LiDAR-Helped Recognition and Promotion of High-Alpine Geomorphosites

  • Conference paper
  • First Online:
Engineering Geology for Society and Territory - Volume 8

Abstract

Geomorphosites in high alpine areas show limited development of their geoheritage because of the heavy constraints to their use. Moreover, they are extremely vulnerable to global warming: glaciers and permafrost areas are currently affected by major changes due to the increasing temperatures. Research on alpine geomorphosites needs the use of methods of high-resolution topography. Among them, the Light Detection And Ranging (LiDAR) and particularly the Terrestrial Laser Scanning (TLS) plays a particular important role. Carried out on nearly 40 high altitude sites across the Alps since the beginning of the 2000s, this method is particularly interesting for the recognition and development of high-alpine geomorphosites. Indeed, it can be implemented for both identifying and characterizing the geomorphic objects (survey, monitoring, map**), hel** planning policies and protection (patterns of development/adaptation), and serving the geotouristic development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abellan A, Vilaplana JM, Martinez J (2006) Application of a long-range terrestrial laser scanner to a detailed rockfall study at Vall de Nuria (Eastern Pyrenees, Spain). Eng Geol 88:136–148

    Article  Google Scholar 

  • Avian M, Bauer A (2006) First results on monitoring glacier dynamics with the aid of terrestrial laser scanning on Pasterze Glacier (Hohe Tauern, Austria). Grazer Schriften der Geographie und Raumforschung 41:27–36

    Google Scholar 

  • Avian M, Kellerer-Pirklbauer A, Bauer A (2009) LiDAR for monitoring mass movements in permafrost environments at the cirque Hinteres Langtal, Austria, between 2000 and 2008. Nat Haz Earth Syst Sci 9:1087–1094

    Article  Google Scholar 

  • Bauer A, Paar G, Kaufmann V (2003) Terrestrial laser scanning for rock glacier monitoring. In: Proceedings of the 8th international conference on permafrost, Zurich, p 55–60

    Google Scholar 

  • Bauer A, Kaufmann V, Kellerer-Pirklbauer A, Avian M, Paar G (2006) Terrestrial laser scanning for glacier monitoring: a comparison to standard geodetic and photogrammetric methods, and documentation of the glacier retreat of Goessnitzkees (Schober group, Austria) between 2000 and 2005. In: Abstract of the 9th international symposium on high mountain remote sensing cartography, Graz, Austria, p 1

    Google Scholar 

  • Bodin X, Schoeneich P, Jaillet S (2008) High-resolution DEM extraction from terrestrial LiDAR topometry and surface kinematics of the cree** alpine permafrost: the Laurichard rock glacier case study (southern French Alps). In: Proceedings of the 9th ICOP, vol 1. Fairbanks, Alaska, p 137–142

    Google Scholar 

  • Conforti D, Deline P, Mortara G, Tamburini A (2005) Terrestrial scanning LiDAR technology applied to study the evolution of the ice-contact Miage lake (Mont Blanc, Italy). Report on the Joint ISPRS Com. VI, WG IV/4, p 5

    Google Scholar 

  • Deline P, Bolhert R, Coviello V, Cremonese E, Gruber S, Krautblatter M, Jaillet S, Malet E, Morra di Cella U, Noetzli J, Pogliotti P, Rabatel A, Ravanel L, Sadier B, Verleysdonk S (2009) L’Aiguille du Midi (massif du Mont Blanc) : un site remarquable pour l’etude du permafrost des parois d’altitude. Collection EDYTEM 8:135–146

    Google Scholar 

  • Fey C, Zangerl C, Haas F, Rutzinger M, Sailer R, Bremer M (2012) Rock slide deformation measurements with Terrestrial Laser Scanning in inaccessible high mountain areas. Geophys Res Abs 14:11944–1

    Google Scholar 

  • Ghiraldi L, Coaratza P, Marchetti M, Giardino M (2010) GIS and geomatics application for the evaluation and exploitation of Piemonte geomorphosites. In: Regolini-Bissig G, Reynard E (eds) Map** geoheritage. Geovisions 35:97–113

    Google Scholar 

  • Giardino M, Perotti L, Carletti R, Russo S (2010) Creation and test of a mobile GIS application to support field data collection and map** activities on geomorphosites. In: Regolini-Bissig G, Reynard E (eds) Map** geoheritage. Geovisions 35:115–127

    Google Scholar 

  • Haeberli W (2008) Changing view of changing glaciers. In: Orlove B, Wiegandt E, Luckman BH (eds) Darkening peaks: glacier retreat, science and society. University of California Press, Los Angeles, pp 23–32

    Google Scholar 

  • Hartmeyer I, Keuschnig M, Delleske R, Schrott L (2012) Reconstruction of the Magnetkoepfl rockfall event—Detecting rock fall release zones using TLS, Hohe Tauern Austria. Geophys Res Abs 14:12488

    Google Scholar 

  • Kaab A, Chiarle M, Raup B, Schneider C (2007) Climate change impacts on mountain glaciers and permafrost. Glob Plan Change 56:7–9

    Google Scholar 

  • Kenner R, Phillips M, Danioth C, Denier C, Thee P, Zgraggen A (2011) Investigation of rock and ice loss in a recently deglaciated mountain rock wall using TLS: Gemsstock. Swiss Alps Cold Reg Sc Tech 67:157–164

    Article  Google Scholar 

  • Martelli D, Alberto W, Tamburini A (2008) Rilievi laser scanner nell’ambito del Progetto Interreg IIIA Alcotra n. 196 PERMAdataROC. IMAGEO S.r.l., unpublished report.

    Google Scholar 

  • Martin S, Regolini G, Perret A, Kozlik L (2010) Elaboration et evaluation de produits geotouristiques. Propositions methodologiques Teoros 29:55–66

    Google Scholar 

  • Oppikofer T, Jaboyedoff M, Keusen HR (2008) Collapse at the eastern Eiger flank in the Swiss Alps. Nat Geosc 1:531–535

    Article  Google Scholar 

  • Otto JC, Keuschnig M, Gotz J, Marbach M, Schrott L (2012) Detection of mountain permafrost by combining high resolution surface and subsurface information. Geogr Ann A 94:43–57

    Article  Google Scholar 

  • Panizza M (2001) Geomorphosites: concepts, methods and example of geomorphological survey. Chi Sc Bull 46:4–6

    Article  Google Scholar 

  • Rabatel A, Deline P, Jaillet S, Ravanel L (2008) Rock falls in high-alpine rock walls quantified by terrestrial LiDAR measurements: a case study in the Mont-Blanc area. Geophy Res Let 35:L10502

    Article  Google Scholar 

  • Ravanel L, Deline P, Jaillet S (2011) Quatre annees de suivi de la morphodynamique des parois rocheuses du massif du Mont Blanc par laserscanning terrestre. Collection EDYTEM 12:69–76

    Google Scholar 

  • Ravanel L, Deline P, Lambiel C, Vincent C (2013) Instability of a highly vulnerable high alpine rock ridge: the lower Arete des Cosmiques (Mont Blanc massif, France). Geogr Ann A. doi:10.1111/geoa.12000

  • Ravanel L, Bodin X, Deline P. (2014) Using terrestrial laser scanning for the recognition and valorisation of high-alpine geomorphosites. Geoheritage 6(2):129–140

    Google Scholar 

  • Ravanel L, Lambiel C, Jaboyedoff M, Oppikofer T. (in review) Terrestrial laser scanning monitoring of a highly vulnerable moraine at the Gentianes Pass (2894 m a.s.l., Valais Alps, Switzerland). Arc., Antarc., Alpine Res.

    Google Scholar 

  • Regolini G (2012) Cartographier les geomorphosites. Geovisions 38:294

    Google Scholar 

  • Reynard E (2009) Geomorphosites: definitions and characteristics. In: Reynard E, Coratza P, Regolini G (eds) Geomorphosites. Munchen, p 63–71

    Google Scholar 

  • Viero A, Furlanis S, Squarzoni C, Teza G, Galgaro A, Gianolla P (2012) Dynamics and mass balance of the 2007 Cima Una rockfall (Eastern Alps, Italy). Landslides doi:10.1007/s10346-012-0338-4

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludovic Ravanel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ravanel, L., Deline, P., Bodin, X. (2015). LiDAR-Helped Recognition and Promotion of High-Alpine Geomorphosites. In: Lollino, G., Giordan, D., Marunteanu, C., Christaras, B., Yoshinori, I., Margottini, C. (eds) Engineering Geology for Society and Territory - Volume 8. Springer, Cham. https://doi.org/10.1007/978-3-319-09408-3_42

Download citation

Publish with us

Policies and ethics

Navigation