Separation of Reflection Components by Sparse Non-negative Matrix Factorization

  • Conference paper
  • First Online:
Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9007))

Included in the following conference series:

Abstract

This paper presents a novel method for separating reflection components in a single image based on the dichromatic reflection model. Our method is based on a modified version of sparse non-negative matrix factorization (NMF). It simultaneously performs the estimation of body colors and the separation of reflection components through optimization. Our method does not use a spatial prior such as smoothness of colors on the object surface, which is in contrast with recent methods attempting to use such priors to improve separation accuracy. Experimental results show that as compared with these recent methods that use priors, our method is more accurate and robust. For example, it can better deal with difficult cases such as the case where a body color is close to the illumination color.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 52.74
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.staff.science.uu.nl/~tan00109/code.html.

  2. 2.

    http://www.cs.cityu.edu.hk/~qiyang/publications.html.

  3. 3.

    http://www.staff.science.uu.nl/~tan00109/code.html.

References

  1. Horn, B.K.P.: Obtaining shape from shading information. In: Winston, H.P., Horn, B. (eds.) The Psychology of Computer Vision, pp. 115–155. MIT Press, Cambridge (1975)

    Google Scholar 

  2. Prados, E., Faugeras, O.: Shape from shading. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer Vision, pp. 1–17. Springer, US (2006)

    Google Scholar 

  3. Woodham, R.: Photometric method for determining surface orientation from multiple images. Opt. Eng. 19, 139–144 (1980)

    Article  Google Scholar 

  4. Shafer, S.: Using color to separate reflection components. Color Res. Appl. 10, 43–51 (1985)

    Article  Google Scholar 

  5. Swaminathan, R., Kang, S.B., Szeliski, R., Criminisi, A., Nayar, S.K.: On the motion and appearance of specularities in image sequences. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 508–523. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Feris, R., Raskar, R., Turk, M.: Specular reflection reduction with multi-flash imaging. In: 17th Brazilian Symposium on Computer Graphics and Image Processing. IEEE Computer Society (2004)

    Google Scholar 

  7. Klinker, G., Shafer, S., Kanade, T.: The measurement of highlights in color images. IJCV 2, 7–32 (1988)

    Article  Google Scholar 

  8. Bajcsy, B., Lee, S., Leonardis, A.: Detection of diffuse and specular interface reflections and inter-reflections by color image segmentation. IJCV 17, 241–272 (1996)

    Article  Google Scholar 

  9. Tan, R.T., Ikeuchi, K.: Separating reflection components of textured surfaces using a single image. PAMI 27, 178–193 (2005)

    Article  Google Scholar 

  10. Tan, P., Lin, S., Quan, L.: Separation of highlight reflections on textured surfaces. In: CVPR (2006)

    Google Scholar 

  11. Shen, H.L., Cai, Q.Y.: Simple and efficient method for specularity removal in an image. Appl. Opt. 48, 2711–2719 (2009)

    Article  Google Scholar 

  12. Yang, Q., Wang, S., Ahuja, N.: Real-time specular highlight removal using bilateral filtering. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 87–100. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Kim, H., **, H., Hadap, s., Kweon, I.: Specular reflection separation using dark channel prior. In: CVPR (2013)

    Google Scholar 

  14. Tan, R.T., Katsushi, I.: Reflection components decomposition of textured surfaces using linear basis functions. In: CVPR (2005)

    Google Scholar 

  15. Mallick, S.P., Zickler, T.E., Belhumeur, P.N., Kriegman, D.J.: Specularity removal in images and videos: a PDE approach. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 550–563. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. In: CVPR (2009)

    Google Scholar 

  17. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  18. Févotte, C., Bertin, N., Durrieu, J.: Nonnegative matrix factorization with the itakura-saito divergence: with application to music analysis. Neural Comput. 21, 793–830 (2009)

    Article  MATH  Google Scholar 

  19. Eggert, J., Korner, E.: Sparse coding and NMF. Neural Netw. 2, 2529–2533 (2004)

    Google Scholar 

  20. Hoyer, P.: Non-negative matrix factorization with sparseness constraints. Mach. Learn. Res. 5, 1457–1469 (2004)

    MATH  MathSciNet  Google Scholar 

  21. Virtanen, T.: Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria. Audio Speech Lang. Process. 15, 1066–1074 (2007)

    Article  Google Scholar 

  22. Schmidt, M.: Speech separation using non-negative features and sparse non-negative matrix factorization. In: Computer Speech and Language (2008)

    Google Scholar 

  23. Choi, S.: Algorithms for orthogonal nonnegative matrix factorization. In: International Joint Conference on Neural Networks, pp. 1828–1832 (2008)

    Google Scholar 

  24. Bertin, N., Badeau, R., Vincent, E.: Enforcing Harmonicity and Smoothness in Bayesian Non-Negative Matrix Factorization Applied to Polyphonic Music Transcription. Audio Speech Lang. Process. 18, 538–549 (2010)

    Article  Google Scholar 

  25. Olshausen, B., Field, D.J.: Sparse coding of sensory inputs. Curr. Opin. Neurobiol. 14, 481–487 (2004)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by JSPS KAKENHI Grant Number 25135701.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Akashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Akashi, Y., Okatani, T. (2015). Separation of Reflection Components by Sparse Non-negative Matrix Factorization. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9007. Springer, Cham. https://doi.org/10.1007/978-3-319-16814-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16814-2_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16813-5

  • Online ISBN: 978-3-319-16814-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation