J Phycol 32:774–782

    Article  Google Scholar 

  • Green TGA, Lange OL, Cowan IR (1994) Ecophysiology of lichen photosynthesis: the role of water status and thallus diffusion resistances. Cryptogam Bot 4:166–178

    Google Scholar 

  • Grote EE, Belnap J, Housman DC, Sparks JP (2010) Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change. Glob Chang Biol 16:2763–2774

    Article  Google Scholar 

  • Housman DC, Powers HH, Collins AD, Belnap J (2006) Carbon and nitrogen fixation differ between successional stages of biological soil crusts in the Colorado Plateau and Chihuahuan desert. J Arid Environ 66:620–634

    Article  Google Scholar 

  • Innes JL (1988) The use of lichens in dating. In: Galun M (ed) Handbook of lichenology, vol III. CRC Press, Boca Raton, pp 75–92

    Google Scholar 

  • Jeffries DL, Link SO, Klopatek JM (1993) CO2 fluxes of a cryptogamic crust. Response to resaturation. New Phytol 125:163–173

    Article  CAS  Google Scholar 

  • Klopatek JM (1992) Cryptogamic crusts as potential indicators of disturbance in semi-arid landscapes. In: McKenzie DE, Wyatt E, McDonald VJ (eds) Ecological indicators. Elsevier, New York, pp 773–786

    Chapter  Google Scholar 

  • Lange OL (2000) Photosynthetic performance of gelatinous lichen under temperate habitat conditions: long-term monitoring of CO2 exchange of Collema cristatum. Bibl Lichenol 75:307–332

    Google Scholar 

  • Lange OL (2002) Photosynthetic productivity of the epilithic lichen Lecanora muralis: long-term field monitoring of CO2 exchange and its physiological interpretation: dependence of photosynthesis on water content, light, temperature, and CO2 concentration from laboratory measurements. Flora 197:233–249

    Article  Google Scholar 

  • Lange OL (2003a) Photosynthetic productivity of the epilithic lichen Lecanora muralis: long-term field monitoring of CO2 exchange and its physiological interpretation: III Diel, seasonal and annual carbon budgets. Flora 198:277–292

    Google Scholar 

  • Lange OL (2003b) Photosynthetic productivity of the epilithic lichen Lecanora muralis: long term field monitoring of CO2 exchange and its physiological interpretation. II. Diel and seasonal patterns of net photosynthesis and respiration. Flora 198:55–70

    Google Scholar 

  • Lange OL, Green TGA (2004) Photosynthetic performance of the squamulose-soil crust lichen Squamarina lentigera: laboratory measurements and long term monitoring of CO2 exchange in the field. Bibl Lichenol 88:363–390

    Google Scholar 

  • Lange OL, Kidron GJ, Büdel B, Meyer A, Kilian E, Abeliovich A (1992) Taxonomic composition and the photosynthetic characteristics of the “biological soilcrusts” covering sand dunes in the western Negev Desert. Funct Ecol 6:519–527

    Article  Google Scholar 

  • Lange OL, Meyer A, Zellner H, Heber U (1994) Photosynthesis and water relations of lichen soil crusts: field measurements in the coastal fog zone of the Namib Desert. Funct Ecol 8:253–264

    Article  Google Scholar 

  • Lange OL, Reichenberger H, Meyer A (1995) High thallus water content and photosynthetic CO2 exchange of lichens. Laboratory experiments with soil crust species from local xerothermic steppe formations in Franconia, Germany. In: Daniels F, Schulz M, Peine J (eds) Flechten Follmann: contributions to lichenology in honour of Gerhard Follmann. Geobotanical and Phytotaxonomical Study Group, Universitat Koln, Cologne, pp 139–153

    Google Scholar 

  • Lange OL, Belnap J, Reichenberger H, Meyer A (1997a) Photosynthesis of green algal soil crust lichens from arid lands in southern Utah, USA: role of water content on light and temperature responses of CO2 exchange. Flora 192:1–15

    Google Scholar 

  • Lange OL, Reichenberger H, Walz H (1997b) Continuous monitoring of CO2 exchange of lichens in the field: short-term enclosure with an automatically operating cuvette. Lichenologist 29:259–274

    Google Scholar 

  • Lange OL, Hahn S, Meyer A, Tenhunen JD (1998) Upland tundra in the foothills of the Brooks Range, Alaska, USA: lichen long-term photosynthetic CO2 uptake and net carbon gain. Arct Alp Res 3:232–261

    Google Scholar 

  • Lange OL, Green TGA, Melzer B, Meyer A, Zellner H (2006) Water relations and CO2 exchange of the terrestrial lichen Teloschistes capensis in the Namib fog Desert: measurements during two seasons in the field and under controlled conditions. Flora 16:268–280

    Article  Google Scholar 

  • Ma J, Wang ZY, Stevenson BA, Zheng XJ, Li Y (2013) An inorganic CO2 diffusion and dissolution process explain negative CO2 fluxes in saline/alkaline soils. Sci Rep 3:2025

    PubMed  PubMed Central  Google Scholar 

  • Maestre FT, Bowker MA, Escolar C, Puche MD, Soliveres S, Maltez-Mouro S, García-Palacios P, Castillo-Monroy AP, Martínez I, Escudero A (2010) Do biotic interactions modulate ecosystem functioning along stress gradients? Insights from semi-arid plant and biological soil crust communities. Philos Trans R Soc Lond B Biol Sci 365:2057–2070

    Article  PubMed  PubMed Central  Google Scholar 

  • Maestre FT, Escolar C, Ladrón De Guevara M, Quero JL, Lázaro R, Delgado-Baquerizo M, Ochoa M, Berdugo M, Gozalo B, Gallardo A (2013) Changes in biocrust cover drive carbon cycle responses to climate change in drylands. Glob Chang Biol 19:3835–3847

    Article  PubMed  PubMed Central  Google Scholar 

  • Murray KJ, Harley PC, Beyers J, Walz H, Tenhunen JD (1989) Water content effects on photosynthetic response of Sphagnum mosses from the foothills of the Philip Smith Mountains, Alaska. Oecologia 79:224–250

    Article  Google Scholar 

  • Oechel WC, Collins NJ (1976) Comparative CO2 exchange patterns in mosses from two tundra habitats at Barrow, Alaska. Can J Bot 54:1355–1369

    Article  CAS  Google Scholar 

  • Pintado A, Sancho LG, Blanquer JM, Green TGA, Lázaro R (2010) Microclimatic factors and photosynthetic activity of crustose lichens from the semiarid southeast of Spain: long-term measurements for Diploschistes diacapsis. Bibl Lichenol 105:211–224

    Google Scholar 

  • Porada P, Weber B, Elbert W, Pöschl U, Kleidon A (2013) Estimating global carbon uptake by lichens and bryophytes with a process-based model. Biogeosciences 10:6989–7033

    Article  CAS  Google Scholar 

  • Porada P, Weber B, Elbert W, Pöschl U, Kleidon A (2014) Estimating impacts of lichens and bryophytes on global biogeochemical cycles. Global biogeochemical cycles early view. Glob Biogeochem Cycles 28:71–85

    Article  CAS  Google Scholar 

  • Raggio J, Green TGA, Crittenden PD, Pintado A, Vivas M, Pérez-Ortega S, De los Ríos A, Sancho LG (2012) Comparative ecophysiology of three Placopsis species, pioneer lichens in recently exposed Chilean glacial forelands. Symbiosis 56:55–66

    Article  CAS  Google Scholar 

  • Raggio J, Pintado A, Vivas M, Sancho LG, Büdel B, Colesie C, Weber B, Schroeter B, Green TGA (2014) Continuous chlorophyll fluorescence, gas exchange and microclimate monitoring in a natural soil crust habitat in Tabernas badlands, Almeria, Spain: progressing towards a model to understand productivity. Biodivers Conserv 23:1809–1826

    Article  Google Scholar 

  • Randerson JT, Chapin FSIII, Harden JW, Neef JC, Harmon ME (2002) Net ecosystem production: a comprehensive measure of net carbon accumulation by ecosystems. Ecol Appl 12:937–947

    Article  Google Scholar 

  • Rey A (2015) Mind the gap: non-biological processes contributing to soil CO2 efflux. Glob Chang Biol 21:1752–1761

    Article  PubMed  Google Scholar 

  • Rey A, Belelli-Marchesini L, Etiope G, Papale D, Canfora E, Valentini R, Pegoraro E (2014) Partitioning the net ecosystem carbon balance of a semiarid steppe into biological and geological components. Biogeochemistry 118:83–101

    Article  CAS  Google Scholar 

  • Roberts SJ, Hodgson DA, Shelley S, Royles J, Griffiths HS, Deen TJ, Thorne MAS (2010) Establishing lichenometric ages for nineteenth- and twentieth-century glacier fluctuations on South Georgia (South Atlantic). Geogr Ann A 92:125–139

    Article  Google Scholar 

  • Sancho L, Pintado A (2004) Evidence of high annual growth rate for lichens in the maritime Antarctic. Polar Biol 27:312–319

    Article  Google Scholar 

  • Sancho LG, Palacios D, Green TGA, Vivas M, Pintado A (2011) Extreme high lichens growth rates detected in recently deglaciated areas in Tierra del Fuego. Polar Biol 34:813–822

    Article  Google Scholar 

  • Schlensog M, Schroeter B (2001) A new method for the accurate in situ monitoring of chlorophyll a fluorescence in lichen and bryophytes. Lichenologist 33:443–452

    Article  Google Scholar 

  • Schroeter B, Green TGA, Seppekt RD, Kappen L (1992) Monitoring photosynthetic activity of crustose lichens using a PAM-2000 fluorescence system. Oecologia 92:457–465

    Article  Google Scholar 

  • Schuur EAG, Crummer KG, Vogel JG, Mack MC (2007) Plant species composition and productivity following permafrost thaw and thermokarst in Alaskan tundra. Ecosytems 10:280–292

    Article  Google Scholar 

  • Serna-Perez A, Monger HC, Herrick JE, Murray L (2006) Carbon dioxide emissions from exhumed petrocalcic horizons. Soil Sci Soc Am J 70:795–805

    Article  CAS  Google Scholar 

  • Shanhun FL, Almond PC, Clough TJ, Smith CMS (2012) Abiotic processes dominate CO2 fluxes in Antarctic soils. Soil Biol Biochem 53:99–111

    Article  CAS  Google Scholar 

  • Shaver GR, Chapin FS (1991) Production: biomass relationships and element cycling in contrasting arctic vegetation types. Ecol Monogr 61:1–31

    Article  Google Scholar 

  • Sommerkorn M, Bölter M, Kappen L (1999) Carbon dioxide fluxes of soils and mosses in wet tundra of Taimyr Peninsula, Siberia: controlling factors and contribution to net system fluxes. Polar Res 18:253–260

    Article  Google Scholar 

  • Sponseller RA (2007) Precipitation pulses and soil CO2 efflux in a Sonoran Desert ecosystem. Glob Chang Biol 13:426–436

    Article  Google Scholar 

  • Su YG, Wu L, Zhang YM (2012) Characteristics of carbon flux in two biologically crusted soils in the Gurbantunggut Desert, Northwestern China. Catena 96:41–48

    Article  Google Scholar 

  • Su YG, Wu L, Zhou ZB, Zhang YM (2013) Carbon flux in deserts depends on soil cover type: a case study in the Gurbantunggut Desert, North China. Soil Biol Biochem 58:332–340

    Article  CAS  Google Scholar 

  • Tenhunen JD, Lange OL, Hahn S, Siegwolf R, Oberbauer SF (1992) The ecosystem role of poikilohydric tundra plants. In: Chapin FS, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J (eds) Arctic ecosystems in a changing climate. Academic Press, San Diego

    Google Scholar 

  • Turetsky MR (2003) The role of bryophytes in carbon and nitrogen cycling. Bryologist 106:395–409

    Article  Google Scholar 

  • Uchida M, Muraoka H, Nakatsubo T, Bekku Y, Ueno T, Kanda H, Koizumi H (2002) Net photosynthesis, respiration and production of the moss Sanionia uncinata on a glacier foreland in the high arctic, Ny-Alesund, Svalbard. Arct Antarct Alp Res 34:287–292

    Article  Google Scholar 

  • Uchida M, Nakatsubo T, Kanda H, Koizumi H (2006) Estimation of the annual primary production of the lichen Cetrariella delisei in a glacier foreland on the high arctic, Ny-Alesund, Svalbard. Polar Res 25:39–49

    Article  Google Scholar 

  • Weber B, Graf T, Bass M (2012) Ecophysiological analyses of moss-dominated biological soil-crusts and their separate components from the Succulent Karoo, South Africa. Planta 236:129–139

    Article  CAS  PubMed  Google Scholar 

  • Weber B, Berkemeier T, Ruckteschler N, Caesar J, Heintz H, Ritter H, Braß H (2016) Development and calibration of a novel sensor to analyze the water content of biological soil crusts and surface soils. Methods Ecol Evol. 7(1):14–22. doi:10.1111/2041-210X.12459

    Google Scholar 

  • Wilske B, Burgheimer J, Maseyk K, Karnieli A, Zaady E, Andreae MO, Yakir D, Kesselmeier J (2009) Modelling the variability in annual carbon fluxes related to biological soil crusts in a Mediterranean shrubland. Biogeosci Discuss 6:7295–7324

    Article  Google Scholar 

  • Winchester V, Harrison S (2000) Dendrochronology and lichenometry: colonization, growth rates and dating of geomorphological events on the east side of the North Patagonian Icefield, Chile. Geomorphology 34:181–194

    Article  Google Scholar 

  • **e J, Li Y, Zhai C, Li C, Lan Z (2009) CO2 absorption by alkaline soils an its implication to the global carbon cycle. Environ Geol 56:953–961

    Article  CAS  Google Scholar 

  • Zaady E, Kuhn U, Wilske B, Sandoval-Soto L, Kesselmeier J (2000) Patterns of CO2 exchange in biological soil crusts of successional stages. Soil Biol Biochem 32:959–966

    Article  CAS  Google Scholar 

  • Zhao MS, Heinsch FA, Nemani RR et al (2005) Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sens Environ 95:164–176

    Article  Google Scholar 

Download references

Acknowledgments

L.G. Sancho and J. Raggio were supported by the Ministerio de Economía y Competitividad of Spain (projects CTM2012-38222-C01 and SCIN). Bettina Weber was supported by the Max Planck Society (Nobel Laureate Fellowship) and the German Research Foundation (project WE2393/2). We are especially thankful to Prof. T.G. Allan Green (Universidad Complutense Madrid) for advice and support. JB was supported by USGS Ecosystems program. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leopoldo G. Sancho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sancho, L.G., Belnap, J., Colesie, C., Raggio, J., Weber, B. (2016). Carbon Budgets of Biological Soil Crusts at Micro-, Meso-, and Global Scales. In: Weber, B., Büdel, B., Belnap, J. (eds) Biological Soil Crusts: An Organizing Principle in Drylands. Ecological Studies, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-319-30214-0_15

Download citation

Publish with us

Policies and ethics

Navigation