A Spider’s Sense of Touch: What to Do with Myriads of Tactile Hairs?

  • Chapter
  • First Online:
The Ecology of Animal Senses

Abstract

Some spiders are densely covered by an intriguingly large number of mechanoreceptive hairs on their exoskeleton, the wandering spider Cupiennius salei being the main example examined here. All of these hairs represent first-order lever arms, whose deflection triggers nervous impulses in the sensory cells ending at their base. Their sensitivities differ greatly. By far the most sensitive hairs are the trichobothria. They respond to the frictional forces contained in the slightest movement of air. The large majority of the hairs, however, are much less sensitive. They represent touch receptors, including proprioreceptive hairs, which monitor the movements of joints. The mechanical properties of the hairs such as their resistance to deflection and their directional properties vary as do details of their morphology (like structure of socket and outer hair shaft, length, angle of hair insertion). Although such differences are graduated, the distributions of some main morphological types form stereotyped patterns on the spider exoskeleton. The functional significance of these patterns in regard to particular behaviors is largely unknown. The enormous versatility of the tactile sense nevertheless clearly emerges from the analysis of prominent examples of hairs and their relation to behavior. Like in other senses, stimulus transformation turns out to be a most important evolutionary playground for biologically applied physics and to a large extent to be responsible for the fine-tuned match between the sensor and the adequate stimulus patterns which it is meant to receive for different behavioral tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Albert JT (2001) Zur Physiologie des Berührungssinnes von Spinnen. Doctoral thesis, Faculty of Life Sciences, University of Vienna

    Google Scholar 

  • Albert JT, Barth FG (1999) Tactile hairs of a spider. III. GABA and circadian modulation of sensitivity. Zoology 102:48

    Google Scholar 

  • Albert JT, Friedrich OC, Dechant H-E, Barth FG (2001) Arthropod touch reception: spider hair sensilla as rapid touch detectors. J Comp Physiol A 187:303–312

    Article  CAS  PubMed  Google Scholar 

  • Anton S, Barth FG (1993) Central nervous projection patterns of trichobothria and other cuticular sensilla in the wandering spider Cupiennius salei (Arachnida, Araneae). Zoomorphology 113:21–32

    Article  Google Scholar 

  • Babu SK, Barth FG (1984) Neuroanatomy of the central nervous system of a wandering spider, Cupiennius salei (Arachnida, Araneae). Zoomorphology 104:344–359

    Article  Google Scholar 

  • Barth FG (1993) Sensory guidance in spider pre-copulatory behavior. Comp Biochem Physiol 104(A):717–733

    Article  Google Scholar 

  • Barth FG (1997) Vibratory communication in spiders: adaptation and compromise at many levels. In: Lehrer M (ed) Orientation and communication in arthropods. Birkhäuser, Basel, pp 247–272

    Chapter  Google Scholar 

  • Barth FG (2002a) A spider’s world: senses and behavior. Springer, Berlin, 394 p

    Book  Google Scholar 

  • Barth FG (2002b) Spider senses – technical perfection and biology. Karl von Frisch lecture. Zoology 105:271–285

    Article  PubMed  Google Scholar 

  • Barth FG (2004) Spider mechanoreceptors. Curr Opin Neurobiol 14:415–422

    Article  CAS  PubMed  Google Scholar 

  • Barth FG (2012a) Sensory perception: adaptation to life style and habitat. In: Barth FG, Giampieri-Deutsch P, Klein H-D (eds) Sensory perception – mind and matter. Springer, Wien, pp 88–107

    Chapter  Google Scholar 

  • Barth FG (2012b) Spider strain detection. In: Barth FG, Humphrey JAC, Srinivasan MV (eds) Frontiers in sensing: from biology to engineering. Springer, Wien, pp 251–273

    Chapter  Google Scholar 

  • Barth FG (2014) The slightest whiff of air: airflow sensing in arthropods. In: Bleckmann H, Mogdans J, Coombs SL (eds) Flow sensing in air and water – behavioral, neural and engineering principles of operation. Springer, Berlin, pp 169–196

    Chapter  Google Scholar 

  • Barth FG, Cordes D (1998) Cupiennius remedius (Araneae, Ctenidae), a new species in Central America, and a key for the genus Cupiennius. J Arachnol 26:133–141

    Google Scholar 

  • Barth FG, Cordes D (2008) Key to the genus Cupiennius (Araneae, Ctenidae). In: Weissenhofer et al. (eds) Natural and cultural history of the Golfo Dulce region. Spapfia 88, zugleich Kataloge der oberösterreichischen Landesmuseen, Neue Serie 80:225–228

    Google Scholar 

  • Barth FG, Dechant H-E (2003) Arthropod cuticular hairs: tactile sensors and the refinement of stimulus transformation. In: Barth FG, Humphrey JAC, Secomb TW (eds) Sensors and sensing in biology and engineering. Springer, Wien, pp 159–171

    Chapter  Google Scholar 

  • Barth FG, Geethabali (1982) Spider vibration receptors. Threshold curves of individual slits in the metatarsal lyriform organ. J Comp Physiol 148:175–185

    Article  Google Scholar 

  • Barth FG, Höller A (1999) Dynamics of arthropod filiform hairs. V. The response of spider trichobothria to natural stimuli. Phil Trans R Soc Lond B 354:183–192

    Article  Google Scholar 

  • Barth FG, Schmid A (eds) (2001) Ecology of sensing. Springer, Berlin, 341 p

    Google Scholar 

  • Barth FG, Wastl U, Humphrey JAC, Devarakonda R (1993) Dynamics of arthropod filiform hairs. II- Mechanical properties of spider trichobothria (Cupiennius salei KEYS). Phil Trans R Soc Lond B 340:445–461

    Article  Google Scholar 

  • Barth FG, Nemeth SS, Friedrich OC (2004) Arthropod touch reception: structure and mechanics of the basal part of a spider tactile hair. J Comp Physiol A 190:523–530

    CAS  Google Scholar 

  • Bathellier B, Barth FG, Albert JT, Humphrey JAC (2005) Viscosity-mediated motion coupling between pairs of trichobothria on the leg of the spider Cupiennius salei. J Comp Physiol A 191:733–746, see also Erratum: J Comp Physiol A 196:89

    Google Scholar 

  • Bathellier B, Steinmann T, Barth FG, Casas J (2012) Air motion sensing hairs of arthropods detect high frequencies at near maximal mechanical efficiency. J R Soc Interface 9:1131–1143

    Article  PubMed  Google Scholar 

  • Blickhan R, Barth FG (1985) Strains in the exoskeleton of spiders. J Comp Physiol A 157:115–147

    Article  Google Scholar 

  • Dechant H-E (2001) Mechanical properties and finite element simulation of spider tactile hairs. Doctoral thesis, Vienna University of Technology, Vienna

    Google Scholar 

  • Dechant H-E, Rammerstorfer FG, Barth FG (2001) Arthropod touch reception: stimulus transformation and finite element model of spider tactile hairs. J Comp Physiol A 187:313–322, see also Erratum J Comp Physiol A 187:851

    Article  CAS  PubMed  Google Scholar 

  • Dechant H-E, Hößl B, Rammerstorfer FG, Barth FG (2006) Arthropod mechanoreceptive hairs: modeling the directionality of the joint. J Comp Physiol A 192:1271–1278

    Article  Google Scholar 

  • Dusenbery DB (1992) Sensory ecology. How organisms acquire and respond to information. WH Freeman and Co., New York

    Google Scholar 

  • Eckweiler (1983) Topographie von Proprioreceptoren, Muskeln und Nerven im Patella-Tibia- und Metatarsus-Tarsus –Gelenk des Spinnenbeins. Diploma thesis, Biology, JW Goethe University, Frankfurt am Main

    Google Scholar 

  • Eckweiler W (1987) Tasthaare, Beinmuskelreflexe und Einstellung der Körperhöhe bei Jagdspinnen. Doctoral thesis, Biology, JW Goethe University, Frankfurt am Main

    Google Scholar 

  • Eckweiler W, Seyfarth E-A (1988) Tactile hairs and the adjustment of body height in wandering spiders: behavior, leg reflexes, and afferent projections in the leg ganglia. J Comp Physiol A 162:611–621

    Article  Google Scholar 

  • Eckweiler W, Hammer K, Seyfarth E-A (1989) Long smooth hair sensilla on the spider leg coxa: sensory physiology, central projection pattern, and proprioceptive function. Zoomorphology 109:97–102

    Article  Google Scholar 

  • Erber J (2012) Tactile antennal learning in the honey bee. In: Galizia GC, Eisenhardt D, Giurfa M (eds) Honeybee neurobiology and behavior. Springer Science and Business, Dordrecht, pp 439–455

    Google Scholar 

  • Fabian-Fine R, Meinertzhagen IA, Seyfarth E-A (2000) Organization of efferent peripheral synapses at mechanosensory neurons in spiders. J Comp Neurol 420:195–210

    Article  CAS  PubMed  Google Scholar 

  • Foelix RF (1975) Occurrence of synapses in peripheral sensory nerves of arachnids. Nature 254:146–148

    Article  CAS  PubMed  Google Scholar 

  • Foelix R (1985) Mechano- and chemoreceptive sensilla. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin, pp 118–137

    Chapter  Google Scholar 

  • Foelix R, Chu-Wang I-W (1973) The morphology of spider sensilla. I. Mechanoreceptors. Tissue Cell 5:451–460

    Article  CAS  PubMed  Google Scholar 

  • Fratzl P, Barth FG (2009) Biomaterial systems for mechanosensing and actuation. Nature 462:442–448

    Article  CAS  PubMed  Google Scholar 

  • Friedrich OC (1998) Tasthaare bei Spinnen: Zur äußeren Morphologie, Biomechanik und Innervierung mechanoreceptiver Haarsensillen bei der Jagdspinne Cupiennius salei Keys. (Ctenidae). Diploma thesis, Faculty of Life Sciences, University of Vienna, Vienna

    Google Scholar 

  • Friedrich OC (2001) Zum Berührungssinn von Spinnen. Doctoral thesis, Faculty of Life Sciences, University of Vienna, Vienna

    Google Scholar 

  • Harris DJ, Mill PJ (1977) Observations on the leg receptors of Ciniflo (Araneidae, Dictynidae) I. External mechanoreceptors. J Comp Physiol 119:37–54

    Article  Google Scholar 

  • Höger U, Seyfarth E-A (1995) Just in the nick of time: postembryonic development of tactile hairs and of tactile behavior in spiders. Zoology (ZACS) 99:49–57

    Google Scholar 

  • Hößl B, Böhm HJ, Rammerstorfer FG, Müllan R, Barth FG (2006) Studying the deformation of arachnid slit sensilla by a fracture mechanical approach. J Biomech 39:1761–1768

    Article  PubMed  Google Scholar 

  • Hößl B, Böhm HJ, Rammerstorfer FG, Barth FG (2007) Finite element modeling of arachnid slit sensilla. I: The mechanical significance of different slit arrays. J Comp Physiol A 193:445–459, see also Erratum J Comp Physiol A 193:575

    Article  Google Scholar 

  • Hößl B, Böhm HJ, Schaber CF, Rammerstorfer FG, Barth FG (2009) Finite element modeling of arachnid slit sensilla. II. Actual lyriform organs and the face deformations of the individual slits. J Comp Physiol A 195:881–894

    Article  Google Scholar 

  • Hößl B, Böhm HJ, Rammerstorfer FG, Barth FG (2014) Finite element modeling of arachnid slit sensilla. III. 3D morphology and embedding (submitted)

    Google Scholar 

  • Humphrey JAC, Barth FG (2008) Medium flow-sensing hairs: biomechanics and models. In: Casas J, Simpson SJ (eds) Adv Ins Physiol. 34. Insect mechanics and control, 1–80

    Google Scholar 

  • Johnson KO (2001) The roles and functions of cutaneous mechanoreceptors. Curr Opin Neurobiol 11:455–461

    Article  CAS  PubMed  Google Scholar 

  • Johnson KO, Yoshioka T, Vega-Bermudez F (2000) Tactile functions of mechanoreceptive afferents innervating the hand. J Clin Neurophysiol 17:539–558

    Article  CAS  PubMed  Google Scholar 

  • Keil TA (1997) Functional morphology of insect mechanoreceptors. Microsc Res Tech 39:506–531

    Article  CAS  PubMed  Google Scholar 

  • Klopsch C, Kuhlmann HC, Barth FG (2013) Airflow elicits a spider’s jump towards airborne prey. II. Flow characteristics guiding behaviour. J R Soc Interface 10:82, 10.20120820

    Article  Google Scholar 

  • McConney ME, Schaber CF, Julian MD, Eberhardt WC, Humphrey JAC, Barth FG, Tsukruk VV (2009) Surface force spectroscopic point load measurements and viscoelastic modelling of the micromechanical properties of air flow sensitive hairs of a spider (Cupiennius salei). J R Soc Interface 6:681–694

    Article  PubMed  Google Scholar 

  • Melchers M (1963) Zur Biologie und zum Verhalten von Cupiennius salei (Keyserling), einer amerikanischen Ctenide. Zool Jb Syst 91:1–90

    Google Scholar 

  • Melchers M (1967) Der Beutefang von Cupiennius salei Keyserling (Ctenidae). Z Morph Ökol Tiere 58:321–346

    Article  Google Scholar 

  • Milde JJ, Seyfarth E-A (1988) Tactile hairs and leg reflexes in wandering spiders: physiological and anatomical correlates of reflex activity in the leg ganglia. J Comp Physiol A 162:623–631

    Article  Google Scholar 

  • Panek I, French AS, Seyfarth E-A, Sekizawa SI, Torkkeli PH (2002) Peripheral GABAergic inhibition of spider mechanosensory afferents. Eur J Neurosci 16:96–104

    Article  PubMed  Google Scholar 

  • Rovner JS (1971) Mechanisms controlling copulatory behavior in wolf spiders (Araneae: Lycosidae). Psyche 78(3):150–165

    Article  Google Scholar 

  • Schaber CF, Barth FG (2014) Spider joint hairs: adaptation to proprioreceptive stimulation. J Comp Physiol A 201(2):235–248

    Google Scholar 

  • Schaber CF, Gorb S, Barth FG (2012) Force transformation in spider strain sensors: white light interferometry. J R Soc Interface 9:1254–1264

    Article  PubMed  Google Scholar 

  • Schaxel J (1919) Die Tastsinnesorgane der Spinnen. Jena Z Nat 56:13–20

    Google Scholar 

  • Schmid A (1997) A visually induced switch in mode of locomotion of a spider. Z Naturforsch 52c:124–128

    Google Scholar 

  • Seyfarth E-A (1985) Spider proprioception: receptors, reflexes and control of locomotion. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin, pp 230–248

    Chapter  Google Scholar 

  • Seyfarth E-A (2000) Tactile body raising: neuronal correlates of a ‘simple’ behavior in spiders. Proc 19th Eur Coll Arachnol. In: Toft S, Scharff N (eds) Europ Arachnol 2000:19–32. Aarhus University Press, Aarhus 2002

    Google Scholar 

  • Seyfarth E-A, Pflüger H-J (1984) Proprioreceptor distribution and control of a muscle reflex in the tibia of spider legs. J Neurobiol 15:365–374

    Article  CAS  PubMed  Google Scholar 

  • Seyfarth E-A, Gnatzy W, Hammer K (1990) Coxal hair plates in spiders: physiology, fine structure, and specific central projections. J Comp Physiol A 166:633–642

    Article  Google Scholar 

  • Sherman RG (1985) Neural control of the heartbeat and skeletal muscle in spiders and scorpions. In: Barth FG (ed) Neurobiology of arachnids. Springer, Berlin, pp 319–336

    Chapter  Google Scholar 

  • Speck-Hergenröder J, Barth FG (1988) Vibration sensitive hairs on the spider leg. Experientia 44(1):13–14

    Article  Google Scholar 

  • Theiß J (1979) Mechanoreceptive bristles on the head of the blowfly: mechanics and electrophysiology of the macrochaetae. J Comp Physiol 32:55–68

    Article  Google Scholar 

  • Tichy H, Barth FG (1992) Fine structure of olfactory sensilla in myriapods and arachnids. Microsc Res Tech 22(4):372–391

    Article  CAS  PubMed  Google Scholar 

  • Ullrich ND (2000) Zum Berührungssinn von Spinnen: Feinstruktur und zentrale Projektion von Tasthaaren bei Cupiennius salei Keys. (Ctenidae). Diploma thesis, Faculty of Life Sciences, University of Vienna, Vienna

    Google Scholar 

  • von Frisch K (1965) Tanzsprache und Orientierung der Bienen. Springer, Berlin

    Book  Google Scholar 

  • von Helversen O (1976) Gedanken zur Evolution der Paarungsstellung bei den Spinnen (Arachnida: Araneae). Entomol Ger 3(1/2):13–28

    Google Scholar 

  • von Uexküll J (1909) Umwelt und Innenwelt der Tiere. Springer, Berlin

    Google Scholar 

  • von Uexküll J (1920) Theoretische Biologie. Springer, Berlin

    Google Scholar 

  • Wehner R (1987) ‘Matched filters’- neural models of the external world. J Comp Physiol A 161:511–531

    Article  Google Scholar 

  • Wiese K (1976) The mechanosensitive system of prey localization in Notonecta. J Comp Physiol A 92:317–325

    Article  Google Scholar 

  • Wilson OE (1984) Biophilia. The human bond with other species. Harvard University Press, Cambridge, MA

    Google Scholar 

Download references

Acknowledgments

Research in the author’s laboratories reported here was generously supported by the Austrian Science Fund FWF (grant P 12192-Bio to FGB). I am grateful to all my former students and associates for their contributions and to Prof. FG Rammerstorfer of the Vienna University of Technology for his invaluable input from the engineering side. JT Albert, OC Friedrich, M Hrncir, S Jarau, and N Ullrich gave permission to use unpublished figures. I also thank E.-A. Seyfarth and Aarhus University Press for the permission to use Fig. 2.8b and Springer-Verlag for the permission to use Figs. 2.1b, 2.5, 2.6, and 2.9 from our own previous publications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich G. Barth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barth, F.G. (2016). A Spider’s Sense of Touch: What to Do with Myriads of Tactile Hairs?. In: von der Emde, G., Warrant, E. (eds) The Ecology of Animal Senses. Springer, Cham. https://doi.org/10.1007/978-3-319-25492-0_2

Download citation

Publish with us

Policies and ethics

Navigation