A Mechanistic Account of Computational Explanation in Cognitive Science and Computational Neuroscience

  • Chapter
Computing and Philosophy

Part of the book series: Synthese Library ((SYLI,volume 375))

Abstract

Explanations in cognitive science and computational neuroscience rely predominantly on computational modeling. Although the scientific practice is systematic, and there is little doubt about the empirical value of numerous models, the methodological account of computational explanation is not up-to-date. The current chapter offers a systematic account of computational explanation in cognitive science and computational neuroscience within a mechanistic framework. The account is illustrated with a short case study of modeling of the mirror neuron system in terms of predictive coding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    I am not using the word ‘computational’ here in the sense used by Marr to define one of the levels in his account.

  2. 2.

    In this chapter, I do not go into detail of how the notion of function is best understood in the case of computing mechanisms. See however (MiƂkowski 2013).

  3. 3.

    The notion of information will be fully explicated in Sect. 13.1.3. Note that I do not endorse the view that digital computation cannot be understood in terms of Shannon information, which has been argued by Piccinini and Scarantino (2010). They qualify the view somewhat in a later paper (without mentioning that they change their earlier view), see (Piccinini and Scarantino 2011).

  4. 4.

    The distinction between data and the model of data has been rediscovered later by Bogen and Woodward (1988) in their distinction between data and phenomena.

  5. 5.

    For example, Newell claimed that the knowledge level, as related to rationality, is always idealized. These idealizations can prohibit mechanistic decomposition (Dennett 1987, pp. 75–76).

  6. 6.

    These distinctions were used by Craver (2007), but were unrelated to the distinction between the scaffolding and the explanatory focus.

  7. 7.

    As one of my reviewers noticed, this is a controversial claim. I do not deal with skepticism about physical computation here because all skeptical arguments either fail or involve skepticism about any empirical science, which does not make such skepticism particularly interesting; for my extended discussion with Putnam and Searle, see (MiƂkowski 2012b, 2013, pp. 25–85); see also (Buechner 2008).

  8. 8.

    In analogue computing, the range of values in question need not be restricted, but may be continuous, i.e., infinite. Note that this is not a definition of analogue computation; there might be analogue computers that rely on, for example, potentiometers changing their values in a step-wise manner. I simply do not exclude the conceptual possibility of analogue hypercomputation (Siegelmann 1994). For a recent analysis of analog/digital and continuous/discrete distinctions see (Maley 2010).

  9. 9.

    Notice the caveat. In principle, it’s possible to create a formalism that would both specify the computation, for example as a computer program in LISP, and required machinery. There’s no contradiction involved. But, as a matter of fact, modelers don’t use such models in their practice, and prefer functional separation of different types of models.

  10. 10.

    For my purposes, it is quite irrelevant whether this account of MNS is correct or not (but see (Hickok 2014; Lingnau et al. 2009); for a recent review see (Kilner and Lemon 2013)). I am merely interested in how the model is vindicated by its authors and how it should be evaluated from the mechanistic standpoint.

  11. 11.

    It’s worth noticing that the interventionist framework is not committed to realism about physical causation. There are interventionists who defend a specific neo-Russellian view on causation, according to which causal explanations in special sciences are genuine, while there might be no genuine causal explanations in fundamental physics (Reutlinger 2013). While I do not espouse such scepticism about causation in physics, nothing in my argument depends on there being physical causation or not; there is also no reliance on causal determinism in my argument. The mathematical framework of interventionism is sufficient to specify the conditions that genuine computational explanations must satisfy to count as good explanations, and realism or anti-realism about causes is not a part of the mathematical framework.

References

  • Ansuini, C., Cavallo, A., Bertone, C., & Becchio, C. (2015). Intentions in the brain: The unveiling of Mister Hyde. The neuroscientist: A review journal bringing neurobiology, neurology and psychiatry, 21(2), 126–135. doi:10.1177/1073858414533827.

    Article  Google Scholar 

  • Ansuini, C., Giosa, L., Turella, L., AltoĂš, G., & Castiello, U. (2008). An object for an action, the same object for other actions: Effects on hand sha**. Experimental Brain Research, 185(1), 111–9. doi:10.1007/s00221-007-1136-4.

    Article  Google Scholar 

  • Bechtel, W. (2008). Mental mechanisms. New York: Routledge (Taylor & Francis Group).

    Google Scholar 

  • Blokpoel, M., Kwisthout, J., & van Rooij, I. (2012). When can predictive brains be truly Bayesian? Frontiers in Psychology, 3(November), 1–3. doi:10.3389/fpsyg.2012.00406.

  • Bogen, J., & Woodward, J. (1988). Saving the phenomena. Philosophical Review, 97(3), 303–352.

    Article  Google Scholar 

  • Buechner, J. (2008). Godel, Putnam, and functionalism: A new reading of representation and reality. Cambridge: MIT Press.

    Google Scholar 

  • Busemeyer, J. R., & Diederich, A. (2010). Cognitive modeling. Los Angeles: Sage.

    Google Scholar 

  • Chalmers, D. J. (2011). A computational foundation for the study of cognition. Journal of Cognitive Science, 12, 325–359.

    Article  Google Scholar 

  • Chrisley, R. (2000). Transparent computationalism. In M. Scheutz (Ed.), New computationalism: Conceptus-Studien 14 (pp. 105–121). Sankt Augustin: Academia Verlag.

    Google Scholar 

  • Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of cognitive science. The Behavioral and Brain Sciences, 36(3), 181–204. doi:10.1017/S0140525X12000477.

    Article  Google Scholar 

  • Craver, C. F. (2007). Explaining the brain. Mechanisms and the mosaic unity of neuroscience. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Craver, C. F., & Darden, L. (2013). In search of mechanisms: discoveries across the life sciences. Chicago/London: The University of Chicago Press.

    Book  Google Scholar 

  • Cummins, R. (1983). The nature of psychological explanation. Cambridge: MIT Press.

    Google Scholar 

  • Dennett, D. C. (1987). The intentional stance. Cambridge: MIT Press.

    Google Scholar 

  • Farrell, S., & Lewandowsky, S. (2010). Computational models as aids to better reasoning in psychology. Current Directions in Psychological Science, 19(5), 329–335. doi:10.1177/0963721410386677.

    Article  Google Scholar 

  • Fodor, J. A. (1968). Psychological explanation: An introduction to the philosophy of psychology. New York: Random House.

    Google Scholar 

  • Fodor, J. A. (1975). The language of thought (1st ed.). New York: Thomas Y. Crowell Company.

    Google Scholar 

  • Fresco, N. (2010). Explaining computation without semantics: Kee** it simple. Minds and Machines, 20(2), 165–181. doi:10.1007/s11023-010-9199-6.

    Article  Google Scholar 

  • Frijda, N. H. (1967). Problems of computer simulation. Behavioral Science, 12(1), 59–67. doi:10.1002/bs.3830120109.

    Article  Google Scholar 

  • Friston, K. (2002). Functional integration and inference in the brain. Progress in Neurobiology, 68(2), 113–43.

    Article  Google Scholar 

  • Friston, K. (2003). Learning and inference in the brain. Neural Networks, 16(9), 1325–52. doi:10.1016/j.neunet.2003.06.005.

    Article  Google Scholar 

  • Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1456), 815–36. doi:10.1098/rstb.2005.1622.

    Article  Google Scholar 

  • Glennan, S. S. (2002). Rethinking mechanistic explanation. Philosophy of Science, 69(S3), S342–S353. doi:10.1086/341857.

    Article  Google Scholar 

  • Hamilton, A. F. de C., & Grafton, S. T. (2006). Goal representation in human anterior intraparietal sulcus. The Journal of neuroscience: The official journal of the Society for Neuroscience, 26(4), 1133–1137. doi:10.1523/JNEUROSCI.4551-05.2006.

    Article  Google Scholar 

  • Hickok, G. (2014). The myth of mirror neurons: The real neuroscience of communication and cognition. New York: WW Norton.

    Google Scholar 

  • Hohwy, J. (2013). The predictive mind. New York: Oxford University Press.

    Book  Google Scholar 

  • Jacob, P., & Jeannerod, M. (2005). The motor theory of social cognition: A critique. Trends in Cognitive Sciences, 9(1), 21–25.

    Google Scholar 

  • Jones, M., & Love, B. C. (2011). Bayesian fundamentalism or enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition. Behavioral and Brain Sciences, 34(04), 169–188. doi:10.1017/S0140525X10003134.

    Article  Google Scholar 

  • Kilner, J. M., Friston, K. J., & Frith, C. D. (2007). Predictive coding: An account of the mirror neuron system. Cognitive Processing, 8(3), 159–66. doi:10.1007/s10339-007-0170-2.

    Article  Google Scholar 

  • Kilner, J. M., & Lemon, R. N. (2013). What we know currently about mirror neurons. Current Biology, 23(23), R1057–R1062. doi:10.1016/j.cub.2013.10.051.

    Article  Google Scholar 

  • Lewandowsky, S. (1993). The rewards and hazards of computer simulations. Psychological Science, 4(4), 236–243. doi:10.1111/j.1467-9280.1993.tb00267.x.

    Article  Google Scholar 

  • Lingnau, A., Gesierich, B., & Caramazza, A. (2009). Asymmetric fMRI adaptation reveals no evidence for mirror neurons in humans. Proceedings of the National Academy of Sciences of the United States of America, 106(24), 9925–30. doi:10.1073/pnas.0902262106.

    Article  Google Scholar 

  • Machamer, P., Darden, L., & Craver, C. F. (2000). Thinking about mechanisms. Philosophy of Science, 67(1), 1–25.

    Article  Google Scholar 

  • MacKay, D. M. (1969). Information, mechanism and meaning. Cambridge: MIT Press.

    Book  Google Scholar 

  • Maley, C. J. (2010). Analog and digital, continuous and discrete. Philosophical Studies, 155(1), 117–131. doi:10.1007/s11098-010-9562-8.

    Article  Google Scholar 

  • Marr, D. (1982). Vision. A computational investigation into the human representation and processing of visual information. New York: W. H. Freeman and Company.

    Google Scholar 

  • McClamrock, R. (1991). Marr’s three levels: A re-evaluation. Minds and Machines, 1(2), 185–196. doi:10.1007/BF00361036.

    Article  Google Scholar 

  • Meyer, D. E., Osman, A. M., Irwin, D. E., & Yantis, S. (1988). Modern mental chronometry. Biological Psychology, 26(1–3), 3–67. doi:10.1016/0301-0511(88)90013-0.

    Article  Google Scholar 

  • MiƂkowski, M. (2011). Beyond formal structure: A mechanistic perspective on computation and implementation. Journal of Cognitive Science, 12(4), 359–379.

    Google Scholar 

  • MiƂkowski, M. (2012a). Limits of computational explanation of cognition. In V. C. MĂŒller (Ed.), Philosophy and theory of artificial intelligence (pp. 69–84). Berlin/Heidelberg: Springer. doi:10.1007/978-3-642-31674-6_6.

    Chapter  Google Scholar 

  • MiƂkowski, M. (2012b). Is computation based on interpretation? Semiotica, 188, 219–228. doi:10.1515/sem-2012-0015.

    Article  Google Scholar 

  • MiƂkowski, M. (2013). Explaining the computational mind. Cambridge: MIT Press.

    Book  Google Scholar 

  • MiƂkowski, M. (2014). Computational Mechanisms and Models of Computation. Philosophia ScientiĂŠ, 18(3), 215–228.

    Google Scholar 

  • MiƂkowski, M. (2015). Evaluating artificial models of cognition. Studies in Grammar, Logic, and Rhetoric, 40(1), 43–62. doi:10.1515/slgr-2015-0003.

    Article  Google Scholar 

  • MiƂkowski, M. (forthcoming). Computation and multiple realizability. In V. C. Mueller (Ed.), Fundamental issues of artificial intelligence. Berlin/Heidelberg: Springer.

    Google Scholar 

  • Newell, A. (1981). The knowledge level: Presidential address. AI Magazine, 2(2), 1–21.

    Google Scholar 

  • Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Pearl, J. (2000). Causality: Models, reasoning, and inference. Cambridge: Cambridge University Press.

    Google Scholar 

  • Piccinini, G. (2007). Computing mechanisms. Philosophy of Science, 74(4), 501–526. doi:10.1086/522851.

    Article  Google Scholar 

  • Piccinini, G. (2008a). Computers. Pacific Philosophical Quarterly, 89(1), 32–73. doi:10.1111/j.1468-0114.2008.00309.x.

    Article  Google Scholar 

  • Piccinini, G. (2008b). Computation without representation. Philosophical Studies, 137(2), 205–241. doi:10.1007/s11098-005-5385-4.

    Article  Google Scholar 

  • Piccinini, G., & Bahar, S. (2013). Neural computation and the computational theory of cognition. Cognitive Science, 37(3), 453–88. doi:10.1111/cogs.12012.

    Article  Google Scholar 

  • Piccinini, G., & Craver, C. F. (2011). Integrating psychology and neuroscience: Functional analyses as mechanism sketches. Synthese, 183(3), 283–311. doi:10.1007/s11229-011-9898-4.

    Article  Google Scholar 

  • Piccinini, G., & Scarantino, A. (2010). Computation vs. information processing: Why their difference matters to cognitive science. Studies In History and Philosophy of Science Part A, 41(3), 237–246. doi:10.1016/j.shpsa.2010.07.012.

    Article  Google Scholar 

  • Piccinini, G., & Scarantino, A. (2011). Information processing, computation, and cognition. Journal of Biological Physics, 37(1), 1–38. doi:10.1007/s10867-010-9195-3.

    Article  Google Scholar 

  • Posner, M. I. (2005). Timing the brain: Mental chronometry as a tool in neuroscience. PLoS Biology, 3(2), e51. doi:10.1371/journal.pbio.0030051.

    Article  Google Scholar 

  • Reutlinger, A. (2013). Can interventionists be Neo-Russellians? Interventionism, the open systems argument, and the arrow of entropy. International Studies in the Philosophy of Science, 27(3), 273–293. doi:10.1080/02698595.2013.825497.

    Article  Google Scholar 

  • Sanz, R., & HernĂĄndez, C. (2010). Autonomy, intelligence and animat mesmerization. In C. HernĂĄndez (Ed.), BICS 2010 – Brain Inspired Cognitive Systems. Madrid: Universidad PolitĂ©cnica de Madrid.

    Google Scholar 

  • Siegelmann, H. (1994). Analog computation via neural networks. Theoretical Computer Science, 131(2), 331–360. doi:10.1016/0304-3975(94)90178-3.

    Article  Google Scholar 

  • Spirtes, P., Glymour, C. N., & Scheines, R. (2000). Causation, prediction, and search (2nd ed.). Cambridge: The MIT Press.

    Google Scholar 

  • Suppes, P. (1962). Models of data. In E. Nagel, P. Suppes, & A. Tarski (Eds.), Logic, methodology, and philosophy of science: Proceedings of the 1960 International Congress (pp. 252–261). Stanford: Stanford University Press.

    Google Scholar 

  • Trout, J. D. (2008). Seduction without cause: Uncovering explanatory neurophilia. Trends in Cognitive Sciences, 12(8), 281–2. doi:10.1016/j.tics.2008.05.004.

    Article  Google Scholar 

  • Turing, A. (1950). Computing machinery and intelligence. Mind, LIX(236), 433–460. doi:10.1093/mind/LIX.236.433.

    Article  Google Scholar 

  • Van Rooij, I. (2008). The tractable cognition thesis. Cognitive Science, 32(6), 939–84. doi:10.1080/03640210801897856.

    Article  Google Scholar 

  • Webb, B. (1995). Using robots to model animals: A cricket test. Robotics and Autonomous Systems, 16(2–4), 117–134. doi:10.1016/0921-8890(95)00044-5.

    Article  Google Scholar 

  • Weisberg, M. (2007). Three kinds of idealization. Journal of Philosophy, 104(12), 639–659.

    Article  Google Scholar 

  • Woodward, J. (2003). Making things happen. Oxford: Oxford University Press.

    Google Scholar 

Download references

Acknowledgments

The author gratefully acknowledges the support of the Polish National Science Center Grant in the OPUS program under the decision DEC-2011/03/B/HS1/04563. An earlier version of this paper has been presented during the Cognitive Science Annual Conference 2013 in Berlin. The author also wishes to thank the reviewers of the draft of the paper for their helpful and detailed comments, in particular Nir Fresco and Marcin J. Schroeder.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin MiƂkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

MiƂkowski, M. (2016). A Mechanistic Account of Computational Explanation in Cognitive Science and Computational Neuroscience. In: MĂŒller, V.C. (eds) Computing and Philosophy. Synthese Library, vol 375. Springer, Cham. https://doi.org/10.1007/978-3-319-23291-1_13

Download citation

Publish with us

Policies and ethics

Navigation