What Is the Routine Mitochondrial Health Check-Up Good For? A Holistic Approach in the Framework of 3P Medicine

  • Chapter
  • First Online:
Predictive, Preventive, and Personalised Medicine: From Bench to Bedside

Part of the book series: Advances in Predictive, Preventive and Personalised Medicine ((APPPM,volume 17))

Abstract

Mitochondria, as the “powerhouse” of eukaryotic cells, play the key role in central signalling pathways decisive for the cell fate (proliferation, differentiation, growth and death) as well as systemic events and effects including stress response towards environmental changes, redox balance, the innate and acquired immunity as well as severity of the acute and chronic disorders. Up to now no any health condition has been reported which mitochondrial functionality would be irrelevant for. Moreover, accumulated research data demonstrate that aside from the energetic aspects which are decisive for the health and death at the sub/cellular, tissue, organ and organismal levels, injured mitochondria do release specific damage-associated molecular patters. To this end, cell-free mitochondrial (mtDNA) fragments are recognised as the “mitochondrial burnout” signals triggering systemic effects such as non-infectious (sterile) inflammation, which are further involved in pathomechanisms of downstream diseases. Well-known mitochondrial burnout-associated pathologies include chronic fatigue, accelerated ageing, auto/immune disorders, hormonal dysregulation and infertility, eye pathologies, metabolic and mood disorders, severe respiratory diseases, impaired healing, neurodegenerative and cancerous alterations. There is an evident reciprocity between mitochondrial and organismal health status: compromised mitochondrial health is reflected in systemic damage as well as organismal health-to-disease transition is reflected in an altered mitochondrial signalling. Contextually, mitochondrion acts as a natural biosensor integrated into human cells, and the routine non-invasive mitochondrial health quality control test is a powerful tool for the holistic predictive diagnostic approach in PPPM-framework highly recommended at the level of primary and secondary care for

  • the whole-body health quality check-up,

  • pre-pregnancy check-up,

  • health-to-disease transition check-up,

  • accompanying diagnostics in sport medicine and supervised physical activities,

  • accompanying diagnostics in physiotherapeutic and well-being services,

  • therapy efficacy monitoring for personalised treatments (e.g., chronic fatigue; burnout syndrome and sleep disorders; eye, skin, kidney, liver and respiratory diseases, endocrine and cardiovascular impairments, musculoskeletal- and neuro-degenerative disorders, depression, etc.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

3PM:

Predictive, preventive and personalised medicine

AD:

Atopic dermatitis

AF:

Atrial fibrillation

ATP:

Adenosine triphosphate

BHI:

Bioenergetics health index

BRB:

Blood–retinal barrier

CFS:

Chronic fatigue syndrome

cGAS/STING:

Cyclic GMP-AMP Synthase/Stimulator of Interferon Genes

COVID:

Corona virus disease

CTD:

Connective tissue dysregulation

DAKD:

Diabetes associated kidney disease

DM:

Diabetes mellitus

DR:

Diabetic retinopathy

ECM:

Extracellular matrix

ESRD:

End stage renal disease

FSP:

Flammer syndrome phenotype

HIF1-alpha:

Hypoxia inducible factor 1 alpha subunit

IL-18:

Interleukin 18

IL-1β:

Interleukin 1β

IS:

Ischemic stroke

MAVS:

Mitochondria-associated adaptor molecule

MHI:

Mitochondrial health index

MHQC:

Mitochondrial health quality control

MIA:

Maternal immune activation

MRI:

Magnetic resonance imaging

mtDNA:

Mitochondrial Deoxyribonucleic acid

mtDNA-CN:

Mitochondrial deoxyribonucleic acid- copy number

NLRP3:

Nucleotide-binding domain, Leucine-Rich–containing family, Pyrin domain-containing-3 protein

NRF2:

Nuclear factor erythroid 2–related factor 2

OSAS:

Obstructive sleep apnoea syndrome

PDR:

Proliferative diabetic retinopathy

PPPM:

Predictive, preventive and personalised medicine

RMEC:

Retinal microvascular endothelial cells

ROS:

Reactive oxygen species

SARS-CoV-2:

Severe acute respiratory syndrome coronavirus 2

TLR9:

Toll-like receptor 9

ZBP1:

Z-DNA binding protein 1

References

  1. Wu Z, Sainz AG, Shadel GS (2021) Mitochondrial DNA: cellular genotoxic stress sentinel. Trends Biochem Sci 46(10):812–821. https://doi.org/10.1016/j.tibs.2021.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vasan K, Werner M, Chandel NS (2020) Mitochondrial metabolism as a target for cancer therapy. Cell Metab 32(3):341–352. https://doi.org/10.1016/j.cmet.2020.06.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Picard M, McEwen BS (2018) Psychological stress and mitochondria: a conceptual framework. Psychosom Med 80(2):126–140. https://doi.org/10.1097/PSY.0000000000000544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fernandez-Vizarra E, Zeviani M (2021) Mitochondrial disorders of the OXPHOS system. FEBS Lett 595(8):1062–1106. https://doi.org/10.1002/1873-3468.13995

    Article  CAS  PubMed  Google Scholar 

  5. Koklesova L, Mazurakova A, Samec M, Kudela E, Biringer K, Kubatka P, Golubnitschaja O (2022) Mitochondrial health quality control: measurements and interpretation in the framework of predictive. EPMA J 13(2):177–193. https://doi.org/10.1007/s13167-022-00281-6

    Article  PubMed  PubMed Central  Google Scholar 

  6. Whitley BN, Engelhart EA, Hoppins S (2019) Mitochondrial dynamics and their potential as a therapeutic target. Mitochondrion 49:269–283. https://doi.org/10.1016/j.mito.2019.06.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. de Goede P, Wefers J, Brombacher EC, Schrauwen P, Kalsbeek A (2018) Circadian rhythms in mitochondrial respiration. J Mol Endocrinol 60(3):R115–R130. https://doi.org/10.1530/JME-17-0196

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bescos R, Boden MJ, Jackson ML, Trewin AJ, Marin EC, Levinger I, Garnham A, Hiam DS, Falcao-Tebas F, Conte F, Owens JA, Kennaway DJ, McConell GK (2018) Four days of simulated shift work reduces insulin sensitivity in humans. Acta Physiol (Oxf) 223(2):e13039. https://doi.org/10.1111/apha.13039

    Article  CAS  PubMed  Google Scholar 

  9. Rabinovich-Nikitin I, Kirshenbaum LA (2022) Circadian regulated control of myocardial ischemia-reperfusion injury. Trends Cardiovasc Med. https://doi.org/10.1016/j.tcm.2022.09.003

  10. Munmun F, Witt-Enderby PA (2021) Melatonin effects on bone: implications for use as a therapy for managing bone loss. J Pineal Res 71(1):e12749. https://doi.org/10.1111/jpi.12749

    Article  CAS  PubMed  Google Scholar 

  11. Ahluwalia A, Patel K, Hoa N, Brzozowska I, Jones MK, Tarnawski AS (2021) Melatonin ameliorates aging-related impaired angiogenesis in gastric endothelial cells via local actions on mitochondria and VEGF-survivin signaling. Am J Physiol Gastrointest Liver Physiol 321(6):G682–G689. https://doi.org/10.1152/ajpgi.00101.2021

    Article  CAS  PubMed  Google Scholar 

  12. Mostafalou S, Abdollahi M (2013) Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol Appl Pharmacol 268(2):157–177. https://doi.org/10.1016/j.taap.2013.01.025

    Article  CAS  PubMed  Google Scholar 

  13. Chao T, Shih HT, Hsu SC, Chen PJ, Fan YS, Jeng YM, Shen ZQ, Tsai TF, Chang ZF (2021) Autophagy restricts mitochondrial DNA damage-induced release of ENDOG (endonuclease G) to regulate genome stability. Autophagy 17(11):3444–3460. https://doi.org/10.1080/15548627.2021.1874209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Picard M, McEwen BS, Epel ES, Sandi C (2018) An energetic view of stress: focus on mitochondria. Front Neuroendocrinol 49:72–85. https://doi.org/10.1016/j.yfrne.2018.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Méthot SJ, Proulx S, Brunette I, Rochette PJ (2020) Chronology of cellular events related to mitochondrial burnout leading to cell death in Fuchs endothelial corneal dystrophy. Sci Rep 10(1):5811. https://doi.org/10.1038/s41598-020-62602-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Armstrong CW, McGregor NR, Butt HL, Gooley PR (2014) Metabolism in chronic fatigue syndrome. Adv Clin Chem 66:121–172. https://doi.org/10.1016/b978-0-12-801401-1.00005-0

    Article  CAS  PubMed  Google Scholar 

  17. Gorman GS, Elson JL, Newman J, Payne B, McFarland R, Newton JL, Turnbull DM (2015) Perceived fatigue in highly prevalent and debilitating in patients with mitochondrial disease. Neuromuscul Disord 25(7):563–566. https://doi.org/10.1016/j.nmd.2015.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  18. Anderson G, Maes M (2020) Mitochondria and immunity in chronic fatigue syndrome. Prog Neuropsychopharmacol Biol Psychiatry 103:109976. https://doi.org/10.1016/j.pnpbp.2020.109976

    Article  CAS  PubMed  Google Scholar 

  19. Ohba T, Domoto S, Tanaka M, Nakamura S, Shimazawa M, Hara H (2019) Myalgic encephalomyelitis/chronic fatigue syndrome induced by repeated forced swimming in mice. Biol Pharm Bull 42(7):1140–1145. https://doi.org/10.1248/bpb.b19-00009

    Article  CAS  PubMed  Google Scholar 

  20. Youle RJ, van der Bliek AM (2012) Mitochondrial fission, fusion, and stress. Science 337(6098):1062–1065. https://doi.org/10.1126/science.1219855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Barrera MJ, Aguilera S, Castro I, Carvajal P, Jara D, Molina C, González S, González MJ (2021) Dysfunctional mitochondria as critical players in the inflammation of autoimmune diseases: potential role in Sjögren’s syndrome. Autoimmun Rev 20(8):102867. https://doi.org/10.1016/j.autrev.2021.102867

    Article  CAS  PubMed  Google Scholar 

  22. Konieczka K, Ritch R, Traverso CE, Kim DM, Kook MS, Gallino A, Golubnitschaja O, Erb C, Reitsamer HA, Kida T, Kurysheva N, Yao K (2014) Flammer syndrome. EPMA J 5(1):11. https://doi.org/10.1186/1878-5085-5-11

    Article  PubMed  PubMed Central  Google Scholar 

  23. Golubnitschaja O (ed) (2019) Flammer syndrome—from phenotype to associated pathologies, prediction, prevention and personalisation V.11. ISBN 978-3-030-13549-2 ISBN 978-3-030-13550-8 (eBook). https://doi.org/10.1007/978-3-030-13550-8

    Book  Google Scholar 

  24. Evsevieva M, Sergeeva O, Mazurakova A, Koklesova L, Prokhorenko-Kolomoytseva I, Shchetinin E, Birkenbihl C, Costigliola V, Kubatka P, Golubnitschaja O (2022) Pre-pregnancy check-up of maternal vascular status and associated phenotype is crucial for the health of mother and offspring. EPMA J 13(3):351. https://doi.org/10.1007/s13167-022-00294-1

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liskova A, Samec M, Koklesova L, Kudela E, Kubatka P, Golubnitschaja O (2021) Mitochondriopathies as a clue to systemic disorders - analytical tools and mitigating measures in context of predictive, preventive, and personalized (3P) medicine. IJMS 22(4):2007. https://doi.org/10.3390/ijms22042007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Koklesova L, Samec M, Liskova A, Zhai K, Büsselberg D, Giordano FA, Kubatka P, Golunitschaja O (2021) Mitochondrial impairments in aetiopathology of multifactorial diseases: common origin but individual outcomes in context of 3P medicine. EPMA J 12(1):27–40. https://doi.org/10.1007/s13167-021-00237-2

    Article  PubMed  PubMed Central  Google Scholar 

  27. Torres Crigna A, Link B, Samec M, Giordano FA, Kubatka P, Golubnitschaja O (2021) Endothelin-1 axes in the framework of predictive, preventive and personalised (3P) medicine. EPMA J 12(3):1–41. https://doi.org/10.1007/s13167-021-00248-z

    Article  Google Scholar 

  28. Golubnitschaja O, Liskova A, Koklesova L, Samec M, Biringer K, Büsselberg D, Podbielska H, Kunin AA, Evsevyeva ME, Shapira N, Paul F, Erb C, Dietrich DE, Felbel D, Karabatsiakis A, Bubnov R, Polivka J, Polivka J Jr, Birkenbihl C, Fröhlich H, Hofmann-Apitius M, Kubatka P (2021) Caution, “normal” BMI: health risks associated with potentially masked individual underweight EPMA position paper 2021. EPMA J 12(3):1–22. https://doi.org/10.1007/s13167-021-00251-4

    Article  PubMed  PubMed Central  Google Scholar 

  29. 3Pmedicon. https://3pmedicon.de/en/

  30. Golubnitschaja O, Potuznik P, Polivka J Jr, Pesta M, Kaverina O, Pieper CC, Kropp M, Thumann G, Erb C, Karabatsiakis A, Stetkarova I, Polivka J, Costigliola V (2022) Ischemic stroke of unclear aetiology: a case-by-case analysis and call for a multi-professional predictive, preventive and personalised approach. EPMA J 13(4):535–545. https://doi.org/10.1007/s13167-022-00307-z

    Article  PubMed  PubMed Central  Google Scholar 

  31. Amorim JA, Coppotelli G, Rolo AP, Palmeira CM, Ross JM, Sinclair DA (2022) Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat Rev Endocrinol 18(4):243–258. https://doi.org/10.1038/s41574-021-00626-7

    Article  PubMed  PubMed Central  Google Scholar 

  32. van der Reest J, Cecchino GN, Haigis MC, Kordowitzki P (2021) Mitochondria: their relevance during oocyte ageing. Ageing Res Rev 70:101378. https://doi.org/10.1016/j.arr.2021.101378

    Article  CAS  PubMed  Google Scholar 

  33. Boguenet M, Bouet PE, Spiers A, Reynier P, May-Panloup P (2021) Mitochondria: their role in spermatozoa and in male infertility. Hum Reprod Update 27(4):697–719. https://doi.org/10.1093/humupd/dmab001

    Article  CAS  PubMed  Google Scholar 

  34. Masoudi R, Asadzadeh N, Sharafi M (2021) Effects of freezing extender supplementation with mitochondria-targeted antioxidant Mito-TEMPO on frozen-thawed rooster semen quality and reproductive performance. Anim Reprod Sci 225:106671. https://doi.org/10.1016/j.anireprosci.2020.106671

    Article  CAS  PubMed  Google Scholar 

  35. Shaw GA (2021) Mitochondria as the target for disease related hormonal dysregulation. Brain Behav Immun Health 18:100350. https://doi.org/10.1016/j.bbih.2021.100350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gyllenhammer LE, Rasmussen JM, Bertele N, Halbing A, Entringer S, Wadhwa PD, Buss C (2022) Maternal inflammation during pregnancy and offspring brain development: the role of mitochondria. Biol Psychiatry Cogn Neurosci Neuroimaging 7(5):498–509. https://doi.org/10.1016/j.bpsc.2021.11.003

    Article  PubMed  Google Scholar 

  37. Schaefer PM, Scherer Alves L, Lvova M, Huang J, Rathi K, Janssen K, Butic A, Yardeni T, Morrow R, Lott M, Murdock D, Song A, Keller K, Garcia BA, Francomano CA, Wallace DC (2022) Combination of common mtDNA variants results in mitochondrial dysfunction and a connective tissue dysregulation. Proc Natl Acad Sci U S A 119(45):e2212417119. https://doi.org/10.1073/pnas.2212417119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Effendi WI, Nagano T (2022) Connective tissue growth factor in idiopathic pulmonary fibrosis: breaking the bridge. Int J Mol Sci 23(11):6064. https://doi.org/10.3390/ijms23116064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nelson KK, Melendez JA (2004) Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med 37(6):768–784. https://doi.org/10.1016/j.freeradbiomed.2004.06.008

    Article  CAS  PubMed  Google Scholar 

  40. Pool L, Wijdeveld LFJM, de Groot NMS, Brundel BJJM (2021) The role of mitochondrial dysfunction in atrial fibrillation: translation to Druggable target and biomarker discovery. Int J Mol Sci 22:8463. https://doi.org/10.3390/ijms22168463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang J-L, Mukda S, Chen S-D (2018) Diverse roles of mitochondria in ischemic stroke. Redox Biol 16:263–275. https://doi.org/10.1016/j.redox.2018.03.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ham PB, Raju R (2017) Mitochondrial function in hypoxic ischemic injury and influence of aging. Prog Neurobiol 157:92–116. https://doi.org/10.1016/j.pneurobio.2016.06.006

    Article  CAS  PubMed  Google Scholar 

  43. Anzell AR, Maizy R, Przyklenk K, Sanderson TH (2018) Mitochondrial quality control and disease: insights into ischemia-reperfusion injury. Mol Neurobiol 55:2547–2564. https://doi.org/10.1007/s12035-017-0503-9

    Article  CAS  PubMed  Google Scholar 

  44. He Z, Ning N, Zhou Q, Khoshnam SE, Farzaneh M (2020) Mitochondria as a therapeutic target for ischemic stroke. Free Radic Biol Med 146:45–58. https://doi.org/10.1016/j.freeradbiomed.2019.11.005

    Article  CAS  PubMed  Google Scholar 

  45. Teng Z, Dong Y, Zhang D, An J, Lv P (2017) Cerebral small vessel disease and post-stroke cognitive impairment. Int J Neurosci 127:824–830. https://doi.org/10.1080/00207454.2016.1261291

    Article  PubMed  Google Scholar 

  46. Nahirney PC, Reeson P, Brown CE (2016) Ultrastructural analysis of blood-brain barrier breakdown in the peri-infarct zone in young adult and aged mice. J Cereb Blood Flow Metab 36:413–425. https://doi.org/10.1177/0271678X15608396

    Article  PubMed  Google Scholar 

  47. Slominski AT, Zmijewski MA, Semak I, Kim TK, Janjetovic Z, Slominski RM, Zmijewski JW (2017) Melatonin, mitochondria, and the skin. Cell Mol Life Sci 74(21):3913–3925. https://doi.org/10.1007/s00018-017-2617-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sreedhar A, Aguilera-Aguirre L, Singh KK (2020) Mitochondria in skin health, aging, and disease. Cell Death Dis 11(6):444. https://doi.org/10.1038/s41419-020-2649-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Koch M, Kockmann T, Rodriguez E, Wehkamp U, Hiebert P, Ben-Yehuda Greenwald M, Stölzl D, Beer HD, Tschachler E, Weidinger S, Werner S, Auf dem Keller U (2023) Quantitative proteomics identifies reduced NRF2 activity and mitochondrial dysfunction in atopic dermatitis. J Invest Dermatol 143(2):220–231.e7. https://doi.org/10.1016/j.jid.2022.08.048

    Article  CAS  PubMed  Google Scholar 

  50. Leman G, Pavel P, Hermann M, Crumrine D, Elias PM, Minzaghi D, Goudounèche D, Roshardt Prieto NM, Cavinato M, Wanner A, Blunder S, Gruber R, Jansen-Dürr P, Dubrac S (2022) Mitochondrial activity is upregulated in nonlesional atopic dermatitis and amenable to therapeutic intervention. J Invest Dermatol 142(10):2623–2634.e12. https://doi.org/10.1016/j.jid.2022.01.035

    Article  CAS  PubMed  Google Scholar 

  51. Kim MJ, Kim SN, Lee YW, Choe YB, Ahn KJ (2016) Vitamin D status and efficacy of vitamin D supplementation in atopic dermatitis: a systematic review and meta-analysis. Nutrients 8(12):789. https://doi.org/10.3390/nu8120789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ashcroft SP, Fletcher G, Philp AM, Jenkinson C, Das S, Hansbro PM, Atherton PJ, Philp A (2021) Diet-induced vitamin D deficiency reduces skeletal muscle mitochondrial respiration. J Endocrinol 249(2):113–124. https://doi.org/10.1530/JOE-20-0233

    Article  CAS  PubMed  Google Scholar 

  53. Willenborg S, Sanin DE, Jais A, Ding X, Ulas T, Nüchel J, Popović M, MacVicar T, Langer T, Schultze JL, Gerbaulet A, Roers A, Pearce EJ, Brüning JC, Trifunovic A, Eming SA (2021) Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing. Cell Metab 33(12):2398–2414.e9. https://doi.org/10.1016/j.cmet.2021.10.004

    Article  CAS  PubMed  Google Scholar 

  54. Sanchez MC, Lancel S, Boulanger E, Neviere R (2018) Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: a systematic review. Antioxidants (Basel) 7(8):98. https://doi.org/10.3390/antiox7080098

    Article  CAS  Google Scholar 

  55. Javad F, Day PJ (2012) Protein profiling of keloidal scar tissue. Arch Dermatol Res 304(7):533–540. https://doi.org/10.1007/s00403-012-1224-6

    Article  CAS  PubMed  Google Scholar 

  56. Luo Y, Ma J, Lu W (2020) The significance of mitochondrial dysfunction in cancer. Int J Mol Sci 21(16):5598. https://doi.org/10.3390/ijms21165598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Memon AA, Vats S, Sundquist J, Li Y, Sundquist K (2022) Mitochondrial DNA copy number: linking diabetes and cancer. Antioxid Redox Signal 37(16–18):1168–1190. https://doi.org/10.1089/ars.2022.0100

    Article  CAS  PubMed  Google Scholar 

  58. Srinivasan S, Guha M, Kashina A, Avadhani NG (2017) Mitochondrial dysfunction and mitochondrial dynamics-the cancer connection. Biochim Biophys Acta Bioenerg 1858(8):602–614. https://doi.org/10.1016/j.bbabio.2017.01.004

    Article  CAS  PubMed  Google Scholar 

  59. Filograna R, Mennuni M, Alsina D, Larsson NG (2021) Mitochondrial DNA copy number in human disease: the more the better? FEBS Lett 595(8):976–1002. https://doi.org/10.1002/1873-3468.14021

    Article  CAS  PubMed  Google Scholar 

  60. Brunetti V, Della Marca G, Servidei S, Primiano G (2021) Sleep disorders in mitochondrial diseases. Curr Neurol Neurosci Rep 21(7):30. https://doi.org/10.1007/s11910-021-01121-2

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lacedonia D, Carpagnano GE, Crisetti E, Cotugno G, Palladino GP, Patricelli G, Sabato R, Foschino Barbaro MP (2015) Mitochondrial DNA alteration in obstructive sleep apnea. Respir Res 16(1):47. https://doi.org/10.1186/s12931-015-0205-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Beaupre LMM, Brown GM, Braganza NA, Kennedy JL, Gonçalves VF (2022) Mitochondria’s role in sleep: novel insights from sleep deprivation and restriction studies. World J Biol Psychiatry 23(1):1–13. https://doi.org/10.1080/15622975.2021.1907723

    Article  Google Scholar 

  63. Heyat MBB, Akhtar F, Sultana A, Tumrani S, Teelhawod BN, Abbasi R, Kamal MA, Muaad AY, Lai D, Wu K (2022) Role of oxidative stress and inflammation in insomnia sleep disorder and cardiovascular diseases: herbal antioxidants and anti-inflammatory coupled with insomnia detection using machine learning. Curr Pharm Des 28:3618. https://doi.org/10.2174/1381612829666221201161636

    Article  CAS  Google Scholar 

  64. Frau-Méndez MA, Fernández-Vega I, Ansoleaga B, Tech RB, Tech MC, Del Rio JA, Zerr I, Llorens F, Zarranz JJ, Ferrer I (2017) Fatal familial insomnia: mitochondrial and protein synthesis machinery decline in the mediodorsal thalamus. Brain Pathol 27(1):95–106. https://doi.org/10.1111/bpa.12408

    Article  CAS  PubMed  Google Scholar 

  65. Pattinson CL, Guedes VA, Edwards K, Mithani S, Yun S, Taylor P, Dunbar K, Kim HS, Chen Lai C, Roy MJ, Gill JM (2020) Excessive daytime sleepiness is associated with altered gene expression in military personnel ad veterans with posttraumatic stress disorder: an RNA sequencing study. Sleep 43(9):zsaa036. https://doi.org/10.1093/sleep/zsaa036

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kim Y, Vadodaria KC, Lenkei Z, Kato T, Gage FH, Marchetto MC, Santos R (2019) Mitochondria, metabolism, and redox mechanisms in psychiatric disorders. Antioxid Redox Signal 31(4):275–317. https://doi.org/10.1089/ars.2018.7606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Hollis F, Pope BS, Gorman-Sandler E, Wood SK (2022) Neuroinflammation and mitochondrial dysfunction Link social stress to depression. Curr Top Behav Neurosci 54:59–93. https://doi.org/10.1007/7854_2021_300

    Article  CAS  PubMed  Google Scholar 

  68. Tripathi A, Scaini G, Barichello T, Quevedo J, Pillai A (2021) Mitophagy in depression: pathophysiology and treatment targets. Mitochondrion 61:1–10. https://doi.org/10.1016/j.mito.2021.08.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bansal Y, Kuhad A (2016) Mitochondrial dysfunction in depression. Curr Neuropharmacol 4(6):610–618. https://doi.org/10.2174/1570159x14666160229114755

    Article  CAS  Google Scholar 

  70. Chow J, Rahman J, Achermann JC, Dattani MT, Rahman S (2017) Mitochondrial disease and endocrine dysfunction. Nat Rev Endocrinol 13(2):92–104. https://doi.org/10.1038/nrendo.2016.151

    Article  CAS  PubMed  Google Scholar 

  71. Duann P, Lin PH (2017) Mitochondria damage and kidney disease. Adv Exp Med Biol 982:529–551. https://doi.org/10.1007/978-3-319-55330-6_27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ahmad AA, Draves SO, Rosca M (2021) Mitochondria in diabetic kidney disease. Cell 10(11):2945. https://doi.org/10.3390/cells10112945

    Article  CAS  Google Scholar 

  73. Ma X, McKeen T, Zhang J, Ding WX (2020) Role and mechanisms of mitophagy in liver diseases. Cell 9(4):837. https://doi.org/10.3390/cells9040837

    Article  CAS  Google Scholar 

  74. Zhang H, Yan Q, Wang X, Chen X, Chen Y, Du J, Chen L (2021) The role of mitochondria in liver ischemia-reperfusion injury: from aspects of mitochondrial oxidative stress, mitochondrial fission, mitochondrial membrane permeable transport pore formation, mitophagy, and mitochondria-related protective measures. Oxid Med Cell Longev 2021:6670579. https://doi.org/10.1155/2021/6670579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Guo Y, Gu R, Gan D, Hu F, Li G, Xu G (2020) Mitochondrial DNA drives noncanonical inflammation activation via cGAS-STING signaling pathway in retinal microvascular endothelial cells. Cell Commun Signal 18(1):172. https://doi.org/10.1186/s12964-020-00637-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Grytz R, Yang H, Hua Y, Samuels BC, Sigal IA (2020) Connective tissue remodeling in myopia and its potential role in increasing risk of glaucoma. Curr Opin Biomed Eng 15:40–50. https://doi.org/10.1016/j.cobme.2020.01.001

    Article  PubMed  PubMed Central  Google Scholar 

  77. Jassim AH, Inman DM, Mitchell CH (2021) Crosstalk between dysfunctional mitochondria and inflammation in glaucomatous neurodegeneration. Front Pharmacol 12:699623. https://doi.org/10.3389/fphar.2021.699623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jassim AH, Fan Y, Pappenhagen N, Nsiah NY, Inman DM (2021) Oxidative stress and hypoxia modify mitochondrial homeostasis during glaucoma. Antioxid Redox Signal 35(16):1341–1357. https://doi.org/10.1089/ars.2020.8180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Golubnitschaja O, Flammer J (2007) What are the biomarkers for glaucoma? Surv Ophthalmol 52(Suppl 2):S155–S161. https://doi.org/10.1016/j.survophthal.2007.08.011

    Article  PubMed  Google Scholar 

  80. Golubnitschaja O, Yeghiazaryan K, Flammer J (2010) Key molecular pathways affected by glaucoma pathology: is predictive diagnosis possible? EPMA J 1(2):237–244. https://doi.org/10.1007/s13167-010-0031-4

    Article  PubMed  PubMed Central  Google Scholar 

  81. Yeghiazaryan K, Flammer J, Orgül S, Wunderlich K, Golubnitschaja O (2009) Vasospastic individuals demonstrate significant similarity to glaucoma patients as revealed by gene expression profiling in circulating leukocytes. Mol Vis 15:2339–2348

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Golubnitschaja O (2018) The keyrole of multiomics in the predictive, preventive and personalised medical approach towards glaucoma management. Klin Monbl Augenheilkd 235(2):146–150. https://doi.org/10.1055/s-0044-101164

    Article  PubMed  Google Scholar 

  83. Zhan X, Li J, Guo Y, Golubnitschaja O (2021) Mass spectrometry analysis of human tear fluid biomarkers specific for ocular and systemic diseases in the context of 3P medicine. EPMA J 12(4):449–475. https://doi.org/10.1007/s13167-021-00265-y

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kropp M, Golubnitschaja O, Mazurakova A, Koklesova L, Sargheini N, Vo T-TKS, de Clerck E, Polivka J, Potuznik P, Polivka J, Stetkarova I, Kubatka P, Thumann G (2023) Diabetic retinopathy as the leading cause of blindness and early predictor of cascading complications—risks and mitigation. EPMA J 14(1):21. https://doi.org/10.1007/s13167-023-00314-8

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wu H, Yu Y, David L, Ho Y-S, Lou MF (2014) Glutaredoxin 2 (Grx2) gene deletion induces early onset of age-dependent cataracts in mice. J Biol Chem 289(52):36125–36139. https://doi.org/10.1074/jbc.M114.620047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Horga A, Bugiardini E, Manole A, Bremner F, Jaunmuktane Z, Dankwa L, Rebelo AP, Woodward CE, Hargreaves IP, Cortese A, Pittman AM, Brandner S, Polke JM, Pitceathly RDS, Züchner S, Hanna MG, Scherer SS, Houlden H, Reilly MM (2019) Autosomal dominant optic atrophy and cataract “plus” phenotype including axonal neuropathy. Neurol Genet 5(2):e322. https://doi.org/10.1212/NXG.0000000000000322

    Article  PubMed  PubMed Central  Google Scholar 

  87. Pugazhenthi S, Qin L, Reddy PH (2017) Common neurodegenerative pathways in obesity, diabetes, and Alzheimer’s disease. Biochim Biophys Acta Mol Basis Dis 1863(5):1037–1045. https://doi.org/10.1016/j.bbadis.2016.04.017

    Article  CAS  PubMed  Google Scholar 

  88. Song T, Song X, Zhu C, Patrick R, Skurla M, Santangelo I, Green M, Harper D, Ren B, Forester BP, Öngür D, Du F (2021) Mitochondrial dysfunction, oxidative stress, neuroinflammation, and metabolic alterations in the progression of Alzheimer’s disease: a meta-analysis of in vivo magnetic resonance spectroscopy studies. Ageing Res Rev 72:101503. https://doi.org/10.1016/j.arr.2021.101503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bourebaba L, Kornicka-Garbowska K, Galuppo L, Marycz K (2022) Artificial mitochondrial transfer (AMT) for the management of age-related musculoskeletal degenerative disorders: an emerging avenue for bone and cartilage metabolism regulation. Stem Cell Rev Rep 18(6):2195–2201. https://doi.org/10.1007/s12015-022-10357-5

    Article  PubMed  Google Scholar 

  90. Prakash YS, Pabelick CM, Sieck GC (2017) Mitochondrial dysfunction in airway disease. Chest 152(3):618–626. https://doi.org/10.1016/j.chest.2017.03.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Qian L, Mehrabi Nasab E, Athari SM, Athari SS (2022) Mitochondria signaling pathways in allergic asthma. J Invest Med 70(4):863–882. https://doi.org/10.1136/jim-2021-002098

    Article  Google Scholar 

  92. Michaeloudes C, Abubakar-Waziri H, Lakhdar R, Raby K, Dixey P, Adcock IM, Mumby S, Bhavsar PK, Chung KF (2022) Molecular mechanisms of oxidative stress in asthma. Mol Aspects Med 85:101026. https://doi.org/10.1016/j.mam.2021.101026

    Article  CAS  PubMed  Google Scholar 

  93. Esteves P, Celle A, Berger P, Trian T (2020) Bronchial smooth muscle mitochondria: a new target for asthma therapy? Rev Mal Respir 37(3):201–204. https://doi.org/10.1016/j.rmr.2020.02.004

    Article  CAS  PubMed  Google Scholar 

  94. Wood E, Hall KH, Tate W (2021) Role of mitochondria, oxidative stress and the response to antioxidants in myalgic encephalomyelitis/chronic fatigue syndrome: a possible approach to SARS-CoV-2 ‘long-haulers’? Chronic Dis Transl Med 7(1):14–26. https://doi.org/10.1016/j.cdtm.2020.11.002

    Article  PubMed  Google Scholar 

  95. Soukas AA, Hao H, Wu L (2019) Metformin as anti-aging therapy: is it for everyone? Trends Endocrinol Metab 30(10):745–755. https://doi.org/10.1016/j.tem.2019.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cebioglu M, Schild HH, Golubnitschaja O (2010) Cancer predisposition in diabetics: risk factors considered for predictive diagnostics and targeted preventive measures. EPMA J 1(1):130–137. https://doi.org/10.1007/s13167-010-0015-4

    Article  PubMed  PubMed Central  Google Scholar 

  97. Teresa VT (2014) Mitochondrial biogenesis: pharmacological approaches. Curr Pharm Des 20(35):5507–5509. https://doi.org/10.2174/138161282035140911142118

    Article  CAS  Google Scholar 

  98. Sanz R, Mazzei L, Santino N, Ingrasia M, Manucha W (2020) Vitamin D-mitochondria cross-talk could modulate the signaling pathway involved in hypertension development: a translational integrative overview. Clin Investig Arterioscler 32(4):144–155. https://doi.org/10.1016/j.arteri.2020.02.002

    Article  PubMed  Google Scholar 

  99. Boyko N, Golubnitschaja O (eds) (2023) Microbiome in 3P medicine strategies—the first exploitation guide. ISSN 2211-3495 ISSN 2211-3509 (electronic) Advances in Predictive, Preventive and Personalised Medicine ISBN 978-3-031-19563-1 ISBN 978-3-031-19564-8 (eBook). https://doi.org/10.1007/978-3-031-19564-8

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Golubnitschaja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Golubnitschaja, O. (2023). What Is the Routine Mitochondrial Health Check-Up Good For? A Holistic Approach in the Framework of 3P Medicine. In: Podbielska, H., Kapalla, M. (eds) Predictive, Preventive, and Personalised Medicine: From Bench to Bedside. Advances in Predictive, Preventive and Personalised Medicine, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-031-34884-6_3

Download citation

Publish with us

Policies and ethics

Navigation