Sterculia Gum-Based Hydrogels for Drug Delivery Applications

  • Chapter
  • First Online:
Polymeric Hydrogels as Smart Biomaterials

Part of the book series: Springer Series on Polymer and Composite Materials ((SSPCM))

Abstract

Sterculia gum is one of the medicinally important plant-derived water soluble polysaccharides obtained from the exudate of the tree, Sterculia urens (Family: sterculiaceae). It is recognized as a promising biodegradable material in the development of various biomedical applications including drug delivery applications, wound dressing applications, etc. Sterculia gum is also employed as excipient in the designing of various pharmaceutical applications. In recent years, several attempts for the modification of sterculia gum have been undertaken to develop sterculia gum-based hydrogels for controlling the rate of hydration and swelling, and also tailoring the release profile of various types of drugs. In the development of these sterculia gum-based hydrogels, modifications of sterculia gum through polymer blending, cross-linking, interpenetrated polymer network (IPN) formation, polymer grafting, etc., were investigated for improved drug delivery applications. Most of these already reported sterculia gum-based hydrogels were found effective for gastroretentive deliveries as wound dressings for sustained release of various drugs. The current chapter deals with a comprehensive and useful discussion on already investigated sterculia gum-based hydrogels for the use in drug delivery applications, where the first portion of the chapter contains source, composition, and properties of sterculia gum and the latter portion contains discussion on the formulations of various sterculia gum-based hydrogel systems used for various types of drug delivery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pal D, Mitra S (2010) A preliminary study on the in vitro antioxidant activity of the stems of Opuntia vulgaris. J Adv Pharm Technol Res 1:172–268

    Article  CAS  Google Scholar 

  2. Pal D, Banerjee S, Ghosh A (2012) Dietary-induced cancer prevention: an expanding research arena of emerging diet related to healthcare system. J Adv Pharm Technol Res 3:16–24

    Article  CAS  Google Scholar 

  3. Nayak AK, Pal D, Pany DR, Mohanty B (2010) Evaluation of Spinacia oleracea L. leaves mucilage as innovative suspending agent. J Adv Pharm Technol Res 1:338–341

    Article  CAS  Google Scholar 

  4. Nayak AK, Pal D, Pradhan J, Ghorai T (2012) The potential of Trigonella foenum-graecum L. seed mucilage as suspending agent. Indian J Pharm Educ Res 46:312–317

    Google Scholar 

  5. Hasnain MS, Nayak AK, Singh R, Ahmad F (2010) Emerging trends of natural-based polymeric systems for drug delivery in tissue engineering applications. Sci J UBU 1:1–13

    Google Scholar 

  6. Nayak AK, Pal D, Santra K (2015) Screening of polysaccharides from tamarind, fenugreek and jackfruit seeds as pharmaceutical excipients. Int J Biol Macromol 79:756–760

    Article  CAS  Google Scholar 

  7. Nayak AK, Pal D (2012) Natural polysaccharides for drug delivery in tissue engineering. Everyman’s Sci XLVI:347–352

    Google Scholar 

  8. Lloyd LL, Kenedy JF, Methacanon P, Peterson M, Knill CJ (1998) Carbohydrate polymers as wound management aids. Carbohydr Polym 37:315–322

    Article  CAS  Google Scholar 

  9. Barbosa MA, Granja PL, Barrias CC, Amaral IF (2005) Polysaccharides as scaffolds for bone regeneration. ITBM-RBM 26:212–217

    Article  Google Scholar 

  10. Nayak AK, Pal D, Santra K (2014) Development of calcium pectinate-tamarind seed polysaccharide mucoadhesive beads containing metformin HCl. Carbohydr Polym 101:220–230

    Article  CAS  Google Scholar 

  11. Rana V, Rai P, Tiwari AK, Singh RS, Kenedy JF, Knill CJ (2011) Modified gums: approaches and application in drug delivery. Carbohydr Polym 83:1031–1047

    Article  CAS  Google Scholar 

  12. Prajapati VD, Jani GK, Moradiya NG, Randeria NP (2013) Pharmaceutical applications of various natural gums, mucilages and their modified forms. Carbohydr Polym 92:1685–1699

    Article  CAS  Google Scholar 

  13. Waliszewski KN, Aparicio MA, Bello LA, Monroy JA (2003) Changes of banana starch by chemical and physical modification. Carbohydr Polym 52:237–242

    Article  CAS  Google Scholar 

  14. Manchanda R, Arora SC, Manchanda R (2014) Tamarind seed polysaccharide and its modification-versatile pharmaceutical excipients-a review. Int J PharmTech Res 6:412–420

    CAS  Google Scholar 

  15. Coviello T, Matricardi P, Marianecci C, Alhaique F (2007) Polysaccharide hydrogels for modified release formulations. J Control Release 119:5–24

    Article  CAS  Google Scholar 

  16. Wang Q, **e X, Zhang X, Zhang J, Wang A (2010) Preparation and swelling properties of pH-sensitive composite beads based on chitosan-g-poly (acrylic acid)/vermiculite and sodium alginate for diclofenac controlled release. Int J Biol Macromol 46:356–362

    Article  CAS  Google Scholar 

  17. Hwang MR, Kim JO, Lee JH, Kim YI, Kim JH, Chang SW, ** SG, Kim JA, Lyoo WS, Han SS, Ku SK, Yong CS, Choi HG (2010) Gentamicin-loaded wound dressing with polyvinyl alcohol/dextran hydrogel: gel characterization and in vivo healing evaluation. AAPS PharmSciTech 11:1092–1103

    Article  CAS  Google Scholar 

  18. Pal K, Banthia AK, Majumder DK (2007) Preparation and characterization of polyvinyl alcohol-gelation hydrogel membranes for biomedical applications. AAPS PharmSciTech 8(21)

    Google Scholar 

  19. Kuo CK, Ma PX (2001) Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering. Part I: structure, gelation rate and medical properties. Biomater 22:511–521

    Article  CAS  Google Scholar 

  20. Nayak AK, Pal D (2011) Development of pH-sensitive tamarind seed polysaccharide-alginate composite beads for controlled diclofenac sodium delivery using response surface methodology. Int J Biol Macromol 49:784–793

    Article  CAS  Google Scholar 

  21. Pal D, Nayak AK (2012) Novel tamarind seed polysaccharide-alginate mucoadhesive microspheres for oral gliclazide delivery. Drug Deliv 19:123–131

    Article  CAS  Google Scholar 

  22. Nayak AK, Pal D, Santra K (2014) Development of pectinate-ispagula mucilage mucoadhesive beads of metformin HCl by central composite design. Int J Biol Macromol 66:203–221

    Article  CAS  Google Scholar 

  23. Malakar J, Nayak AK, Jana P, Pal D (2013) Potato starch-blended alginate beads for prolonged release of tolbutamide: development by statistical optimization and in vitro characterization. Asian J Pharm 7:43–51

    Article  Google Scholar 

  24. Nayak AK, Pal D, Santra K (2014) Ispaghula mucilage-gellan mucoadhesive beads of metformin HCl: development by response surface methodology. Carbohydr Polym 107:40–41

    Google Scholar 

  25. Jana S, Lakshman D, Sen KK, Basu SK (2010) Development and evaluation of epichlorohydrin cross-linked mucoadhesive patches of tamarind seed polysaccharide for buccal application. Int J Pharm Sci Drug Res 2:193–198

    CAS  Google Scholar 

  26. Maiti S, Ranjit S, Mondol R, Ray S, Sa B (2011) Al+3 ion cross-linked and acetalated gellan hydrogel network beads for prolonged release of glipizide. Carbohydr Polym 85:164–172

    Article  CAS  Google Scholar 

  27. Vieira AP, Ferreira P, Coelho JFJ, Gil MH (2008) Photocrosslinkable starch-based polymers for ophthalmologic drug delivery. Int J Biol Macromol 43:325–332

    Article  CAS  Google Scholar 

  28. Das A, Wadhwa S, srivastava AK (2006) Cross-linked guar gum hydrogel discs for colon-specific delivery of ibuprofen: formulation and in vitro evaluation. Drug Deliv 13:139–142

    Article  CAS  Google Scholar 

  29. Chourasia MK, Jain NK, Jain A, Soni V, Gupta Y, Jain SK (2006) Cross-linked guar gum microspheres: a viable approach for improved delivery of anticancer drugs for the treatment of colorectal cancer. AAPS PharmSciTech 7:E1–E9

    Google Scholar 

  30. Malik S, Kumar A, Ahuja M (2012) Synthesis of gum kondagogu- g-poly(N-vinyl-2-pyrrolidone) and its evaluation as a mucoadhesive polymer. Int J Biol Macromol 51:756–762

    Article  CAS  Google Scholar 

  31. Pandey VS, Verma SK, Yadav M, Behari K (2014) Guar gum-g-N, N′-dimethylacrylamide: synthesis, characterization and applications. Carbohydr Polym 99:284–290

    Article  CAS  Google Scholar 

  32. Mishra A, Yadav A, Pal S, Singh A (2006) Biodegradable graft copolymers of fenugreek mucilage and polyacrylamide: a renewable reservoir to biomaterials. Carbohydr Polym 65:58–63

    Article  CAS  Google Scholar 

  33. Kumar A, Singh K, Ahuja M (2009) Xanthan-g-poly(acrylamide): microwave-assisted synthesis, characterization and in vitro release behavior. Carbohydr Polym 76:261–267

    Article  CAS  Google Scholar 

  34. Vijan V, Kaity S, Biswas S, Isaac J, Ghosh A (2012) Microwave assisted synthesis and characterization of acrylamide grafted gellan, application in drug delivery. Carbohydr Polym 90:496–506

    Article  CAS  Google Scholar 

  35. Kaur H, Ahuja M, Kumar S, Dilbaghi N (2012) Carboxymethyl tamarind kernel polysaccharide nanoparticles for ophthalmic drug delivery. Int J Biol Macromol 50:833–839

    Article  CAS  Google Scholar 

  36. Maiti S, Dey P, Banik A, Sa B, Ray S, Kaity S (2010) Tailoring of locust bean gum and development of hydrogel beads for controlled oral delivery of glipizide. Drug Deliv 17:288–300

    Article  CAS  Google Scholar 

  37. Kumar A, Ahuja M (2012) Carboxymethyl gum kondagogu: synthesis, characterization and evaluation as mucoadhesive polymer. Carbohydr Polym 90:637–643

    Article  CAS  Google Scholar 

  38. Das B, Dutta S, Nayak AK, Nanda U (2014) Zinc alginate-carboxymethyl cashew gum microbeads for prolonged drug release: development and optimization. Int J Biol Macromol 70:505–515

    Article  CAS  Google Scholar 

  39. Gupta S, Sharma P, Soni PL (2005) Chemical modification of Cassia occidentalis seed gum: carbamoylethylation. Carbohydr Polym 59:501–506

    Article  CAS  Google Scholar 

  40. Sharma BR, Kumar V, Soni PL (2004) Carbamoylethylation of guar gum. Carbohydr Polym 58:449–451

    Article  CAS  Google Scholar 

  41. Kaur H, Yadav S, Ahuja M, Dilbaghi N (2012) Synthesis, characterization and evaluation of thiolated tamarind seed polysaccharide as a mucoadhesive polymer. Carbohydr Polym 90:1543–1549

    Article  CAS  Google Scholar 

  42. Sharma R, Ahuja M (2011) Thiolated pectin—synthesis, characterization and evaluation as a mucoadhesive polymer. Carbohydr Polym 85:658–663

    Article  CAS  Google Scholar 

  43. Yadav S, Ahuja M, Kumar A, Kaur H (2014) Gellan–thioglycolic acid conjugate: synthesis, characterization and evaluation as mucoadhesive polymer. Carbohydr Polym 99:601–607

    Article  CAS  Google Scholar 

  44. Hamcerencu M, Desbrieres J, Khoukh A, Popa M, Riess G (2008) Synthesis and characterization of new unsaturated esters of gellan gum. Carbohydr Polym 71:92–100

    Article  CAS  Google Scholar 

  45. Tay SH, Pang SC, Chin SF (2012) Facile synthesis of starch maleate monoesters from native sago starch. Carbohydr Polym 88:1195–1200

    Article  CAS  Google Scholar 

  46. Jana S, Das A, Nayak AK, Sen KK, Basu SK (2013) Aceclofenac-loaded unsaturated esterified alginate/gellan gum microspheres: in vitro and in vivo assessment. Int J Biol Macromol 57:129–137

    Article  CAS  Google Scholar 

  47. Jana S, Saha A, Nayak AK, Sen KK, Basu SK (2013) Aceclofenac-loaded chitosan-tamarind seed polysaccharide interpenetrating polymeric network microparticles. Colloids Surf B: Biointerf 105:303–309

    Article  CAS  Google Scholar 

  48. Banerjee S, Chaurasia G, Pal D, Ghosh AK, Ghosh A, Kaity S (2010) Investigation on crosslinking density for development of novel interpenetrating polymer network (IPN) based formulation. J Sci Ind Res 69:777–784

    CAS  Google Scholar 

  49. Kulkarni RV, Nagathan VV, Biradar PR, Naikawadi AA (2013) Simvastatin loaded composite polyspheres of gellan gum and carrageenan: in vitro and in vivo evaluation. Int J Biol Macromol 57:238–244

    Article  CAS  Google Scholar 

  50. Kulkarni RV, Mangod BS, Mutalik S, Sa B (2011) Interpenetrating polymer network microcapsules of gellan gum and egg albumin entrapped with diltiazem-resin complex for controlled release application. Carbohydr Polym 83:1001–1007

    Article  CAS  Google Scholar 

  51. Luo Y, Wang Q (2014) Recent development of chitosan-based polyelectrolyte complexes with natural polysaccharides for drug delivery. Int J Biol Macromol 64:353–367

    Article  CAS  Google Scholar 

  52. Naidu VGM, Madhusudhana K, Sashidhar RB, Ramakrishna S, Khar RK, Ahmed FJ, Diwan PV (2009) Polyelectrolyte complexes of gum kondagogu and chitosan, as diclofenac carriers. Carbohydr Polym 76:464–471

    Article  CAS  Google Scholar 

  53. Jana S, Maji N, Nayak AK, Sen KK, Basu SK (2013) Development of chitosan-based nanoparticles through inter-polymeric complexation for oral drug delivery. Carbohydr Polym 98:870–876

    Article  CAS  Google Scholar 

  54. Peng SC, Chin SF, Tay SH, Tchong FM (2011) Starch-maleate-polyvinyl alcohol hydrogels with controllable swelling behaviours. Carbohydr Polym 84:424–429

    Article  CAS  Google Scholar 

  55. Rokhade AP, Patil SA, Aminabhavi TM (2007) Synthesis and characterization of semi-interpenetrating polymer network microspheres of acrylamide grafted dextran and chitosan for controlled release of acyclovir. Carbohydr Polym 67:605–613

    Article  CAS  Google Scholar 

  56. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 43:3–12

    Article  Google Scholar 

  57. Peppas NA (1986) Hydrogels in medicine. CRC Press, Boca Raton

    Google Scholar 

  58. Hua S, Ma H, Li X, Yang H, Wang A (2010) pH-sensitive sodium alginate/poly(vinyl alcohol) hydrogel beads prepared by combined Ca2+ crosslinking and freeze-thawing cycles for controlled release of diclofenac sodium. Int J Biol Macromol 46:517–523

    Article  CAS  Google Scholar 

  59. Leung AY (1980) Encyclopedia of common natural ingredients used in foods, drugs and cosmetics. Wiley, New York

    Google Scholar 

  60. Cerf DL, Irinei F, Muller G (1990) Solution properties of gum exudates from Sterculia urens (karaya gum). Carbohydr Polym 13:375

    Article  Google Scholar 

  61. Bera H, Kandukuri SG, Nayak AK, Boddupalli S (2015) Alginate-sterculia gum gel-coated oil-entrapped alginate beads for gastroretentive risperidone delivery. Carbohydr Polym 120:74–84

    Article  CAS  Google Scholar 

  62. Kulkarni RV, Patel FS, Nanjappaiah HM, Naikawadi AA (2014) In vitro and in vivo evaluation of novel interpenetrating polymer network microparticles containing repaglinide. Int J Biol Macromol 69:514–522

    Article  CAS  Google Scholar 

  63. Singh B, Sharma N (2011) Design of sterculia gum based double potential antidiarrheal drug delivery system. Colloids Surf B: Biointerf 82:325–332

    Article  CAS  Google Scholar 

  64. Gauthami S, Bhat VR (1992) A monograph on gum karaya. National Institution of Nutrition, Indian Council of Medical Research, Hyderabad

    Google Scholar 

  65. Anderson DMW (1989) Evidence of safety of gum karaya (Sterculia spp.) as a food additive. Food Additive Contamin: Part A 6:189–199

    Article  CAS  Google Scholar 

  66. Singh S, Sharma V, Pal L (2011) Formation of sterculia polysaccharide networks by gamma rays induced graft copolymerization for biomedical applications. Carbohydr Polym 86:1371–1380

    Article  CAS  Google Scholar 

  67. Behall KM, Schofield DJ, Lee K, Powell AS, Mores PB (1987) Mineral balance in adult men: effect of four fibers. Am J Clin Nutri 46:307–314

    CAS  Google Scholar 

  68. Zide BM, Bevin AG (1980) Treatment of shallow soft tissue ulcers with an infrequent dressing technique. Anal Plastic Surg 4:79–83

    Article  CAS  Google Scholar 

  69. Huttel E (1983) Treatment of acute diarrhoea in general practice. Therapeutic experiences with karaya bismuth. Die Medizinishe Welt 34:1383–1384

    CAS  Google Scholar 

  70. Guerre J, Neuman M (1979) Treatment of cronic colonic diseases with a new topical digestive agent, mucilage (karaya gum) combined with polyvinyl polypyrrolidone (PVPP). Med Chirurgie Digest 8:679–682

    CAS  Google Scholar 

  71. Capron JP, Zeitoun P, Julien DA (1981) A multicenter controlled trial of a combination of kaolin, sterculia gum, meprobamate and magnesium salts, in the irritable bowel syndrome (Authors Transl.). Gastroenterol Clin Biol 5:67–72

    CAS  Google Scholar 

  72. Meier P, Seiler WO, Stahelin HB (1990) Bulk-forming agents as laxatives in geriatric patients. Schweizerische Medizinische Wochenschrift 120:314–317

    CAS  Google Scholar 

  73. Anderson DMW, Wang WP (1994) The tree exudate gums permitted in foodstuffs as emulsifiers, stabilisers and thickeners. Chem Ind Forest Products 14:73–83

    CAS  Google Scholar 

  74. Wei** W (2000) Tragacanth and karaya. In: Williams PA, Philips GO (eds) Handbook of hydrocolloids. Woodhea, Cambridge, pp 155–168

    Google Scholar 

  75. Singh B, Sharma V, Chouhan D (2010) Gastroretentive floating sterculia-alginate beads for use in antiulcer drug delivery. Chem Eng Res Des 88:997–1012

    Article  CAS  Google Scholar 

  76. Siva DA, Brito ACF, Paula RCMD, Feitosa JPA, Paula HCB (2003) Effect of mono and divalent salts on gelation of native, Na and deacetylated Sterculia striate and Sterculia urens polysaccharide gels. Carbohydr Polym 54:229–236

    Article  CAS  Google Scholar 

  77. Deshmukh VN, Jadhav JK, Sakarkar DM (2009) Formulation and in vitro evaluation of theophylline anhydrous bioadhesive tablets. Asian J Pharm 3:54–58

    Article  Google Scholar 

  78. Park CR, Munday PL (2004) Evaluation of selected polysaccharide excipients in buccoadhesive tablets for sustained release of nicotine. Drug Dev Ind Pharm 30:609–617

    Article  CAS  Google Scholar 

  79. Munday DL, Philip JC (2000) Compressed xanthan gum and karaya gum matrices: hydration, erosion and drug release mechanism. Int J Pharm 203:179–192

    Article  CAS  Google Scholar 

  80. Sreenivasa B, Prasanna RY, Mary S (2000) Design and studies of gum karaya matrix tablet. Int J Pharm Excip 239–242

    Google Scholar 

  81. Guru PR, Nayak AK, Sahu RK (2013) Oil-entrapped sterculia gum–alginate buoyant systems of aceclofenac: development and in vitro evaluation. Colloids Surf B: Biointerf 104:268–275

    Article  CAS  Google Scholar 

  82. Singh B, Pal L (2012) Sterculia crosslinked PVA and PVA-poly(AAm)hydrogel wound dressings for slow drug delivery: mechanical, mucoadhesive, biocompatible and permeability properties. J Mech Behav Biomed Mater 9:9–21

    Article  CAS  Google Scholar 

  83. Singh B, Vashishtha M (2008) Development of novel hydrogels by modification of sterculia gum through radiation cross-linking polymerization for use in drug delivery. Nucl Instr Methods Phys Res Sec B Beam Interact Mater Atoms 266:2009–2020

    Article  CAS  Google Scholar 

  84. Bera H, Boddupalli S, Nayak AK (2015) Mucoadhesive-floating zinc-pectinate-sterculia gum interpenetrating polymer network beads encapsulating ziprasidone HCl. Carbohydr Polym 131:108–118

    Article  CAS  Google Scholar 

  85. Lankalapalli S, Kolapalli RM (2012) Biopharmaceutical evaluation of diclofenac sodium controlled release tablets prepared from gum karaya-chitosan polyelectrolyte complexes. Drug Dev Ind Pharm 38:815–824

    Article  CAS  Google Scholar 

  86. Singh B, Sharma N (2008) Modification of sterculia gum with methacrylic acid to prepare a novel drug delivery system. Int J Biol Macromol 43:142–150

    Article  CAS  Google Scholar 

  87. Singh B, Chauhan D (2011) Barium ions crosslinked alginate and sterculia gum-based gastrortentive floating drug delivery system for use in peptic ulcers. Int J Polymer Mater 60:684–705

    Article  CAS  Google Scholar 

  88. Goh CH, Heng PWS, Chan LW (2012) Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydr Polym 88:1–12

    Article  CAS  Google Scholar 

  89. Nayak AK, Pal D, Hasnain MS (2013) Development and optimization of jackfruit seed starch-alginate beads containing pioglitazone. Curr Drug Deliv 10:608–619

    Article  CAS  Google Scholar 

  90. Jana S, Gangopadhaya A, Bhowmik BB, Nayak AK, Mukhrjee A (2015) Pharmacokinetic evaluation of testosterone-loaded nanocapsules in rats. Int J Biol Macromol 72:28–30

    Article  CAS  Google Scholar 

  91. Sriamornsak P, Sungthongjeen S (2007) Modification of theophylline release with alginate gel formed in hard capsules. AAPS PharmSciTech 8:E1–E8

    Article  Google Scholar 

  92. Nayak AK, Das B, Maji R (2012) Calcium alginate/gum Arabic beads containing glibenclamide: development and in vitro characterization. Int J Biol Macromol 51:1070–1078

    Article  CAS  Google Scholar 

  93. Nayak AK, Khatua S, Hasnain MS, Sen KK (2011) Development of alginate-PVP K 30 microbeads for controlled diclofenac sodium delivery using central composite design. DARU J Pharm Sci 19:356–366

    CAS  Google Scholar 

  94. Pal D, Nayak AK (2011) Development, optimization and anti-diabetic activity of gliclazide-loaded alginate-methyl cellulose mucoadhesive microcapsules. AAPS PharmSciTech 12:1431–1441

    Article  CAS  Google Scholar 

  95. Al-Kassas R, Al-Gohary OMN, Al-Fadhel MM (2007) Controlling of systemic absorption of gliclazide through incorporation into alginate beads. Int J Pharm 341:230–237

    Article  CAS  Google Scholar 

  96. Banerjee S, Singh S, Bhattacharya SS, Chattopadhyay P (2013) Trivalent ion cross-linked pH sensitive alginate-methyl cellulose blend hydrogel beads from aqueous template. Int J Biol Macromol 57:297–307

    Article  CAS  Google Scholar 

  97. Yoo S-H, Song Y-B, Chang P-S, Lee HG (2006) Microencapsulation of α-tocopherol using sodium alginate and its controlled release properties. Int J Biol Macromol 38:25–30

    Article  CAS  Google Scholar 

  98. Nayak AK, Hasnain MS, Beg S, Alam MI (2010) Mucoadhesive beads of gliclazide: design, development and evaluation. Sci Asia 36:319–325

    Article  CAS  Google Scholar 

  99. Nayak AK, Pal D, Santra K (2013) Plantago ovata F. mucilage-alginate mucoadhesive beads for controlled release of glibenclamide: development, optimization and in vitro-in vivo evaluation. J Pharm 2013(151035)

    Google Scholar 

  100. Sinha P, Ubaidulla U, Nayak AK (2015) Okra (Hibiscus esculentus) gum-alginate blend mucoadhesive beads for controlled glibenclamide release. Int J Biol Macromol 72:1069–1075

    Article  CAS  Google Scholar 

  101. Rees DA (1981) Polysaccharide shapes and their interactions-some recent advances. Pure Appl Chem 53:1–14

    Article  CAS  Google Scholar 

  102. Jenkins AD, Kratochivil P, Stepto RFT, Suter UW (1996) Glossary of basic terms in polymer science (IUPAC recommendations 1996). Pure Appl Chem 68:2287–2311

    CAS  Google Scholar 

  103. Pal D, Nayak AK (2015) Interpenetrating polymer networking systems of natural polymeric blends: Drug delivery, In: Mishra M (ed) Encyclopedia of biomedical polymers and polymeric biomaterials. Taylor & Francis Group, New York. (In Press)

    Google Scholar 

  104. Nayak AK, Pal D (2015) Chitosan-based interpenetrating polymeric network systems for sustained drug release. In: Tiwari A, Choi J-W (eds) Advanced theranostics materials. Wiley, New York, pp 207–232

    Google Scholar 

  105. Das S, Ng K-Y, Ho PC (2010) Formulation and optimization of zinc-pectinate beads for the controlled delivery of resveratrol. AAPS PharmSciTech 11:729–742

    Article  CAS  Google Scholar 

  106. Sriamornsak P, Sungthongjeen S, Puttipipatkhachorn S (2007) Use of pectin as a carrier for intragastric floating drug delivery: carbonate salt contained beads. Carbohydr Polym 67:436–445

    Article  CAS  Google Scholar 

  107. Sriamornsak P, Nunthanid J, Cheewatanakornkool K, Manchun S (2010) Effect of drug loading method on drug content and drug release from calcium pectinate gel beads. AAPS PharmSciTech 11:1315–1319

    Article  CAS  Google Scholar 

  108. Munarin F, Tanzi MC, Petrini P (2012) Advances in biomedical applications of pectin gels. Int J Biol Macromol 51:681–689

    Article  CAS  Google Scholar 

  109. Nayak AK, Pal D (2015) Plant derived polymers: ionically gelled sustained drug release systems. In: Mishra M (ed) Encyclopedia of biomedical polymers and polymeric biomaterials. Taylor & Francis Group, New York. (In Press)

    Google Scholar 

  110. Nayak AK, Pal D, Das S (2013) Calcium pectinate-fenugreek seed mucilage mucoadhesive beads for controlled delivery of metformin HCl. Carbohydr Polym 96:349–357

    Article  CAS  Google Scholar 

  111. Nayak AK, Pal D (2013) Blends of jackfruit seed starch-pectin in the development of mucoadhesive beads containing metformin HCl. Int J Biol Macromol 62:137–145

    Google Scholar 

  112. Singh B, Sharma N (2008) Development of novel hydrogels by functionalization of sterculia gum for use in anti-ulcer drug delivery. Carbohydr Polym 74:489–497

    Article  CAS  Google Scholar 

  113. Singh B, Pal L (2008) Development of sterculia gum based wound dressings for use in drug delivery. Eur Polym J 44:3222–3230

    Article  CAS  Google Scholar 

  114. Huang JC, Deanin RD (2004) Concentration dependency of interaction parameter between PVC and plasticizer using inverse gas chromatography. J Appl Polym Sci 91:146–156

    Article  CAS  Google Scholar 

  115. Sen M, Avci EN (2005) Radiation synthesis poly (N-vinyl-2-pyrrolidone)-κ-carrageenan hydrogels and this use in wound dressing applications, I. Preliminary laboratory tests. J Biomed Mater Res A 77A:187–196

    Article  CAS  Google Scholar 

  116. Sen M, Kantoglu O, Guven O (1999) The effect of external stimuli on the equilibrium swelling properties of poly(N-vinyl 2-pyrrolidone/itaconic acid) polyelectrolyte hydrogels. Polymer 40:913–917

    Article  CAS  Google Scholar 

  117. Zhao C, Liu X, Nomizu M, Nishi N (2003) Blood compatible aspects of DNA-modified polysulfone membrane-protein adsorption and platelet adhesion. Biomater 24:3747–3755

    Article  CAS  Google Scholar 

  118. International Organization for Standardization, ISO (2002) Biomedical evaluation of medical devices-Part 4: selection of tests for interactions with blood, 10993-3, TC193

    Google Scholar 

  119. Shen W, Li Z, Liu Y (2008) Surface chemical functional groups modification of porous carbon. Recent Patents Chem Eng 1:27–40

    Article  CAS  Google Scholar 

  120. Lanthong P, Nuisin R, Kiatkamjornwong S (2006) Graft-copolymerization, characterization and degradation of cassava starch-g-acrylamide/itaconic acid super absorbents. Carbohydr Polym 66:229–245

    Article  CAS  Google Scholar 

  121. Zhai M, Yoshii F, Kume T (2002) Hasim K (2002) Synthesis of PVA/starch grafted hydrogels by irradiation. Carbohydr Polym 50:295–303

    Article  CAS  Google Scholar 

  122. Maziad NA (2004) Radiation polymerization of hydrophilic monomers for producing hydrogel used in waste treatment processes. Polym-Plast Technol Eng 43:1157–1176

    Article  CAS  Google Scholar 

  123. Nasef MM, Hegazy EA (2011) Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto polar films. Prog Polym Sci 29:499–561

    Article  CAS  Google Scholar 

  124. Singh B, Pal L (2011) Radiation crosslinking polymerization of sterculia polysaccharide–PVA–PVP for making hydrogel wound dressings. Int J Biol Macromol 48:501–510

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Kumar Nayak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nayak, A.K., Pal, D. (2016). Sterculia Gum-Based Hydrogels for Drug Delivery Applications. In: Kalia, S. (eds) Polymeric Hydrogels as Smart Biomaterials. Springer Series on Polymer and Composite Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-25322-0_5

Download citation

Publish with us

Policies and ethics

Navigation