Soil Carbon Reservoirs at High-Altitude Ecosystems in the Andean Plateau

  • Chapter
  • First Online:
Climate Change Impacts on High-Altitude Ecosystems

Abstract

Mountain landscapes are among the most fragile landscapes on earth and are sensitive to both anthropogenic and natural forces. The Andean plateau is one of the largest in the world measuring more than 7500 km. Mountain environments are strongly influenced by changes in temperature and precipitation. For this reason, they are good indicators of the impacts of the climate change. Growing interest in the potential for mountain soils to provide a sink for atmospheric C has prompted studies regarding the effects of management on the nature, amount, and nature and transfer of soil organic carbon (OC). It is crucial to gain knowledge about the different C pools and functional groups in order to establish the rate of soil organic matter biodegradation. The cold and wet climate and the low atmospheric pressure favor organic matter accumulation in the soil. Organic matter decomposes very slowly in the moist, cool conditions that result from high elevation, frequent cloudiness, fog interception, and rainfall. Organic matter content increases with the altitude likely a result of its slow decomposition due to not only lower temperatures but also lower soil pH. Several researchers have found that around 40–60 % of the soil OC exist within the top 20-cm layer and the content changes mostly between 4 and 10 % in high-altitude grasslands. This is much more than organic matter content in agricultural soils. The high C/N ratio in the Andean highlands (between 12 and 18) could indicate that humification is likely more intense than mineralization processes. Unexpectedly, high recalcitrant (RC) index found in the northern Bolivian puna suggests a high storage of recalcitrant OC. High storage of RC is advantageous to the preservation or stabilization of soil mineral particles and the long-term carbon (C) sequestration. However, the increase of the temperature due to the global change could seriously affect these essential C reservoirs. Knowledge on the CO2 fluxes and its implications to the global increase of CO2 levels in the atmosphere is extremely important and adds to our knowledge about the relevance of long-term C stocks in the Andean plateau. In many cases, ecosystems in the central and southern Andean highlands are degraded as a consequence of anthropogenic activities such as the change in soil use and unsuitable water management in addition to excessive cattle grazing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aalto R, Maurice-Bourgoin L, Dunne T, Montgomery D, Nittrouer C, Guyot JL (2003) Episodic sediment accumulation on Amazonian flood plains influenced by El Niño/Southern oscillation. Nature 425(2):493–496

    Article  CAS  PubMed  Google Scholar 

  • Aalto R, Dunne T, Guyot JL (2006) Geomorphic controls on Andean denudation rates. J Geol 114:85–99

    Article  Google Scholar 

  • Abadín J, González-Prieto SJ, Sarmiento L, Villar MC, Carballas T (2002) Successional dynamics of soil characteristics in a long fallow agricultural system of the high tropical Andes. Soil Biol Biochem 34:1739–1748

    Article  Google Scholar 

  • Arroyo M, Cavieres L (2013) High elevation Andean ecosystems. Encyclopedia of Biodiversity (Second Editon). pp 96–110

    Google Scholar 

  • Baigorria GA, Romero, CC (2007) Assessment of erosion hotspots in a watershed: integrating the WEPP model and GIS in a case study in the Peruvian Andes. Environ Modell Softw 22:1175–1183

    Article  Google Scholar 

  • Barberi F, Coltelli M, Ferrara G, Innocenti F, Navarro JM, Santacroce R (1988) Plio-quaternary volcanism in Ecuador. Geol Mag 125:1–14

    Article  CAS  Google Scholar 

  • Batjes NH (1999) Management options for reducing CO2 concentrations in the atmosphere by increasing carbon sequestration in the soil, NRP Report No. 410- 200–031. Bilthoven, Dutch, National Research Programme on Global Air Pollution and Climate Change. p 114

    Google Scholar 

  • Belay-Tedla A, Zhou X, Su Bo, Wan S, Luo Y (2009) Labile, recalcitrant, and microbial carbon and nitrogen pools of a tallgrass prairie soil in the US Great Plains subjected to experimental warming and clip**. Soil Biol Biochem 41:110–116

    Article  CAS  Google Scholar 

  • Bottner P, Pansu M, Sarmiento L, Herve D, Callisaya-Bautista R, Metselaar K (2006) Factors controlling decomposition of soil organic matter in fallow systems of the high tropical Andes: a field simulation approach using 14C- and 15N-labelled plant material. Soil Biol Biochem 38:2162–2177

    Article  CAS  Google Scholar 

  • Brady N, Weil R (2008) The nature and properties of soil. Pearson International Edition, New Jersey, p 975

    Google Scholar 

  • Brooks TM, Mittermeier R, da Fonseca GAB, Gerlach J, Hoffmann M, Lamoreux JF et al (2006) Global biodiversity conservation priorities. Science 313:58–61

    Article  CAS  PubMed  Google Scholar 

  • Burke I, Lauenroth W, Vinton M, Hook P, Kelly R, Epstein H, Aguiar M, Robles M, Aguilera M, Murphy K, Gill R (1998) Plant-soil interactions in temperate grasslands. Biogeochemistry 42:121–143

    Article  Google Scholar 

  • Buttolph L (1998) Rangeland dynamics and pastoral development in the High Andes: the camelids herders of Cosapa, Bolivia. PhD dissertation, Utah State University, p 286

    Google Scholar 

  • Buytaert W, Sevink J, Leeuw BD, Deckers J, (2005) Clay mineralogy of the soils in the south Ecuadorian Páramo region. Geoderma 127:114–129

    Article  CAS  Google Scholar 

  • Buytaert W, Célleri R, De Bièvre B, Cisneros F, Wyseure G, Deckers J (2006) Robert HofstedeHuman impact on the hydrology of the Andean páramos. Earth Sci Rev 79:53–72

    Article  Google Scholar 

  • Cano AF, Mermut AR, Ortiz R, Benke MB, Chatson B (2002) 13CCP/MAS-NMR spectra of organic matter as influenced by vegetation, climate, and soil characteristics in soils from Murcia, Spain. Canadian J Soil Sci 82:403–411

    Article  CAS  Google Scholar 

  • Cao GM, Tang YH, Mo WH, Wang YS, Li YN, Zhao XQ (2004) Grazing intensity alters soil respiration in an alpine meadow on the Tibetan Plateau. Soil Biol Biochem 36:237–243

    Article  CAS  Google Scholar 

  • Carballas T, Carballas M, Jacquin F (1978) Biodégradation et humification de la matière organique des sols humiféres atlantiques. Anales de Edafologia y Agrobiologia 37:205–212

    Google Scholar 

  • Cheng L, Leavitta SW, Kimballb BA, Pinter PJ, Ottmanc MJ, Matthiasd A, Wallb GW, Brooksb T, Williamse DG, Thompson TL (2007) Dynamics of labile and recalcitrant soil carbon pools in a sorghumfree-air CO2 enrichment (FACE) agroecosystem. Soil Biol Biochem 39:2250–2263

    Article  CAS  Google Scholar 

  • Coûteaux M, Sarmiento L, Bottner P, Acevedo D, Thiéry JM (2002) Decomposition of standard plant material along an altitudinal transect (65–3968 m) in the tropical Andes. Soil Biol Biochem 34:69–78

    Article  Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  CAS  PubMed  Google Scholar 

  • Decou A, Von Eynatten H, Mamani M, Sempere T, Wörner G (2011) Cenozoic forearc basin sediments in Southern Peru (15–18°S): stratigraphic and heavy mineral constraints for Eocene to Miocene evolution of the Central Andes. Sediment Geol 237:55–72

    Article  CAS  Google Scholar 

  • Dignac MF, Knicher H, Kögel-Knabner I (2002) Effect of N content and soil texture on the decomposition of organic matter in forest soils as revealed by solid-state CPMAS NMR spectroscopy. Org Geochem 33(12):1715–1726

    Article  CAS  Google Scholar 

  • Dregne HE (1998) Desertification assessment. In: Lal R, Blum WH, Valentine C, Stewart BA (eds) Method of assessment for soil degradation. CRC Press, New York, pp 441–458

    Google Scholar 

  • English NB, Weltzinb JF, Fravolinic A, Thomas BL, Williams DG (2005) The influence of soil texture and vegetation on soil moisture under rainout shelters in a semi-desert grassland. J Arid Environ 63:324–343

    Article  Google Scholar 

  • FAO-ISRIC-ISSS (2006) World reference base for soil resources 2006. A framework for international classification, correlation and communication 103. Rome, p 128

    Google Scholar 

  • Gade D (1999) Nature and culture in the Andes. The University of Wisconsin Press, Madison

    Google Scholar 

  • Galantini J, RoselI R (2006) Long-term fertilization effects on soil organic matter quality and dynamics under different production system in semiarid Pampean soils. Soil Till Res 87:72–79

    Article  Google Scholar 

  • Ganjegunte GK, Vance GF, Preston CM, Shuman GE, Lachlan JI, Stahl PD, Welter JM (2005) Soil organic carbon composition in northern mixed-grass prairie. Soil Sci Soc Am J 69:1746–1756

    Article  CAS  Google Scholar 

  • García-Pausas J, Casals P, Camarero L, Huguet C, Thompson R, Sebastiá MT, Romanýa J (2008) Factors regulating carbon mineralization in the surface and subsurface soils of Pyrenean mountain grasslands. Soil Biol Biochem 40(11):2803–2810

    Article  Google Scholar 

  • Genxu W, Yuanshou L, Yibo W, Qingbo W (2008) Effects of permafrost thawing on vegetation and soil carbon pool losses on the Qinghai-Tibet Plateau, China. Geoderma 143(1–2):143–152

    Article  Google Scholar 

  • Halvorson J, González J (2008) Tannic acid reduces recovery of water-soluble carbon and nitrogen from soil and affects the composition of Bradford-reactive soil protein. Soil Biol Biochem 40:186–197

    Article  CAS  Google Scholar 

  • Harden C (2006) Human impacts on headwater fluvial systems in the northern and central Andes. Geomorphology 79:249–263

    Article  Google Scholar 

  • Harris RB (2010) Rangeland degradation on the Qinghai-Tibetan plateau: a review of the evidence of its magnitude and causes. J Arid Environ 74(1):1–12

    Article  CAS  Google Scholar 

  • Heywood ID, Price MF, Petch H (1993) Mountain regions and geographic information systems: a review. IDRISI Digital Terrain Module

    Google Scholar 

  • Hofstede R, Coppus R, Mena-Va´ sconez P, Segarra P, Wolf J, Sevink J (2002) El estado de conservacio´ n de los páramos de pajonal en el Ecuador. Ecotropicos 15:3–18

    Google Scholar 

  • Högberg P, Read DJ (2006) Towards a more plant physiological perspective on soil ecology. Trends Ecol Evol 21:548–554

    Article  PubMed  Google Scholar 

  • Houghton RA, Hackler JL, Lawrence KT (1999) The U.S. carbon budget: contributions from land-use change. Science 285:574–578

    Article  CAS  PubMed  Google Scholar 

  • Hungria M, Franchini J, Brandao-Junior O, Kaschuk G, Aparecida R (2009) Soil microbial activity and crop sustainability in a long-term experiment with three soiltillage and two crop-rotation systems. Appl Soil Ecol 42:288–296

    Article  Google Scholar 

  • Ji L, Peters AJ (2003) Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sens Environ 87(1):85–98

    Article  Google Scholar 

  • Jobbàgy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Article  Google Scholar 

  • Kavdir Y, Ekinci H, Yüksel O, Mermut AR (2005) Soil aggregate stability and 13C CP/MAS-NMR assessment of organic matter in soils influenced by forest wildfires in Çanakkale, Turkey. Geoderma 129:219–229

    Article  CAS  Google Scholar 

  • Kenneth A, Byrne K, Kiely G, Leahy P (2007) Carbon sequestration determined using farm sacle carbon balance an eddy covariance. Agric Ecosyst Environ 121(4):357–364

    Article  Google Scholar 

  • Klein JA, Harte J, Zhao XQ (2004) Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecol Lett 7(12):1170–1179

    Article  Google Scholar 

  • Knorr W, Prentice IC, House JI, Holland EA (2005) Long-term sensitivity of soil carbon turnover to warming. Nature 433:298–301

    Article  CAS  PubMed  Google Scholar 

  • Kögel-Knabner I, Guggenberger G, Kleber M, Kandeler E, Kalbitz K, Scheu S, Eusterhues K, Leinweber P (2008) Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. J Plant Nutr Soil Sci 171:61–82

    Article  Google Scholar 

  • Kunding E (1938) The precretaceous rocks of the central Venezuelan Andes with some remarks about the tectonics. Boletin Geologia y Mineria, Venezuela 2:21–43

    Google Scholar 

  • Lal R (2001) Soils and the greenhouse effect. Soil Sci Soc Am Spec Publ 57:1–8

    CAS  Google Scholar 

  • Lorenz K, Preston CM, Kandeler E (2006) Soil organic matter in urban soils: estimation of elemental carbon by thermal oxidation and characterization of organic matter by solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Geoderma 130(3–4):12–323

    Google Scholar 

  • Luteyn JL (1999) Paramos: A checklist of plant diversity, geographical distribution, and botanical literature. Mem N Y Bot Gard 84:278

    Google Scholar 

  • Mahaney WC, Kalm V (1996) Field guide for the international conference on quaternary glaciation and paleoclimate in the Andes Mountains, June 21–July 1, Quaternary Surveys, Toronto, Canada, p 79

    Google Scholar 

  • Mahaney W, Dirszowsky RD, Milner MW, Harmsen R, Finkelstein SA, Kalm V, Bezada M, Hancock RGV (2007) Soil stratigraphy and plant–soil interactions on a late Glacial–Holocene fluvial terrace sequence, Sierra Nevada National Park, northern Venezuelan Andes. J S Am Earth Sci 23:46–60

    Article  CAS  Google Scholar 

  • Mahieu N, Powlson DS, Randall EW (1999) Statistical analysis of published carbon-13CPMAS NMR spectra of soil organic matter. Soil Sci Soc Am J 63:307–319

    Article  CAS  Google Scholar 

  • Martin JP, Haider K (1986) Influence of mineral colloids in turn-over rates of soil organic carbon. In: Huang PM, Schnitzer M (eds) Interactions of soil minerals with organics and microbes. Soil Sci Soc Am, Madison, WI pp 283–304

    Google Scholar 

  • McLauchlan KK, Hobbie SE (2004) Comparison of labile soil organic matter fractionation techniques. Soil Sci Soc Am J 68:1616–1625

    Article  CAS  Google Scholar 

  • Medina L, Turcotte P (1999) Calidad de las aguas de los páramos. In: Josse C, Mena P, Medina G (eds) El Páramo Como Fuente de Recursos Hídricos. Serie Páramo, vol 3. Grupo de Trabajo en Páramos del Ecuador/Abya Yala, Quito, pp 15–24

    Google Scholar 

  • Miltner A, Zech W (1998) Carbohydrate decomposition in beech litter as influenced by aluminium, iron and manganese oxides. Soil Biol Biochem 30:1–7

    Article  CAS  Google Scholar 

  • Moreau S, Bosseno R, Fa Gu X, Baret F (2003) Assessing the biomass dynamics of Andean bofedal and totora high-protein wetland grasses from NOAA/AVHRR. Remote Sens Environ 85:516–529

    Article  Google Scholar 

  • Muñoz MA, Faz A (2009) Soil-plant conservation in the vicuna (Vicugna vicugna) habitat in Apolobamba, Bolivia: biodiversity in high altitude grasslands. In: Faz A, Arocena JM, Mermut AR, Ortiz R (eds) Land degradation and rehabilitation—dryland ecosystems. Catena Verlag Advances in Geology, 40. Catena Verlag Publisher, Reiskirchen, pp 97–108

    Google Scholar 

  • Muñoz MA, Faz A (2012) Soil organic matter stocks and quality at high altitude grasslands of Apolobamba, Bolivia. Catena 94:26–35

    Article  Google Scholar 

  • Muñoz MA, Faz A (2013) Soil and vegetation seasonal changes in the Grazing Andean mountain Grasslands. J Mt Sci. In Press

    Google Scholar 

  • Muñoz MA, Faz A, Zornoza R (2013) Carbon stocks and dynamics in grazing highlands from the Andean Plateau. Catena 104:136–143

    Article  Google Scholar 

  • Nanzyo M, Shoji S, Dahlgren R (1993) Volcanic ash soils: genesis, properties and utilisation. Developments in Soil Science, vol 21. Elsevier, Amsterdam

    Google Scholar 

  • Nieuwenhuyse A, Verburg PSJ, Jongmans AG (2000) Mineralogy of a soil chronosequence on andesitic lava in humid tropical Costa Rica. Geoderma 98:61–82

    Article  CAS  Google Scholar 

  • Norabuena E, Leffler-Griffin L, Mao A, Dixon T, Stein S, Sacks I, Ocola L, Ellis M (1998) Space geodetic observations of Nazca–South America convergence across the central Andes. Science 279:358–362

    Article  CAS  PubMed  Google Scholar 

  • Oades JM, Vasallo AM, Waters AG, Wilson MA (1987) Characterization of organic matter in particle size and density fractions from a red-brown earth by solid-state 13C N.M.R. Aust J Soil Res 25:81–82

    Article  Google Scholar 

  • Otero J, Figueroa A, Muñoz FA, Peña MR (2011) Loss of soil and nutrients by surface runoff in two agro-ecosystems within an Andean paramo area. Ecol Eng 37:2035–2043

    Article  Google Scholar 

  • Pangtey YPS, Rawal RS, Bankoti NS, Samant SS (1990) Phenology of high-altitude plants of Kumaun in Central Himalaya, India. Int J Biometeorol 34(2):122–127

    Article  Google Scholar 

  • Parfitt RL, Saigusa M, Cowie JD (1984) Allophane and halloysite formation in a volcanic ash bed under different moisture conditions. Soil Sci 138:360–364

    Article  CAS  Google Scholar 

  • Parfitt RL, Theng BKG, Whitton JS et al (1997) Effects of clay minerals and land use on organic matter pools. Geoderma 75:1–12

    Article  CAS  Google Scholar 

  • Pennington DD, Collins SL (2007) Response of an arid land ecosystem to inter-annual climate variability and prolonged drought. Landscape Ecol 22(6):897–910

    Article  Google Scholar 

  • Perez F (1992) The influence of organic matter addition by caulescent Andean rosettes on surficial soil properties. Geoderma 54:151–171

    Article  CAS  Google Scholar 

  • Perez F (1996) The effects of giant Andean rosettes on surface soils along a high paramo toposequence. Geojournal 40:283–298

    Article  Google Scholar 

  • Podwojewski P, Poulenard J (2000) La degradación de los suelos de los páramos: Los Suelos del Páramo. Serie Páramo 5, 27–36. GTP/Abya Yala, Quito, Ecuador

    Google Scholar 

  • Podwojewski P, Poulenard J, Zambrana T, Hofstede R (2002) Overgrazing effects on vegetation cover and properties of volcanic ash soil in the pa´ramo of Llangahua and La Esperanza (Tungurahua, Ecuador). Soil Use Manage 18:45–55

    Article  Google Scholar 

  • Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Change Biol 6:317–328

    Article  Google Scholar 

  • Poulenard J, Podwojewski P, Herbillon AJ (2003) Characteristics of non-allophanic Andisols with hydric properties from the Ecuadorian Paramos. Geoderma 117:1–15

    Article  Google Scholar 

  • Preston CM, Shipitalo SE, Dudley RL, Fyfe CA, Mathur SP, Levesque L (1987) Comparision of 13C CPMAS NMR and chemical techniques for measuring the degree of decomposition in virgin and cultivated peat profiles. Can J Soil Sci 67:187–198

    Article  CAS  Google Scholar 

  • Preston CM, Newman RH, Rother P (1994) Using CP-MAS NMR to assess effects of cultivation on the organic matter of particle size fractions in a grassland soil. Soil Sci 157:26–35

    Article  CAS  Google Scholar 

  • Restrepo JD, Kjerfve B (2000) Magdelena River: interannual variability (1975–1995) and revised water discharge and sediment load estimates. J Hydrol 235:137–149

    Article  Google Scholar 

  • Rocha O, Sáez C (2003) In: Rocha O, Sáez C (eds) Uso pastoril en humedales altoandinos. Ministerio de Desarrollo Sostenible y Planificación, La Paz, p 195

    Google Scholar 

  • Rovira P, Vallejo VR (2007) Labile, recalcitrant, and inert organic matter in Mediterranean forest soils. Soil Biol Biochem 39:202–215

    Article  CAS  Google Scholar 

  • Rudloff W (1981) World-climates: with tables of climatic data and practical suggestions. Wissenschaftliche verlagsgesellschaft MBH, Stuttgart

    Google Scholar 

  • Safran E, Bierman P, Aalto R, Dunne T, Whipple K, Caffee M (2005) Erosion rates driven by channel network incision in the Bolivian Andes. Earth Surf Proc L and 30:1007–1024

    Article  CAS  Google Scholar 

  • Sarmiento L, Bottner P (2002) Carbon and nitrogen dynamics in two soils with different fallow times in the high tropical Andes: indications for fertility restoration. Appl Soil Ecol 553:1–11

    Google Scholar 

  • Schimel JP, Weintraub MN (2003) The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem 35:549–563

    Article  CAS  Google Scholar 

  • Schubert C, Vivas L (1993) El Cuaternario de la Cordillera de Mérida. Universidad de Los Andes/Fundacion Polar, Mérida, p 345

    Google Scholar 

  • Schuman GE, Reeder JD, Manely JT, Hart RH, Manely WA (1999) Impact of grazing management on the carbon and nitrogen balance of a mixed-grass rangeland. Ecol Appl 9:65–71

    Article  Google Scholar 

  • Shen M, Yanhong T, Chen J, Zhu X, Zheng Y (2011) Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and eastern Qinghai-Tibetan Plateau. Agr Forest Meteorol 151(12):1711–1722

    Article  Google Scholar 

  • Shoji S, Nanzyo M, Dahlgren RA (1993) Volcanic ash soils: genesis, properties and utilization. Dev. Soil Sci., vol 21. Elsevier, Amsterdam

    Google Scholar 

  • Shrestha G, Stahl PD (2008) Carbon accumulation & storage in semi-arid sagebrush steppe: effects of long-term grazing exclusion. Agric Ecosyst Environ 125:173–181

    Article  CAS  Google Scholar 

  • Soil Survey Staff (2010) Keys to soil taxonomy, 11th edn. USDA-Natural Resources Conservation Service, Washington, DC, p 365

    Google Scholar 

  • Stevenson FJ (1994) In: John Wiley and Sons (Ed.), Humus chemistry: genesis, composition, reactions, 2nd Edition. New York. 380 pp.

    Google Scholar 

  • Tovar C, Seijmonsbergen A, Duivenvoorden J (2013) Monitoring land use and land cover change in mountain regions: An example in the Jalca grasslands of the Peruvian Andes. Landscape Urban Plan 112:40–49

    Article  Google Scholar 

  • Vera M, Sierra M, Díez M, Sierra C, Martínez A, Martínez MJ, Aguilar J (2007) Deforestation and land use effects on micromorphological and fertility changes in acidic rainforest soils in Venezuelan Andes. Soil Till Res 97:184–194

    Article  Google Scholar 

  • Wang W, Fang J (2009) Soil respiration and human effects on global grasslands. Global Planet Change 67:20–28

    Article  Google Scholar 

  • Winckell A, Zebrowski C, Delaune M (1991) Evolution du modèle Quaternaire et des formations superficielles dans les Andes de l’Équateur. Géodynamique 6:97–117

    Google Scholar 

  • Wu H, Guo Z, Peng C (2003) Land use induced changes of organic carbon storage in soils of China. Glob Change Biol 9:305–315

    Article  Google Scholar 

  • Xu X, Zhou Y, Ruan H, Luo Y, Wang J (2010) Temperature sensitivity increases with soil organic carbon recalcitrance along an elevational gradient in the Wuyi Mountains, China. Soil Biol Biochem 42:1811–1815

    Article  CAS  Google Scholar 

  • Xuelin Z, Qibing W, Linghao L, **ngguo H (2008) Seasonal variations in nitrogen mineralization under three land use types in a grassland landscape. Elsevier Masson SAS. Acta Oecol 34(3):322–330

    Article  Google Scholar 

  • Zehetner F, Miller WP (2006) Soil variations along climatic gradient in an Andean agro-ecosystem. Geoderma 137:126–134

    Article  CAS  Google Scholar 

  • Zehetner F, Miller WP, West LT (2003) Pedogenesis of volcanic ash soils in Andean Ecuador. Soil Sci Soc Am J 67:1797–1809

    Article  CAS  Google Scholar 

  • Zhang Y, Li LH, Wang YF, Tang F, Chen QS, Yang J, Yuan YZ, Dong YS (2003) Comparison of soil respiration in two grass-dominated communities in the **lin River Basin: correlations and controls. Acta Bot Sin 45:1024–1029

    Google Scholar 

  • Zhao M, Zhou J, Kalbitz K (2008) Carbon mineralization and properties of water extractable organic carbon in soils of the south Loess Plateau in China. Eur J Soil Biol 44:158–165

    Article  CAS  Google Scholar 

  • Zhao H, He Y, Zhou R, Su Y, Li Y, Drake S (2009) Effects of desertification on soil organic C and N content in sandy farmland and grassland of Inner Mongolia. Catena 77:187–191

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Faz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Munoz, M., Faz, A., Mermut, A. (2015). Soil Carbon Reservoirs at High-Altitude Ecosystems in the Andean Plateau. In: Öztürk, M., Hakeem, K., Faridah-Hanum, I., Efe, R. (eds) Climate Change Impacts on High-Altitude Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-12859-7_4

Download citation

Publish with us

Policies and ethics

Navigation