In Vivo Microdialysis in Parkinson’s Research

  • Chapter
  • First Online:
Birth, Life and Death of Dopaminergic Neurons in the Substantia Nigra

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURALTRANS,volume 73))

  • 1463 Accesses

Abstract

Parkinson’s disease (PD) is a progressive neurodegenerative disorder that is primarily characterized by the degeneration of dopamine (DA) neurons in the nigrostriatal system, which in turn produces profound neurochemical changes within the basal ganglia, representing the neural substrate for parkinsonian motor symptoms. The pathogenesis of the disease is still not completely understood, but environmental and genetic factors are thought to play important roles. Research into the pathogenesis and the development of new therapeutic intervention strategies that will slow or stop the progression of the disease in human has rapidly advanced by the use of neurotoxins that specifically target DA neurons. Over the years, a broad variety of experimental models of the disease has been developed and applied in diverse animal species. The two most common toxin models used employ 6-hydroxydopamine (6-OHDA) and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/1-methyl-4- phenilpyridinium ion (MPTP/MPP+), either given systemically or locally applied into the nigrostriatal pathway, to resemble PD features in animals. Both neurotoxins selectively and rapidly destroy catecolaminergic neurons, although with different mechanisms. Since in vivo microdialysis coupled to high-performance liquid chromatography is an established technique for studying physiological, pharmacological, and pathological changes of a wide range of low molecular weight substances in the brain extracellular fluid, here we review the most prominent animal and human data obtained by the use of this technique in PD research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

.OH:

Hydroxyl radicals

1O2 :

singlet oxygen

2-HBA:

Salicylate

4-HBA:

4-hydroxybenzoic acid

5-HIAA:

5-hydroxyindoleacetic acid

6-OHDA:

6-hydroxydopamine

7-NI:

7-Nitroindazole

A2A :

Adenosine2A

ACE:

Angiotensin II converting enzyme

BDNF:

Brain-derived neurotrophic factor

COX:

Cyclooxygenase

D3 :

calcitriol

DA:

Dopamine

DAT:

DA transporter

DBS:

Deep brain stimulation

DOPAC:

3,4-dihydroxyphenyl acetic acid

ESC:

Embryonic stem cells

GDNF:

Glial cell line-derived neurotrophic factor

GLU:

Glutamate

GPe:

Globus pallidus external segment

GPi:

Globus pallidus internal segment

GSH:

Glutathione

GSSG:

Glutathione disulfide

HPLC:

High performance liquid chromatography

HVA:

Homovanillic acid

iNOS:

Inducible nitric oxide synthase

LDL:

Low-density lipoprotein

L-DOPA:

L-3,4-dihydroxyphenylalanine

L-NAME:

N (G)-nitro-L- arginine methyl ester

MAO:

Monoamine oxidases

MPP+:

1-methyl-4-phenilpyridinium ion

MPTP:

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

MSC:

mesenchymal stem cells

NMDA:

N-methyl-D-aspartate

nNOS:

neuronal Nitric oxide synthase

NOP:

Nociceptin/orfanin FQ

O2 :

Superoxide anions

ONOO :

Peroxynitrite

PARP:

Poly (ADP-ribose) polymerase

PD:

Parkinson's disease

ROS:

Reactive oxygen species

SMA:

Supplementary motor cortex

SNc:

Substantia nigra pars compacta

SNr:

Substantia nigra pars reticulata

SOD:

Superoxide dismutase

STN:

Subthalamic nucleus

STN-HFS:

High-frequency stimulation of the subthalamic nucleus

TH:

Tyrosine hydroxylase

References

  • Abarca J, Bustos G (1999) Differential regulation of glutamate, aspartate and gamma-amino-butyrate release by N-methyl-D-aspartate receptors in rat striatum after partial and extensive lesions to the nigro-striatal dopamine pathway. Neurochem Int 35:19–33

    CAS  PubMed  Google Scholar 

  • Abercrombie ED, Bonatz AE, Zigmond MJ (1990) Effects of L-DOPA on extracellular dopamine in striatum of normal and 6-hydroxydopamine-treated rats. Brain Res 525:36–44

    CAS  PubMed  Google Scholar 

  • Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    CAS  PubMed  Google Scholar 

  • Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia- thalamocortical circuits: parallel substrates for motor, oculomotor, "prefrontal" and "limbic" functions. Prog Brain Res 85:119–146

    CAS  PubMed  Google Scholar 

  • Amin AR, Vyas P, Attur M, Leszczynska-Piziak J, Patel IR, Weissmann G, Abramson SB (1995) The mode of action of aspirin-like drugs: effect on inducible nitric oxide synthase. Proc Natl Acad Sci USA 92(17):7926–7930

    CAS  PubMed  Google Scholar 

  • Ampe B, Massie A, D'Haens J, Ebinger G, Michotte Y, Sarre S (2007) NMDA-mediated release of glutamate and GABA in the subthalamic nucleus is mediated by dopamine: an in vivo microdialysis study in rats. J Neurochem 103:1063–1074

    CAS  PubMed  Google Scholar 

  • Antonelli T, Fuxe K, Agnati L, Mazzoni E, Tanganelli S, Tomasini MC, Ferraro L (2006) Experimental studies and theoretical aspects on A2A/D2 receptor interactions in a model of Parkinson's disease. Relevance for L-dopa induced dyskinesias. J Neurol Sci 248:16–22

    CAS  PubMed  Google Scholar 

  • Arai A, Kannari K, Shen H, Maeda T, Suda T, Matsunaga M (2003) Amantadine increases L-DOPA-derived extracellular dopamine in the striatum of 6-hydroxydopamine-lesioned rats. Brain Res 972:229–234

    CAS  PubMed  Google Scholar 

  • Beal MF (2001) Experimental models of Parkinson's disease. Nat Rev Neurosci 2:325–334

    CAS  PubMed  Google Scholar 

  • Beal MF, Brouillet E, Jenkins BG, Ferrante RJ, Kowall NW, Miller JM, Storey E, Srivastava R, Rosen BR, Hyman BT (1993) Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci 13:4181–4192

    CAS  PubMed  Google Scholar 

  • Benveniste H (1989) Brain microdialysis. J Neurochem 52:1667–1679

    CAS  PubMed  Google Scholar 

  • Bergquist F, Shahabi HN, Nissbrandt H (2003) Somatodendritic dopamine release in rat substantia nigra influences motor performance in the accelerating rod. Brain Res 973:81–91

    CAS  PubMed  Google Scholar 

  • Betarbet R, Sherer TB, Greenamyre JT (2002) Animal models of Parkinson's disease. Bioessays 24:308–318

    CAS  PubMed  Google Scholar 

  • Bianchi L, Galeffi F, Bolam JP, Della Corte L (2003) The effect of 6-hydroxydopamine lesions on the release of amino acids in the direct and indirect pathways of the basal ganglia: a dual microdialysis probe analysis. Eur J Neurosci 18:856–868

    PubMed  Google Scholar 

  • Biggs CS, Fowler LJ, Whitton PS, Starr MS (1997) Extracellular levels of glutamate and aspartate in the entopeduncular nucleus of the rat determined by microdialysis: regulation by striatal D2 receptors via the indirect striatal output pathway. Brain Res 753:163–175

    CAS  PubMed  Google Scholar 

  • Björklund A, Dunnett SB, Brundin P, Stoessl AJ, Freed CR, Breeze RE, Levivier M, Peschanski M, Studer L, Barker R (2003) Neural transplantation for the treatment of Parkinson's disease. Lancet Neurol 2:437–445

    PubMed  Google Scholar 

  • Blair RJ (2003) Facial expressions, their communicatory functions and neuro-cognitive substrates. Philos Trans R Soc Lond B Biol Sci 358:561–572

    CAS  PubMed  Google Scholar 

  • Blandini F, Nappi G, Tassorelli C, Martignoni E (2000) Functional changes of the basal ganglia circuitry in Parkinson's disease. Prog Neurobiol 62:63–88

    CAS  PubMed  Google Scholar 

  • Blum D, Torch S, Lambeng N, Nissou M-F, Benabid A-L, Sadoul R, Verna J-M (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 65:135–172

    CAS  PubMed  Google Scholar 

  • Bogdanov MB, Ferrante RJ, Mueller G, Ramos LE, Martinou JC, Beal MF (1999) Oxidative stress is attenuated in mice overexpressing BCL-2. Neurosci Lett 262:33–36

    CAS  PubMed  Google Scholar 

  • Booth RG, Castagnoli N Jr, Rollema H (1989) Intracerebral microdialysis studies of quinoline and isoquinoline derivatives related to MPTP/MPP+. Neurosci Lett 100:306–312

    CAS  PubMed  Google Scholar 

  • Bouchez G, Sensebé L, Vourc'h P, Garreau L, Bodard S, Rico A, Guilloteau D, Charbord P, Besnard JC, Chalon S (2008) Partial recovery of dopaminergic pathway after graft of adult mesenchymal stem cells in a rat model of Parkinson's disease. Neurochem Int 52:1332–1342

    CAS  PubMed  Google Scholar 

  • Boulet S, Lacombe E, Carcenac C, Feuerstein C, Sgambato-Faure V, Poupard A, Savasta M (2006) Subthalamic stimulation-induced forelimb dyskinesias are linked to an increase in glutamate levels in the substantia nigra pars reticulata. J Neurosci 26:10768–10776

    CAS  PubMed  Google Scholar 

  • Bruet N, Windels F, Bertrand A, Feuerstein C, Poupard A, Savasta M (2001) High frequency stimulation of the subthalamic nucleus increases the extracellular contents of striatal dopamine in normal and partially dopaminergic denervated rats. J Neuropathol Exp Neurol 60:15–24

    CAS  PubMed  Google Scholar 

  • Bruet N, Windels F, Carcenac C, Feuerstein C, Bertrand A, Poupard A, Savasta M (2003) Neurochemical mechanisms induced by high frequency stimulation of the subthalamic nucleus: increase of extracellular striatal glutamate and GABA in normal and hemiparkinsonian rats. J Neuropathol Exp Neurol 62:1228–1240

    CAS  PubMed  Google Scholar 

  • Buck K, Ferger B (2008) Intrastriatal inhibition of aromatic amino acid decarboxylase prevents l-DOPA-induced dyskinesia: a bilateral reverse in vivo microdialysis study in 6-hydroxydopamine lesioned rats. Neurobiol Dis 29:210–220

    CAS  PubMed  Google Scholar 

  • Carboni S, Melis F, Pani L, Hadjiconstantinou M, Rossetti ZL (1990) The non-competitive NMDA-receptor antagonist MK-801 prevents the massive release of glutamate and aspartate from rat striatum induced by 1-methyl-4-phenylpyridinium (MPP+). Neurosci Lett 117:129–133

    CAS  PubMed  Google Scholar 

  • Cassarino DS, Fall CP, Smith TS, Bennett JP Jr (1998) Pramipexole reduces reactive oxygen species production in vivo and in vitro and inhibits the mitochondrial permeability transition produced by the parkinsonian neurotoxin methylpyridinium ion. J Neurochem 71:295–301

    CAS  PubMed  Google Scholar 

  • Castañeda E, Whishaw IQ, Robinson TE (1990) Changes in striatal dopamine neurotransmission assessed with microdialysis following recovery from a bilateral 6-OHDA lesion: variation as a function of lesion size. J Neurosci 10:1847–1854

    PubMed  Google Scholar 

  • Chiba K, Trevor A, Castagnoli N Jr (1984) Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem Biophys Res Commun 120:574–578

    CAS  PubMed  Google Scholar 

  • Chiueh CC, Krishna G, Tulsi P, Obata T, Lang K, Huang SJ, Murphy DL (1992) Intracranial microdialysis of salicylic acid to detect hydroxyl radical generation through dopamine autooxidation in the caudate nucleus: effects of MPP+. Free Radic Biol Med 13:581–583

    CAS  PubMed  Google Scholar 

  • Chiueh CC, Miyake H, Peng MT (1993) Role of dopamine autoxidation, hydroxyl radical generation, and calcium overload in underlying mechanisms involved in MPTP-induced parkinsonism. Adv Neurol 60:251–258

    CAS  PubMed  Google Scholar 

  • Chiueh CC, Wu RM, Mohanakumar KP, Sternberger LM, Krishna G, Obata T, Murphy DL (1994) In vivo generation of hydroxyl radicals and MPTP-induced dopaminergic toxicity in the basal ganglia. Ann NY Acad Sci 738:25–36

    CAS  PubMed  Google Scholar 

  • Chiueh CC, Huang S-J, Murphy DL (l992b) Enhanced hydroxyl radical generation by 2’-methyl analog of MPTP: suppression by clorgyline and deprenyl. Synapse 11:346–348

    Google Scholar 

  • Corsi C, Pinna A, Gianfriddo M, Melani A, Morelli M, Pedata F (2003) Adenosine A2A receptor antagonism increases striatal glutamate outflow in dopamine-denervated rats. Eur J Pharmacol 464:33–38

    CAS  PubMed  Google Scholar 

  • Cragg SJ, Nicholson C, Kume-Kick J, Tao L, Rice ME (2001) Dopamine-mediated volume transmission in midbrain is regulated by distinct extracellular geometry and uptake. J Neurophysiol 85:1761–1771

    CAS  PubMed  Google Scholar 

  • Dawson TM (2000) New animal models for Parkinson’s disease. Cell 101:115–118

    CAS  PubMed  Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    CAS  PubMed  Google Scholar 

  • Dethy S, Laute MA, Damhaut P, Goldman S (1999) Pergolide potentiates L-DOPA-induced dopamine release in rat striatum after lesioning with 6-hydroxydopamine. J Neural Transm 106:145–158

    CAS  PubMed  Google Scholar 

  • Deumens R, Blokland A, Prickaerts J (2002) Modeling Parkinson's disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol 175:303–317

    CAS  PubMed  Google Scholar 

  • Di Giovanni G (ed) (2007) The basal ganglia pathophysiology: recent advances. Transworld research network, Trivandrum

    Google Scholar 

  • Di Giovanni G (2008) Will it ever become possible to prevent dopaminergic neuronal degeneration? CNS Neurol Disord Drug Targets 7:28–44

    PubMed  Google Scholar 

  • Di Giovanni G, Di Matteo V, Esposito E (Eds) (2008) Serotonin–dopamine interaction: experimental evidence and therapeutic relevance. Prog Brain Res 172:ix

    Google Scholar 

  • Di Matteo V, Pierucci M, Di Giovanni G, Di Santo A, Poggi A, Benigno A, Esposito E (2006a) Aspirin protects striatal dopaminergic neurons from neurotoxin-induced degeneration: an in vivo microdialysis study. Brain Res 1095:167–177

    PubMed  Google Scholar 

  • Di Matteo V, Benigno A, Pierucci M, Giuliano DA, Crescimanno G, Esposito E, Di Giovanni G (2006b) 7-nitroindazole protects striatal dopaminergic neurons against MPP+-induced degeneration: an in vivo microdialysis study. Ann NY Acad Sci 1089:462–471

    PubMed  Google Scholar 

  • Ehringer H, Hornykiewicz O (1960) Distribution of noradrenaline and dopamine (3-hydroxytyramine) in the human brain and their behavior in diseases of the extrapyramidal system. Klin Wochenschr 15:1236–1239

    Google Scholar 

  • Emborg ME (2004) Evaluation of animal models of Parkinson’s disease for neuroprotective strategies. J Neurosci Methods 139:121–143

    CAS  PubMed  Google Scholar 

  • Esposito E, Rotilio D, Di Matteo V, Di Giulio C, Cacchio M, Algeri S (2002) A review of specific antioxidants and the effects on biochemical mechanisms related to neurodegenerative processes. Neurobiol Aging 23:719–735

    CAS  PubMed  Google Scholar 

  • Esposito E, Di Matteo V, Benigno A, Pierucci M, Crescimanno G, Di Giovanni G (2007a) Non-steroidal anti-inflammatory drugs in Parkinson's disease. Exp Neurol 205:295–312

    CAS  PubMed  Google Scholar 

  • Esposito E, Di Matteo V, Di Giovanni G (2007b) Death in the substantia nigra: a motor tragedy. Expert Rev Neurother 7:677–697

    CAS  PubMed  Google Scholar 

  • Fabre E, Monserrat J, Herrero A, Barja G, Leret ML (1999) Effect of MPTP on brain mitochondrial H2O2 and ATP production and on dopamine and DOPAC in the striatum. J Physiol Biochem 55: 325–331

    CAS  PubMed  Google Scholar 

  • Fantin M, Auberson YP, Morari M (2008) Differential effect of NR2A and NR2B subunit selective NMDA receptor antagonists on striato-pallidal neurons: relationship to motor response in the 6-hydroxydopamine model of parkinsonism. J Neurochem 106:957–968

    CAS  PubMed  Google Scholar 

  • Fearnley JM, Lees AJ (1991) Ageing and Parkinson's disease: SNc regional selectivity. Brain 114:2283–2301

    PubMed  Google Scholar 

  • Fedele E, Mazzone P, Stefani A, Bassi A, Ansaldo MA, Raiteri M, Altibrandi MG, Pierantozzi M, Giacomini P, Bernardi G, Stanzione P (2001a) Microdialysis in Parkinsonian patient basal ganglia: acute apomorphine-induced clinical and electrophysiological effects not paralleled by changes in the release of neuroactive amino acids. Exp Neurol 167:356–365

    CAS  PubMed  Google Scholar 

  • Fedele E, Stefani A, Bassi A, Pepicelli O, Altibrandi MG, Frasca S, Giacomini P, Stanzione P, Mazzone P (2001b) Clinical and electrophysiological effects of apomorphine in Parkinson's disease are not paralleled by amino acid release changes: a microdialysis study. Funct Neurol 16:57–66

    CAS  PubMed  Google Scholar 

  • Ferger B, van Amsterdam C, Seyfried C, Kuschinsky K (1998) Effects of α-phenyl-tert-butylnitrone and selegiline on hydroxyl free radicals in rat striatum produced by local application of glutamate. J Neurochem 70:276–280

    CAS  PubMed  Google Scholar 

  • Ferger B, Teismann P, Mierau J (2000) The dopamine agonist pramipexole scavenges hydroxyl free radicals induced by striatal application of 6-hydroxydopamine in rats: an in vivo microdialysis study. Brain Res 883:216–223

    CAS  PubMed  Google Scholar 

  • Ferger B, Rose S, Jenner A, Halliwell B, Jenner P (2001a) 6-hydroxydopamine increases hydroxyl free radical production and DNA damage in rat striatum. Neuroreport 12:1155–1159

    CAS  PubMed  Google Scholar 

  • Ferger B, Themann C, Rose S, Halliwell B, Jenner P (2001b) 6-hydroxydopamine increases the hydroxylation and nitration of phenylalanine in vivo: implication of peroxynitrite formation. J Neurochem 78:509–514

    CAS  PubMed  Google Scholar 

  • Flaherty AW, Graybiel AM (1991) Corticostriatal transformations in the primate somatosensory system. Projections from physiologically mapped body-part representations. J Neurophysiol 66:1249–1263

    CAS  PubMed  Google Scholar 

  • Foster SB, Wrona MZ, Han J, Dryhurst G (2003) The parkinsonian neurotoxin 1-methyl-4-phenylpyridinium (MPP+) mediates release of l-3, 4-dihydroxyphenylalanine (l-DOPA) and inhibition of l-DOPA decarboxylase in the rat striatum: a microdialysis study. Chem Res Toxicol 16:1372–1384

    CAS  PubMed  Google Scholar 

  • Gainetdinov RR, Fumagalli F, Jones SR, Caron MG (1997) Dopamine transporter is required for in vivo MPTP neurotoxicity: evidence from mice lacking the transporter. J Neurochem 69:1322–1325

    CAS  PubMed  Google Scholar 

  • Galati S, Mazzone P, Fedele E, Pisani A, Peppe A, Pierantozzi M, Brusa L, Troppi D, Moschella V, Raiteri M, Stanzione P, Bernardi G, Stefani A (2006) Biochemical and electrophysiological changes of substantia nigra pars reticulata driven by subthalamic stimulation in patients with Parkinson's disease. Eur J Neurosci 11:2923–2928

    Google Scholar 

  • Galeffi F, Bianchi L, Bolam JP, Della Corte L (2003) The effect of 6-hydroxydopamine lesions on the release of amino acids in the direct and indirect pathways of the basal ganglia: a dual microdialysis probe analysis. Eur J Neurosci 18:856–868

    CAS  PubMed  Google Scholar 

  • Gerhardt GA, Cass WA, Huettl P, Brock S, Zhang Z, Gash DM (1999) GDNF improves dopamine function in the substantia nigra but not the putamen of unilateral MPTP-lesioned rhesus monkeys. Brain Res 817:163–171

    CAS  PubMed  Google Scholar 

  • Gerin C (2002) Behavioral improvement and dopamine release in a Parkinsonian rat model. Neurosci Lett 330:5–8

    CAS  PubMed  Google Scholar 

  • Gill SS, Patel NK, Hotton GR, O'Sullivan K, McCarter R, Bunnage M, Brooks DJ, Svendsen CN, Heywood P (2003) Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 9:589–595

    CAS  PubMed  Google Scholar 

  • Giovanni A, Sieber BA, Heikkila RE, Sonsalla PK (1994a) Studies on species sensitivity to the dopaminergic neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. 1. Systemic administration. J Pharmacol Exp Ther 270:1000–1007

    CAS  PubMed  Google Scholar 

  • Giovanni A, Sonsalla PK, Heikkila RE (1994b) Studies on species sensitivity to the dopaminergic neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. 2. Central administration of 1- methyl-4-phenylpyridinium. J Pharmacol Exp Ther 270:1008–1014

    CAS  PubMed  Google Scholar 

  • Glinka Y, Gassen M, Youdim MBH (1997) Mechanism of 6-hydroxydopamine neurotoxicity. J Neural Transm 50:55–66

    CAS  Google Scholar 

  • Grondin R, Cass WA, Zhang Z, Stanford JA, Gash DM, Gerhardt GA (2003a) Glial cell line-derived neurotrophic factor increases stimulus-evoked dopamine release and motor speed in aged rhesus monkeys. J Neurosci 23:1974–1980

    CAS  PubMed  Google Scholar 

  • Grondin R, Zhang Z, Ai Y, Gash DM, Gerhardt GA (2003b) Intracranial delivery of proteins and peptides as a therapy for neurodegenerative diseases. Prog Drug Res 61:101–123

    CAS  PubMed  Google Scholar 

  • Grünewald T, Beal MF (1999) NOS knockouts and neuroprotection. Nat Med 5:1354–1355

    PubMed  Google Scholar 

  • Halliwell B, Kaur H (1997) Hydroxylation of salicylate and phenylalanine as assays for hydroxyl radicals: a cautionary note visited for the third time. Free Radic Res 27:239–244

    CAS  PubMed  Google Scholar 

  • Halliwell B, Kaur H, Ingelman-Sundberg M (1991) Hydroxylation of salicylate as an assay for hydroxyl radicals: a cautionary note. Free Radic Biol Med 10:439–441

    CAS  PubMed  Google Scholar 

  • Han J, Cheng FC, Yang Z, Dryhurst G (1999) Inhibitors of mitochondrial respiration, iron (II), and hydroxyl radical evoke release and extracellular hydrolysis of glutathione in rat striatum and substantia nigra: potential implications to Parkinson's disease. J Neurochem 73:1683–1695

    CAS  PubMed  Google Scholar 

  • Höcht C, Opezzo JA, Taira CA (2007) Applicability of reverse microdialysis in pharmacological and toxicological studies. J Pharmacol Toxicol Methods 55:3–15

    PubMed  Google Scholar 

  • Hoffman AF, van Horne CG, Eken S, Hoffer BJ, Gerhardt GA (1997) In vivo microdialysis studies of somatodendritic dopamine release in the rat substantia nigra: effects of unilateral 6-OHDA lesions and GDNF. Exp Neurol 147:130–141

    CAS  PubMed  Google Scholar 

  • Hornykiewicz O (1989) Ageing and neurotoxins as causative factors in idiopathic Parkinson's disease-a critical analysis of the neurochemical evidence. Prog Neuropsychopharmacol Biol Psychiatry 13:319–328

    CAS  PubMed  Google Scholar 

  • Ishiwari K, Mingote S, Correa M, Trevitt JT, Carlson BB, Salamone JD (2004) The GABA uptake inhibitor beta-alanine reduces pilocarpine-induced tremor and increases extracellular GABA in substantia nigra pars reticulata as measured by microdialysis. J Neurosci Methods 140:39–46

    CAS  PubMed  Google Scholar 

  • Jellinger K (1989) Pathology of Parkinson’s disease. In: Calne DB (ed) Handbook of experimental pharmacology. Springer, Berlin

    Google Scholar 

  • Jenner P (2003) Oxidative stress in Parkinson’s disease. Ann Neurol 53(Suppl 3):S26–S38

    CAS  PubMed  Google Scholar 

  • Jenner P, Dexter DT, Sian J, Schapira AHV, Marsden CD (1992) Oxidative stress as a cause of nigral cell death in Parkinson's disease and incidental Lewy body disease. The Royal Kings and Queens Parkinson's Disease Research Group. Ann Neurol 32(Suppl):S82–S87

    CAS  PubMed  Google Scholar 

  • Jonkers N, Sarre S, Ebinger G, Michotte Y (2000) MK801 influences L-DOPA-induced dopamine release in intact and hemi-parkinson rats. Eur J Pharmacol 407:281–291

    CAS  PubMed  Google Scholar 

  • Jonkers N, Sarre S, Ebinger G, Michotte Y (2001) Benserazide decreases central AADC activity, extracellular dopamine levels and levodopa decarboxylation in striatum of the rat. J Neural Transm 108:559–570

    CAS  PubMed  Google Scholar 

  • Jonkers N, Sarre S, Ebinger G, Michotte Y (2002) MK801 suppresses the l-DOPA-induced increase of glutamate in striatum of hemi-Parkinson rats. Brain Res 926:149–155

    CAS  PubMed  Google Scholar 

  • Kannari K, Tanaka H, Maeda T, Tomiyama M, Suda T, Matsunaga M (2000) Reserpine pretreatment prevents increases in extracellular striatal dopamine following L-DOPA administration in rats with nigrostriatal denervation. J Neurochem 74:263–269

    CAS  PubMed  Google Scholar 

  • Kannari K, Yamato H, Shen H, Tomiyama M, Suda T, Matsunaga M (2001) Activation of 5-HT1A but not 5-HT1B receptors attenuates an increase in extracellular dopamine derived from exogenously administered L-DOPA in the striatum with nigrostriatal denervation. J Neurochem 76:1346–1353

    CAS  PubMed  Google Scholar 

  • Kirik D, Georgievska B, Burger C, Winkler C, Muzyczka N, Mandel RJ, Bjorklund A (2002) Reversal of motor impairments in parkinsonian rats by continuous intrastriatal delivery of L-dopa using rAAV-mediated gene transfer. Proc Natl Acad Sci USA 99: 4708–4713

    CAS  PubMed  Google Scholar 

  • Kondoh T, Low WC (1994) Glutamate uptake blockade induces striatal dopamine release in 6-hydroxydopamine rats with intrastriatal grafts: evidence for host modulation of transplanted dopamine neurons. Exp Neurol 127:191–198

    CAS  PubMed  Google Scholar 

  • Lacombe E, Carcenac C, Boulet S, Feuerstein C, Bertrand A, Poupard A, Savasta M (2007) High-frequency stimulation of the subthalamic nucleus prolongs the increase in striatal dopamine induced by acute L-3, 4-dihydroxyphenylalanine in dopaminergic denervated rats. Eur J Neurosci 26:1670–1680

    PubMed  Google Scholar 

  • Langston JW, Ballard PA, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980

    CAS  PubMed  Google Scholar 

  • Linazasoro G (2004) Recent failures of new potential symptomatic treatments for Parkinson’s disease: causes and solutions. Mov Disord 19:743–754

    PubMed  Google Scholar 

  • Lindefors N, Ungerstedt U (1990) Bilateral regulation of glutamate tissue and extracellular levels in caudate-putamen by midbrain dopamine neurons. Neurosci Lett 115:248–252

    CAS  PubMed  Google Scholar 

  • Lindefors N, Brodin E, Tossman U, Segovia H, Ungerstedt U (1989) Tissue levels and in vivo release of tachykinins and GABA in striatum and substantia nigra of rat brain after unilateral striatal dopamine denervation. Exp Brain Res 74:527–534

    CAS  PubMed  Google Scholar 

  • Lindvall O, Hagell P (2000) Clinical observations after neural transplantation in Parkinson's disease. Prog Brain Res 127:299–320

    CAS  PubMed  Google Scholar 

  • Liu M, Liu S, Peterson SL, Miyake M, Liu KJ (2002) On the application of 4-hydroxybenzoic acid as a trap** agent to study hydroxyl radical generation during cerebral ischemia and reperfusion. Mol Cell Biochem 234(235):379–385

    PubMed  Google Scholar 

  • Lotharius J, Dugan LL, O’Malley KL (1999) Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons. J Neurosci 19:1284–1293

    CAS  PubMed  Google Scholar 

  • Maeda T, Kannari K, Suda T, Matsunaga M (1999) Loss of regulation by presynaptic dopamine D2 receptors of exogenous L-DOPA-derived dopamine release in the dopaminergic denervated striatum. Brain Res 817:185–191

    CAS  PubMed  Google Scholar 

  • Mandel S, Grünblatt E, Riederer P, Gerlach M, Levites Y, Youdim MB (2003) Neuroprotective strategies in Parkinson's disease: an update on progress. CNS Drugs 17:729–762

    CAS  PubMed  Google Scholar 

  • Marti M, Sbrenna S, Fuxe K, Bianchi C, Beani L, Morari M (2000) Increased responsivity of glutamate release from the substantia nigra pars reticulata to striatal NMDA receptor blockade in a model of Parkinson's disease. A dual probe microdialysis study in hemiparkinsonian rats. Eur J Neurosci 12:1848–1850

    CAS  Google Scholar 

  • Marti M, Mela F, Bianchi C, Beani L, Morari M (2002) Striatal dopamine-NMDA receptor interactions in the modulation of glutamate release in the substantia nigra pars reticulata in vivo: opposite role for D1 and D2 receptors. J Neurochem 83:635–644

    CAS  PubMed  Google Scholar 

  • Marti M, Mela F, Guerrini R, Calo G, Bianchi C, Morari M (2004a) Blockade of nociceptin/orphanin FQ transmission in rat substantia nigra reverses haloperidol-induced akinesia and normalizes nigral glutamate release. J Neurochem 91:1501–1504

    CAS  PubMed  Google Scholar 

  • Marti M, Mela F, Veronesi C, Guerrini R, Salvadori S, Federici M, Mercuri NB, Rizzi A, Franchi G, Beani L, Bianchi C, Morari M (2004b) Blockade of nociceptin/orphanin FQ receptor signaling in rat substantia nigra pars reticulata stimulates nigrostriatal dopaminergic transmission and motor behavior. J Neurosci 24:6659–6666

    CAS  Google Scholar 

  • Marti M, Mela F, Fantin M, Zucchini S, Brown JM, Witta J, Di Benedetto M, Buzas B, Reinscheid RK, Salvadori S, Guerrini R, Romualdi P, Candelotti S, Simonato M, Cox BM, Morari M (2005) Blockade of nociceptin/orphanin FQ transmission attenuates symptoms and neurodegeneration associated with Parkinson’s disease. J Neurosci 25:9591–9601

    CAS  PubMed  Google Scholar 

  • Marti M, Trapella C, Viaro R, Morari M (2007) The nociceptin/orphanin FQ receptor antagonist J-113397 and L-DOPA additively attenuate experimental parkinsonism through overinhibition of the nigrothalamic pathway. J Neurosci 27:1297–1307

    CAS  PubMed  Google Scholar 

  • Matarredona ER, Santiago M, Cano J, Machado A (1997) Involvement of iron in MPP+ toxicity in substantia nigra: protection by desferrioxamine. Brain Res 773:76–81

    CAS  PubMed  Google Scholar 

  • Matarredona ER, Santiago M, Venero JL, Cano J, Machado A (2001) Group II metabotropic glutamate receptor activation protects striatal dopaminergic nerve terminals against MPP+-induced neurotoxicity along with brain-derived neurotrophic factor induction. J Neurochem 76:351–360

    CAS  PubMed  Google Scholar 

  • Matsubara K, Senda T, Uezono T, Awaya T, Ogawa S, Chiba K, Shimizu K, Hayase N, Kimura K (2001) l-Deprenyl prevents the cell hypoxia induced by dopaminergic neurotoxins, MPP+ and β-carbolinium: a microdialysis study in rats. Neurosci Lett 302:65–68

    CAS  PubMed  Google Scholar 

  • Meissner W, Reum T, Paul G, Harnack D, Sohr R, Morgenstern R, Kupsch A (2001) Striatal dopaminergic metabolism is increased by deep brain stimulation of the subthalamic nucleus in 6-hydroxydopamine lesioned rats. Neurosci Lett 303:165–168

    CAS  PubMed  Google Scholar 

  • Meissner W, Harnack D, Paul G, Reum T, Sohr R, Morgenstern R, Kupsch A (2002) Deep brain stimulation of subthalamic neurons increases striatal dopamine metabolism and induces contralateral circling in freely moving 6-hydroxydopamine-lesioned rats. Neurosci Lett 328:105–108

    CAS  PubMed  Google Scholar 

  • Meissner W, Harnack D, Reese R, Paul G, Reum T, Ansorge M, Kusserow H, Winter C, Morgenstern R, Kupsch A (2003) High frequency stimulation of the subthalamic nucleus enhances striatal dopamine release and metabolism in rats. J Neurochem 85: 601–609

    CAS  PubMed  Google Scholar 

  • Meissner W, Ravenscroft P, Reese R, Harnack D, Morgenstern R, Kupsch A, Klitgaard H, Bioulac B, Gross CE, Bezard E, Boraud T (2006) Increased slow oscillatory activity in substantia nigra pars reticulata triggers abnormal involuntary movements in the 6-OHDA lesioned rat in the presence of excessive extracellular striatal dopamine. Neurobiol Dis 22:586–598

    CAS  PubMed  Google Scholar 

  • Mela F, Marti M, Dekundy A, Danysz W, Morari M, Cenci MA (2007) Antagonism of metabotropic glutamate receptor type 5 attenuates l-DOPA-induced dyskinesia and its molecular and neurochemical correlates in a rat model of Parkinson's disease. J Neurochem 101:483–497

    CAS  PubMed  Google Scholar 

  • Meshul CK, Emre N, Nakamura CM, Allen C, Donohue MK, Buckman JF (1999) Time-dependent changes in striatal glutamate synapses following a 6-hydroxydopamine lesion. Neuroscience 88:1–16

    CAS  PubMed  Google Scholar 

  • Meyerson BA, Linderoth B, Karlsson H, Ungerstedt U (1990) Microdialysis in the human brain: extracellular measurements in the thalamus of parkinsonian patients. Life Sci 46:301–308

    CAS  PubMed  Google Scholar 

  • Mignon LJ, Wolf WA (2005) 8-Hydroxy-2-(di-n-propylamino) tetralin reduces striatal glutamate in an animal model of Parkinson's disease. Neuroreport 16:699–703

    CAS  PubMed  Google Scholar 

  • Miller DW, Abercrombie ED (1999) Role of high-affinity dopamine uptake and impulse activity in the appearance of extracellular dopamine in striatum after administration of exogenous L-DOPA: studies in intact and 6-hydroxydopamine-treated rats. J Neurochem 72:1516–1522

    CAS  PubMed  Google Scholar 

  • Mohanakumar KP, Muralikrishnan D, Thomas B (2000) Neuroprotection by sodium salicylate against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced neurotoxicity. Brain Res 864:281–290

    CAS  PubMed  Google Scholar 

  • Montgomery J, Ste-Marie L, Boismenu D, Vachon L (1995) Hydroxylation of aromatic compounds as indices of hydroxyl radical production: a cautionary note revisited. Free Radic Biol Med 19:927–933

    CAS  PubMed  Google Scholar 

  • Morari M, O'Connor WT, Ungerstedt U, Bianchi C, Fuxe K (1996) Functional neuroanatomy of the nigrostriatal and striatonigral pathways as studied with dual probe microdialysis in the awake rat–II. Evidence for striatal N-methyl-D-aspartate receptor regulation of striatonigral GABAergic transmission and motor function. Neuroscience 72:89–97

    CAS  PubMed  Google Scholar 

  • Nicklas WJ, Vyas I, Heikkila RE (1985) Inhibition of NADH-linked oxidation in brain mitochondria by 1-methyl-4-phenyl-pyridine, a metabolite of the neurotoxin, 1-methyl-4-phenyl-1, 2, 5, 6-tetrahydropyridine. Life Sci 36:2503–2508

    CAS  PubMed  Google Scholar 

  • Nicklas WJ, Youngster SK, Kindt MV, Heikkila RE (1987) MPTP, MPP+ and mitochondrial function. Life Sci 40:721–729

    CAS  PubMed  Google Scholar 

  • Nimura T, Yamaguchi K, Ando T, Shibuya S, Oikawa T, Nakagawa A, Shirane R, Itoh M, Tominaga T (2005) Attenuation of fluctuating striatal synaptic dopamine levels in patients with Parkinson disease in response to subthalamic nucleus stimulation: a positron emission tomography study. J Neurosurg 103:968–973

    CAS  PubMed  Google Scholar 

  • Nomoto M, Fukuda T (1993) A selective MAOB inhibitor Ro19–6327 potentiates the effects of levodopa on parkinsonism induced by MPTP in the common marmoset. Neuropharmacology 32:473–477

    CAS  PubMed  Google Scholar 

  • Nowak P, Szczerbak G, Biedka I, Drosik M, Kostrzewa RM, Brus R (2006) Effect of ketanserin and amphetamine on nigrostriatal neurotransmission and reactive oxygen species in parkinsonian rats. In vivo microdialysis study. J Physiol Pharmacol 57:583–597

    CAS  PubMed  Google Scholar 

  • Obata T (1999a) Reserpine prevents hydrohyl radical formation by MPP+ in rat striatum. Brain Res 828:68–73

    CAS  PubMed  Google Scholar 

  • Obata T (1999b) Protective effect of imidaprilat, a new angiotensin-converting enzyme inhibitor against 1-methyl-4-phenylpyridinium ion-induced.OH generation in rat striatum. Eur J Pharmacol 378:39–45

    CAS  PubMed  Google Scholar 

  • Obata T (2002) Role of hydroxyl radical formation in neurotoxicity as revealed by in vivo free radical trap**. Toxicol Lett 132:83–93

    CAS  PubMed  Google Scholar 

  • Obata T (2003) Phytic acid suppresses 1-methyl-4-phenylpyridinium ion-induced hydroxyl radical generation in rat striatum. Brain Res 978:241–244

    CAS  PubMed  Google Scholar 

  • Obata T (2006a) Nitric oxide and MPP+-induced hydroxyl radical generation. J Neural Transm 113:1131–1144

    CAS  Google Scholar 

  • Obata T (2006b) Effect of desferrioxamine, a strong iron (III) chelator, on 1-methyl-4-phenylpyridinium ion (MPP+)-induced hydroxyl radical generation in the rat striatum. Eur J Pharmacol 539:34–38

    CAS  Google Scholar 

  • Obata T (2006c) Allopurinol suppresses 2-bromoethylamine and 1-methyl-4-phenylpyridinium ion (MPP+)-induced hydroxyl radical generation in rat striatum. Toxicology 218:75–79

    CAS  Google Scholar 

  • Obata T (2006d) Imidaprilat suppresses nonylphenol and 1-methyl-4-phenylpyridinium ion (MPP+)-induced hydroxyl radical generation in rat striatum. Neurosci Res 54:192–196

    CAS  Google Scholar 

  • Obata T (2006e) Tamoxifen protect against hydroxyl radical generation induced by phenelzine in rat striatum. Toxicology 222:46–52

    CAS  Google Scholar 

  • Obata T, Chiueh CC (1992) In vivo trap** of hydroxyl free radicals in the striatum utilizing intracranial microdialysis perfusion of salicylate: effects of MPTP, MPDP+, and MPP+. J Neural Transm GenSect 89:139–145

    CAS  Google Scholar 

  • Obata T, Kubota S (2001) Protective effect of tamoxifen on 1-methyl-4-phenylpyridine-induced hydroxyl radical generation in the rat striatum. Neurosci Lett 308:87–90

    CAS  PubMed  Google Scholar 

  • Obata T, Yamanaka Y (2000) Protective effect of fluvastatin, a new inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, on MPP+-induced hydroxyl radical in the rat striatum. Brain Res 860:166–169

    CAS  PubMed  Google Scholar 

  • Obata T, Yamanaka Y (2001) Nitric oxide enhances MPP+-induced hydroxyl radical generation via depolarization activated nitric oxide synthase in rat striatum. Brain Res 902:223–228

    CAS  PubMed  Google Scholar 

  • Obata T, Yamanaka Y, Kinemuchi H, Oreland L (2001a) Release of dopamine by perfusion with 1-methyl-4-phenylpyridinium ion (MPP+) into the striatum is associated with hydroxyl free radical generation. Brain Res 906:170–175

    CAS  PubMed  Google Scholar 

  • Obata T, Kubota S, Yamanaka Y (2001b) Allopurinol suppresses para-nonylphenol and 1-methyl-4-phenylpyridinium ion (MPP+)- induced hydroxyl radical generation in rat striatum. Neurosci Lett 306:9–12

    CAS  PubMed  Google Scholar 

  • Obata T, Kubota S, Yamanaka Y (2001c) Protective effect of histidine on para-nonylphenol-enhanced hydroxyl free radical generation induced by 1-methyl-4-phenylpyridinium ion (MPP+) in rat striatum. Biochim Biophys Acta 1568:171–175

    CAS  PubMed  Google Scholar 

  • Obata T, Kinemuchi H, Aomine M (2002a) Protective effect of diltiazem, a L-type calcium channel antagonist, on bisphenol A-enhanced hydroxyl radical generation by 1-methyl-4-phenylpyridinium ion in rat striatum. Neurosci Lett 334:211–213

    CAS  PubMed  Google Scholar 

  • Obata T, Aomine M, Inada T, Kinemuchi H (2002b) Nicotine suppresses 1-methyl-4-phenylpyridinium ion-induced hydroxyl radical generation in rat striatum. Neurosci Lett 330:122–124

    CAS  PubMed  Google Scholar 

  • Obata T, Takahashi S, Kashiwagi Y, Kubota S (2008) Protective effect of captopril and enalaprilat, angiotensin-converting enzyme inhibitors, on paranonylphenol-induced. OH generation and dopamine efflux in rat striatum. Toxicology 250:96–99

    CAS  PubMed  Google Scholar 

  • Obeso JA, Rodriguez-Oroz M, Marin C, Alonso F, Zamarbide I, Lanciego JL, Rodriguez-Diaz M (2004) The origin of motor fluctuations in Parkinson's disease: importance of dopaminergic innervation and basal ganglia circuits. Neurology 62(Suppl 1):S17–S30

    CAS  PubMed  Google Scholar 

  • Ochi M, Koga K, Kurokawa M, Kase H, Nakamura J, Kuwana Y (2000) Systemic administration of adenosine A2A receptor antagonist reverses increased GABA release in the globus pallidus of unilateral 6-hydroxydopamine-lesioned rats: a microdialysis study. Neuroscience 100:53–62

    CAS  PubMed  Google Scholar 

  • Ochi M, Shiozaki S, Kase H (2004a) Adenosine A2A receptor-mediated modulation of GABA and glutamate release in the output regions of the basal ganglia in a rodent model of Parkinson's disease. Neuroscience 127:223–231

    CAS  PubMed  Google Scholar 

  • Ochi M, Shiozaki S, Kase H (2004b) L-DOPA-induced modulation of GABA and glutamate release in substantia nigra pars reticulata in a rodent model of Parkinson’s disease. Synapse 52:163–165

    CAS  PubMed  Google Scholar 

  • O'Connor WT (1998) Functional neuroanatomy of the basal ganglia as studied by dual-probe microdialysis. Nucl Med Biol 25:743–746

    PubMed  Google Scholar 

  • Opacka-Juffry J, Ashworth S, Hume SP, Martin D, Brooks DJ, Blunt SB (1995) GDNF protects against 6-OHDA nigrostriatal lesion: in vivo study with microdialysis and PET. Neuroreport 7:348–352

    CAS  PubMed  Google Scholar 

  • Opacka-Juffry J, Wilson AW, Blunt SB (1998) Effects of pergolide treatment on in vivo hydroxyl free radical formation during infusion of 6-hydroxydopamine in rat striatum. Brain Res 810:27–33

    CAS  PubMed  Google Scholar 

  • Parent A (996) Carpenter’s human neuroanatomy, 9th edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Perese DA, Ulman J, Viola J, Ewing SE, Bankiewicz KS (1989) A 6-hydroxydopamine-induced selective parkinsonian rat model. Brain Res 494:285–293

    CAS  PubMed  Google Scholar 

  • Przedborski S, Levivier M, Jiang H, Ferreira M, Jackson-Lewis V, Donaldson D, Togasaki DM (1995) Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine. Neuroscience 67:631–647

    CAS  PubMed  Google Scholar 

  • Rada P, Tucci S, Teneud L, Paez X, Perez J, Alba G, García Y, Sacchettoni S, del Corral J, Hernandez L (1999) Monitoring gamma-aminobutyric acid in human brain and plasma microdialysates using micellar electrokinetic chromatography and laser- induced fluorescence detection. J Chromatogr B Biomed Sci Appl 735:1–10

    CAS  PubMed  Google Scholar 

  • Ramassamy C (2006) Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. Eur J Pharmacol 545:51–64

    CAS  PubMed  Google Scholar 

  • Richard MG, Bennett JP Jr (1995) NMDA receptor blockade increases in vivo striatal dopamine synthesis and release in rats and mice with incomplete, dopamine-depleting, nigrostriatal lesions. J Neurochem 64:2080–2086

    CAS  PubMed  Google Scholar 

  • Riederer P, Gerlach M, Müller T, Reichmann H (2007) Relating mode of action to clinical practice: dopaminergic agents in Parkinson's disease. Parkinsonism Relat Disord 13:466–479

    PubMed  Google Scholar 

  • Rioux L, Gaudin DP, Bui LK, Grégoire L, DiPaolo T, Bédard PJ (1991) Correlation of functional recovery after a 6-hydroxydopamine lesion with survival of grafted fetal neurons and release of dopamine in the striatum of the rat. Neuroscience 40:123–131

    CAS  PubMed  Google Scholar 

  • Robelet S, Melon C, Guillet B, Salin P, Kerkerian-Le Goff L (2004) Chronic L-DOPA treatment increases extracellular glutamate levels and GLT1 expression in the basal ganglia in a rat model of Parkinson’s disease. Eur J Neurosci 20:1255–1266

    CAS  PubMed  Google Scholar 

  • Robertson RG, Graham WC, Sambrook MA, Crossman AR (1991) Further investigations into the pathophysiology of MPTP-induced parkinsonism in the primate: an intracerebral microdialysis study of gamma-aminobutyric acid in the lateral segment of the globus pallidus. Brain Res 563:278–280

    CAS  PubMed  Google Scholar 

  • Robinson TE, Whishaw IQ (1988) Normalization of extracellular dopamine in striatum following recovery from a partial unilateral 6-OHDA lesion of the substantia nigra: a microdialysis study in freely moving rats. Brain Res 450:209–224

    CAS  PubMed  Google Scholar 

  • Robinson S, Freeman P, Moore C, Touchon JC, Krentz L, Meshul CK (2003) Acute and subchronic MPTP administration differentially affects striatal glutamate synaptic function. Exp Neurol 180:74–87

    PubMed  Google Scholar 

  • Rocchitta G, Migheli R, Mura MP, Esposito G, Marchetti B, Desole MS, Miele E, Serra PA (2005) Role of endogenous melatonin in the oxidative homeostasis of the extracellular striatal compartment: a microdialysis study in PC12 cells in vitro and in the striatum of freely moving rats. J Pineal Res 39:409–418

    CAS  PubMed  Google Scholar 

  • Rocchitta G, Migheli R, Esposito G, Marchetti B, Desole MS, Miele E, Serra PA (2006) Endogenous melatonin protects L-DOPA from autoxidation in the striatal extracellular compartment of the freely moving rat: potential implication for long-term L-DOPA therapy in Parkinson's disease. J Pineal Res 40:204–213

    CAS  PubMed  Google Scholar 

  • Rodriguez M, Morales I, Gonzalez-Mora JL, Gomez I, Sabate M, Dopico JG, Rodriguez-Oroz MC, Obeso JA (2007) Different levodopa actions on the extracellular dopamine pools in the rat striatum. Synapse 61:61–71

    CAS  PubMed  Google Scholar 

  • Rodríguez-Gómez JA, Lu JQ, Velasco I, Rivera S, Zoghbi SS, Liow JS, Musachio JL, Chin FT, Toyama H, Seidel J, Green MV, Thanos PK, Ichise M, Pike VW, Innis RB, McKay RD (2007) Persistent dopamine functions of neurons derived from embryonic stem cells in a rodent model of Parkinson disease. Stem Cells 25:918–928

    PubMed  Google Scholar 

  • Rollema H, Damsma G, Horn AS, De Vries JB, Westerink BHC (1986) Brain dialysis in conscious rats reveals an instantaneous massive release of striatal dopamine in response to MPP+ Eur. J Pharmacol 126:345–346

    CAS  Google Scholar 

  • Rollema H, De Vries JB, Damsma G, Westerink BHC, Kranenborg GL, Kuhr WG, Horn AS (1988a) The use of in vivo dialysis of dopamine, acetylcholine, aminoacids and lactic acid in studies on the neurotoxin l-methyl-4-phenyl- 1, 2, 3, 6-tetrahydropyridine (MPTP). Toxicology 49:503–511

    CAS  PubMed  Google Scholar 

  • Rollema H, Kuhr WG, Kranenborg G, De Vries J, Van den Berg C (1988b) MPP+-induced efflux of dopamine and lactate from rat striatum have similar time courses as shown by in vivo brain dialysis. J Pharmacol Exp Ther 245:858–866

    CAS  PubMed  Google Scholar 

  • Rollema H, Alexander GM, Grothusen JR, Matos FF, Castagnoli N Jr (1989) Comparison of the effects of intracerebrally administered MPP+ (1-methyl-4-phenylpyridinium) in three species: microdialysis of dopamine and metabolites in mouse, rat and monkey striatum. Neurosci Lett 106:275–281

    CAS  PubMed  Google Scholar 

  • Rollema H, Johnson AE, Booth RG, Caldera P, Lampen P, Youngster SK, Trevor AJ, Naiman N, Castagnoli N Jr (1990) In vivo intracerebral microdialysis studies in rats of MPP+ analogues and related charged species. J Med Chem 33:2221–2230

    CAS  PubMed  Google Scholar 

  • Rollema H, Skolnik M, D’Engelbronner J, Igarashi K, Usuki E, Castagnoli N Jr (1994) MPP+-like neurotoxicity of a pyridinium metabolite derived from haloperidol: In vivo microdialysis and in vitro mitochondrial studies. J Pharmacol Exp Ther 268:380–387

    CAS  PubMed  Google Scholar 

  • Rose S, Hindmarshand JG, Jenner P (1999) Neuronal nitric oxide synthase inhibition reduces MPP+-evoked hydroxyl radical formation but not dopamine efflux in rat striatum. J Neural Transm 106:477–486

    CAS  PubMed  Google Scholar 

  • Sachs C, Jonsson G (1975) Mechanisms of action of 6-hydroxydopamine. Biochem Pharmacol 24:1–8

    CAS  PubMed  Google Scholar 

  • Santiago M, Venero JL, Machado A, Cano J (1992) In vivo protection of striatum from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists. Brain Res 586:203–207

    CAS  PubMed  Google Scholar 

  • Santiago M, Granero L, Machado A, Cano J (1995) Complex I inhibitor effect on the nigral and striatal release of dopamine in the presence and absence of nomifensine. Eur J Pharmacol 280:251–256

    CAS  PubMed  Google Scholar 

  • Santiago M, Matarredona ER, Granero L, Cano J, Machado A (1997) Neuroprotective effect of the iron chelator desferrioxamine against MPP+ toxicity on striatal dopaminergic terminals. J Neurochem 68:732–738

    CAS  PubMed  Google Scholar 

  • Santiago M, Rollema H, de Vries JB, Westerink BHC (1991a) Acute effects of intranigral application of MPP+ on nigral and bilateral striatal release of dopamine simultaneously recorded by microdialysis. Brain Res 538:226–230

    CAS  PubMed  Google Scholar 

  • Santiago M, Westerink BHC, Rollema H (199lb) Responsiveness of striatal dopamine release in awake animals after chronic 1 -methyl-4-phenylpyridinium ion-induced lesions of the substantia nigra. J Neurochem 56:1336–1342

    Google Scholar 

  • Santiago M, Matarredona ER, Granero L, Cano J, Machado A (2000) Neurotoxic relationship between dopamine and iron in the striatal dopaminergic nerve terminals. Brain Res 858:26–32

    CAS  PubMed  Google Scholar 

  • Santiago M, Machado A, Cano J (2001) Validity of a quantitative technique to study striatal dopaminergic neurodegeneration by in vivo microdialysis. J Neurosci Methods 108:181–187

    CAS  PubMed  Google Scholar 

  • Sarre EG, Michotte Y (1996) Levodopa biotransformation in hemi-Parkinson rats: effect of dopamine receptor agonists and antagonists. Eur J Pharmacol 296:247–260

    CAS  PubMed  Google Scholar 

  • Sarre S, Yuan H, Jonkers N, Van Hemelrijck A, Ebinger G, Michotte Y (2004) In vivo characterization of somatodendritic dopamine release in the substantia nigra of 6-hydroxydopamine-lesioned rats. J Neurochem 90:29–39

    CAS  PubMed  Google Scholar 

  • Sarre S, Lanza M, Makovec F, Artusi R, Caselli G, Michotte Y (2008) In vivo neurochemical effects of the NR2B selective NMDA receptor antagonist CR 3394 in 6-hydroxydopamine lesioned rats. Eur J Pharmacol 584:297–305

    CAS  PubMed  Google Scholar 

  • Sauer H, Oertel WH (1994) Progressive degeneration of nigrostriatal dopamine neurons following intrastriatal terminal lesions with 6-hydroxydopamine: a combined retrograde tracing and immunocytochemical study in the rat. Neuroscience 59:401–415

    CAS  PubMed  Google Scholar 

  • Sayre ML, Perry G, Smith MA (2008) Oxidative stress and neurotoxicity. Chem Res Toxicol 21:172–188

    PubMed  Google Scholar 

  • Scherman D, Desnos C, Darchen F, Pollak P, Javoy-Agid F, Agid Y (1989) Striatal dopamine deficiency in Parkinson's disease: role of aging. Ann Neurol 26:551–557

    CAS  PubMed  Google Scholar 

  • Schmidt N, Ferger B (2001) Neurochemical findings in the MPTP model of Parkinson’s disease. J Neural Transm 108:1263–1282

    CAS  PubMed  Google Scholar 

  • Schober A (2004) Classic toxin-induced animal models of Parkinson's disease: 6-OHDA and MPTP. Cell Tissue Res 318:215–224

    PubMed  Google Scholar 

  • Scholtissen B, Verhey FR, Steinbusch HW, Leentjens AF (2006) Serotonergic mechanisms in Parkinson’s disease: opposing results from preclinical and clinical data. J Neural Transm 113:59–73

    CAS  PubMed  Google Scholar 

  • Schroeder JA, Schneider JS (2002) GABA-opioid interactions in the globus pallidus: [D-Ala2]-Met-enkephalinamide attenuates potassium-evoked GABA release after nigrostriatal lesion. J Neurochem 82:666–673

    CAS  PubMed  Google Scholar 

  • Serra PA, Esposito G, Enrico P, Mura MA, Migheli R, Delogu MR, Miele M, Desole MS, Grella G, Miele E (2000) Manganese increases L-DOPA auto-oxidation in the striatum of the freely moving rat: potential implications to L-DOPA long-term therapy of Parkinson's disease. Br J Pharmacol 130:937–945

    CAS  PubMed  Google Scholar 

  • Shen H, Kannari K, Yamato H, Arai A, Matsunaga M (2003) Effects of benserazide on L-DOPA-derived extracellular dopamine levels and aromatic L-amino acid decarboxylase activity in the striatum of 6-hydroxydopamine-lesioned rats. Tohoku J Exp Med 199:149–159

    CAS  PubMed  Google Scholar 

  • Shults CW, Oakes D, Kieburtz K, Beal MF, Haas R, Plumb S, Juncos JL, Nutt J, Shoulson I, Carter J, Kompoliti K, Perlmutter JS, Reich S, Stern M, Watts RL, Kurlan R, Molho E, Harrison M, Lew M; Parkinson Study Group (2002) Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol 59:1541–1550

    Google Scholar 

  • Simola N, Morelli M, Carta AR (2007) The 6-hydroxydopamine model of Parkinson's disease. Neurotox Res 11:151–167

    CAS  PubMed  Google Scholar 

  • Skirboll S, Wang J, Mefford I, Hsiao J, Bankiewicz KS (1990) In vivo changes of catecholamines in hemiparkinsonian monkeys measured by microdialysis. Exp Neurol 110:187–193

    CAS  PubMed  Google Scholar 

  • Smith TS, Bennett JP Jr (1997) Mitochondrial toxins in models of neurodegenerative diseases. I: In vivo brain hydroxyl radical production during systemic MPTP treatment or following microdialysis infusion of methylpyridinium or azide ions. Brain Res 765:183–188

    CAS  PubMed  Google Scholar 

  • Smith TS, Swerdlow RH, Parker WD Jr, Bennett JP Jr (1994) Reduction of MPP+-induced hydroxyl radical formation and nigrostriatal MPTP toxicity by inhibiting nitric oxide synthase. Neuroreport 5:2598–2600

    CAS  PubMed  Google Scholar 

  • Smith AD, Kozlowski DA, Bohn MC, Zigmond MJ (2005) Effect of AdGDNF on dopaminergic neurotransmission in the striatum of 6-OHDA-treated rats. Exp Neurol 193:420–426

    CAS  PubMed  Google Scholar 

  • Smith MP, Fletcher-Turner A, Yurek DM, Cass WA (2006) Calcitriol protection against dopamine loss induced by intracerebroventricular administration of 6-hydroxydopamine. Neurochem Res 31:533–539

    CAS  PubMed  Google Scholar 

  • Soares J, Kliem MA, Betarbet R, Greenamyre JT, Yamamoto B, Wichmann T (2004) Role of external pallidal segment in primate parkinsonism: comparison of the effects of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine-induced parkinsonism and lesions of the external pallidal segment. J Neurosci 24:6417–6426

    CAS  PubMed  Google Scholar 

  • Staal RG, Sonsalla PK (2000) Inhibition of brain vesicular monoamine transporter (VMAT2) enhances 1-methyl-4-phenylpyridinium neurotoxicity in vivo in rat striata. J Pharmacol Exp Ther 293:336–342

    CAS  PubMed  Google Scholar 

  • Stefani A, Fedele E, Galati S, Pepicelli O, Frasca S, Pierantozzi M, Peppe A, Brusa L, Orlacchio A, Hainsworth AH, Gattoni G, Stanzione P, Bernardi G, Raiteri M, Mazzone P (2005) Subthalamic stimulation activates internal pallidus: evidence from cGMP microdialysis in PD patients. Ann Neurol 57:448–452

    PubMed  Google Scholar 

  • Stefani A, Fedele E, Galati S, Raiteri M, Pepicelli O, Brusa L, Pierantozzi M, Peppe A, Pisani A, Gattoni G, Hainsworth AH, Bernardi G, Stanzione P, Mazzone P (2006) Deep brain stimulation in Parkinson's disease patients: biochemical evidence. J Neural Transm Suppl 70:401–408

    PubMed  Google Scholar 

  • Ste-Marie L, Boismenu D, Vachon L, Montgomery J (1996) Evaluation of sodium 4-hydroxybenzoate as an hydroxyl radical trap using gas chromatography-mass spectrometry and high-performance liquid chromatography with electochemical detection. Anal Biochem 241:67–74

    CAS  PubMed  Google Scholar 

  • Strecker RE, Sharp T, Brundin P, Zetterström T, Ungerstedt U, Björklund A (1987) Autoregulation of dopamine release and metabolism by intrastriatal nigral grafts as revealed by intracerebral dialysis. Neuroscience 22:169–178

    CAS  PubMed  Google Scholar 

  • Sun CJ, Johannessen JN, Gessner W, Namura I, Singhaniyom W, Brossi A, Chiueh CC (1988) Neurotoxic damage to the nigrostriatal system in rats following intranigral administration of MPDP+ and MPP+. J Neural Transm 74:75–86

    CAS  PubMed  Google Scholar 

  • Tanaka H, Kannari K, Maeda T, Tomiyama M, Suda T, Matsunaga M (1999) Role of serotonergic neurons in L-DOPA-derived extracellular dopamine in the striatum of 6-OHDA-lesioned rats. Neuroreport 10:631–634

    CAS  PubMed  Google Scholar 

  • Tanganelli S, Sandager Nielsen K, Ferraro L, Antonelli T, Kehr J, Franco R, Ferré S, Agnati LF, Fuxe K, Scheel-Krüger J (2004) Striatal plasticity at the network level. Focus on adenosine A2A and D2 interactions in models of Parkinson's disease. Parkinsonism Relat Disord 10:273–280

    CAS  PubMed  Google Scholar 

  • Teismann P, Schwaninger M, Weih F, Ferger B (2001) Nuclear factor-kappaB activation is not involved in a MPTP model of Parkinson's disease. Neuroreport 12:1049–1053

    CAS  PubMed  Google Scholar 

  • Themann C, Teismann P, Kuschinsky K, Ferger B (2001) Comparison of two independent aromatic hydroxylation assays in combination with intracerebral microdialysis to determine hydroxyl free radicals. J Neurosci Methods 108:57–64

    CAS  PubMed  Google Scholar 

  • Tisdall MM, Smith M (2006) Cerebral microdialysis: research technique or clinical tool. Br J Anaesth 97:18–25

    CAS  PubMed  Google Scholar 

  • Tossman U, Segovia J, Ungerstedt U (1986) Extracellular levels of amino acids in striatum and globus pallidus of 6-hydroxydopamine-lesioned rats measured with microdialysis. Acta Physiol Scand 127:547–551

    CAS  PubMed  Google Scholar 

  • Touchon JC, Holmer HK, Moore C, McKee BL, Frederickson J, Meshul CK (2005) Apomorphine-induced alterations in striatal and substantia nigra pars reticulata glutamate following unilateral loss of striatal dopamine. Exp Neurol 193:131–140

    CAS  PubMed  Google Scholar 

  • Trevitt T, Carlson B, Correa M, Keene A, Morales M, Salamone JD (2002) Interactions between dopamine D1 receptors and gamma-aminobutyric acid mechanisms in substantia nigra pars reticulata of the rat: neurochemical and behavioral studies. Psychopharmacology 159:229–237

    CAS  PubMed  Google Scholar 

  • Ungerstedt U (1968) 6-Hydroxy-dopamine induced degeneration of central dopamine neurons. Eur J Pharmacol 5:107–110

    CAS  PubMed  Google Scholar 

  • Ungerstedt U (1991) Microdialysis-principles and applications for studies in animals and man. J Intern Med 230:365–373

    CAS  PubMed  Google Scholar 

  • von Bohlen und Halbach O, Schober A, Krieglstein K (2004) Genes, proteins, and neurotoxins involved in Parkinson’s disease. Prog Neurobiol 73:151–177

    Google Scholar 

  • Wachtel SR, Abercrombie ED (1994) L-3, 4-Dihydroxyphenylalanine-induced dopamine release in the striatum of intact and 6-hydroxydopamine-treated rats: differential effects of monoamineoxidase A and B inhibitors. J Neurochem 63:108–117

    CAS  PubMed  Google Scholar 

  • Waldmeier P, Bozyczko-Coyne D, Williams M, Vaught JL (2006) Recent clinical failures in Parkinson's disease with apoptosis inhibitors underline the need for a paradigm shift in drug discovery for neurodegenerative diseases. Biochem Pharmacol 72:1197–1206

    CAS  PubMed  Google Scholar 

  • Wang S, Hu LF, Zhang Y, Sun T, Sun YH, Liu SY, Ding JH, Wu J, Hu G (2006) Effects of systemic administration of iptakalim on extracellular neurotransmitter levels in the striatum of unilateral 6-hydroxydopamine-lesioned rats. Neuropsychopharmacology 31: 933–940

    CAS  PubMed  Google Scholar 

  • Wichmann T, DeLong MR (2006) Neurotransmitters and disorders of the basal ganglia. In: Sieghel Georg J, Wayne Albers R, Brady Scott T, Donald L (eds) Basic Neurochemistry: molecular, cellular and medical aspects, 7th edn. Elsevier, Boston

    Google Scholar 

  • Windels F, Bruet N, Poupard A, Urbain N, Chouvet G, Feuerstein C, Savasta M (2000) Effects of high frequency stimulation of subthalamic nucleus on extracellular glutamate and GABA in substantia nigra and globus pallidus in the normal rat. Eur J Neurosci 12: 4141–4146

    CAS  PubMed  Google Scholar 

  • Windels F, Carcenac C, Poupard A, Savasta M (2005) Pallidal origin of GABA release within the substantia nigra pars reticulate during high-frequency stimulation of the subthalamic nucleus. J Neurosci 25:5079–5086

    CAS  PubMed  Google Scholar 

  • Wu R-M, Chiueh CC, Pert A, Murphy DL (1993) Apparent antioxidant effect of l-deprenyl on hydroxyl radical formation and nigral injury elicited by MPP+ in vivo. Eur J Pharmacol 243:241–247

    CAS  PubMed  Google Scholar 

  • Wu W-R, Zhu Z-T, Zhu X-Z (2000) Differential effects of L-deprenyl on MPP+- and MPTP-induced dopamine overflow in microdialysates of striatum and nucleus accumbens. Life Sci 67:241–250

    CAS  PubMed  Google Scholar 

  • Yamamoto BK, Davy S (1992) Dopaminergic modulation of glutamate release in striatum as measured by microdialysis. J Neurochem 58:1736–1742

    CAS  PubMed  Google Scholar 

  • Yamato H, Kannari K, Shen H, Suda T, Matsunaga M (2001) Fluoxetine reduces L-DOPA-derived extracellular DA in the 6-OHDA-lesioned rat striatum. Neuroreport 12:1123–1126

    CAS  PubMed  Google Scholar 

  • Yang CS, Tsai PJ, Lin NN, Liu L, Kuo JS (1995) Elevated extracellular glutamate levels increased the formation of hydroxyl radical in the striatum of anesthetized rat. Free Radic Biol Med 19:453–459

    CAS  PubMed  Google Scholar 

  • Yang J, Hu LF, Liu X, Zhou F, Ding JH, Hu G (2006a) Effects of iptakalim on extracellular glutamate and dopamine levels in the striatum of unilateral 6-hydroxydopamine-lesioned rats: a microdialysis study. Life Sci 78:1940–1944

    CAS  PubMed  Google Scholar 

  • Yang YJ, Wang QM, Hu LF, Sun XL, Ding JH, Hu G (2006b) Iptakalim alleviated the increase of extracellular dopamine and glutamate induced by 1-methyl-4-phenylpyridinium ion in rat striatum. Neurosci Lett 404:187–190

    CAS  PubMed  Google Scholar 

  • You Z-B, Herrera-Marschitz M, Petterson E, Nylander I, Goiny M, Shou H-Z, Kehr J, Godukhin O, Hokfelt T, Terenius L, Ungerstedt U (1996) Modulation of neurotransmitter release by cholecystokinin in the neostriatum and substantia nigra of the rat: regional and receptor specificity. Neuroscience 74:793–804

    CAS  PubMed  Google Scholar 

  • Yuan H, Sarre S, Ebinger G, Michotte Y (2004) Neuroprotective and neurotrophic effect of apomorphine in the striatal 6-OHDA-lesion rat model of Parkinson's disease. Brain Res 1026:95–107

    CAS  PubMed  Google Scholar 

  • Zetterström T, Brundin P, Gage FH, Sharp T, Isacson O, Dunnett SB, Ungerstedt U, Björklund A (1986) In vivo measurement of spontaneous release and metabolism of dopamine from intrastriatal nigral grafts using intracerebral dialysis. Brain Res 362:344–349

    PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. Barbara Mariani for her help in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Di Matteo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag/Wien Printed in Germany

About this chapter

Cite this chapter

Di Giovanni, G., Esposito, E., Di Matteo, V. (2009). In Vivo Microdialysis in Parkinson’s Research. In: Giovanni, G., Di Matteo, V., Esposito, E. (eds) Birth, Life and Death of Dopaminergic Neurons in the Substantia Nigra. Journal of Neural Transmission. Supplementa, vol 73. Springer, Vienna. https://doi.org/10.1007/978-3-211-92660-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-92660-4_18

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-92659-8

  • Online ISBN: 978-3-211-92660-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation