Sing and Measure: Sound as Voice as Quanta

  • Chapter
  • First Online:
Quantum Computer Music

Abstract

The universal concept of a “music of the spheres” traverses the history of philosophy, science and art, from Pythagoras to Kepler and beyond. In modern times, a sphere in three dimensions—the Bloch sphere—is used to illustrate the state of a qubit, the basic unit of quantum information. On the same spherical surface, the fundamental components of voice production can be located, so that any utterance can be seen as the evolution of a unit two-dimensional vector having complex coefficients. Indeed, any sound can be analyzed and decomposed into overlap** sinusoidal components, broadband noises, and impulsive transients, which in turn can be associated to fundamental means of vocal sound production, such as phonation, turbulence, and slow myoelastic vibrations or pulses. The quantum sphere can be made to sing the universal sound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://shorturl.at/dsBS7.

  2. 2.

    Sound example evolutionDownBrr.wav. The recording is available at https://on.soundcloud.com/WL8AT.

  3. 3.

    Sound example mixed_lines_brr.wav. The recording is available at https://on.soundcloud.com/tbkv3.

References

  1. Berio, L. (1968). Sequenza III per voce femminile. Universal Edition.

    Google Scholar 

  2. Blutner, R., & Beim Graben, P. Gauge models of musical forces. Journal of Mathematics and Music (2020). https://doi.org/10.1080/17459737.2020.1716404.

  3. Bogdanov, D., Wack, N., Gómez Gutiérrez, E., Gulati, S., Herrera Boyer, P., Mayor, O., Roma Trepat, G., Salamon, J., Zapata González, J. R., & Serra, X. Essentia: An audio analysis library for music information retrieval. In Proceedings of the 14th Conference of the International Society for Music Information Retrieval (ISMIR) (pp. 493–498) (2013).

    Google Scholar 

  4. Bonada, J., Serra, X., Amatriain, X., & Loscos, A. (2011). Spectral processing. In U. Zölzer (Ed.), DAFX: Digital audio effects (pp. 393–445). Wiley.

    Google Scholar 

  5. Costa Hamido, O., Cirillo, G. A., & Giusto, E.: Quantum synth: A quantum-computing-based synthesizer. In Proceedings of the 15th International Conference on Audio Mostly (pp. 265–268) (2020).

    Google Scholar 

  6. Dalla Chiara, M. L., Giuntini, R., Leporini, R., Negri, E., & Sergioli, G. (2015). Quantum information, cognition, and music. Frontiers in Psychology, 6, 1583.

    Article  Google Scholar 

  7. Delle Monache, S., Rocchesso, R., Bevilacqua, F., Lemaitre, G., Baldan, S., & Cera, A. (2018). Embodied sound design. International Journal of Human-Computer Studies, 118, 47–59.

    Article  Google Scholar 

  8. Friberg, A., Lindeberg, T., Hellwagner, M., Helgason, P., Salom\(\tilde{\text{a}}\)o, G. L., Elowsson, A., Lemaitre,G., & Ternström, S. Prediction of three articulatory categories in vocal sound imitations using models for auditory receptive fields. The Journal of the Acoustical Society of America, 144(3), 1467–1483 (2018).

    Google Scholar 

  9. Fugiel, B. Quantum-like melody perception. Journal of Mathematics and Music (2018). Retrieved from https://doi.org/10.1080/17459737.2022.2049383.

  10. Gabor, D. Acoustical quanta and the theory of hearing. Nature, 159(4044), 591 (1947).

    Google Scholar 

  11. von Helmholtz, H. (1870). Die Lehre von den Tonempfindungen als physiologische Grundlagefürdie Theorie der Musik. F. Vieweg und sohn.

    Google Scholar 

  12. Koenig, D. M., & Delwin, D. F. (2015). Spectral analysis of musical sounds with emphasis on the Piano. Oxford University Press.

    Google Scholar 

  13. Lemaitre, G., & Rocchesso, D. On the effectiveness of vocal imitations and verbal descriptions of sounds. The Journal of the Acoustical Society of America, 135(2), 862 (2014). Retrieved from https://iris.unipa.it/retrieve/handle/10447/370549/745030/1.4861245.pdf.

  14. Lemaitre G., Houix O., Voisin F., Misdariis N., & Susini P. Vocal imitations of non-vocal sounds. PLoS ONE, 11(12), e0168167 (2016). Retrieved form https://doi.org/10.1371/journal.pone.0168167.

  15. Mannone, M., & Rocchesso, D. Quanta in sound, the sound of quanta: A voice-informed quantum theoretical perspective on sound. In E. R. Miranda (Ed.), Quantum computing in the arts and humanities. Springer, Cham (2022) Retrived from https://doi.org/10.1007/978-3-030-95538-0_6.

  16. Marinetti, F. T.: Zang tumb tumb. Milano, Edizioni futuriste di poesia (1914). Retrieved from http://parliamoitaliano.altervista.org/zang-tumb-tumb/.

  17. Miranda, E. R. Quantum computer: Hello, Music! In E. Miranda (Ed.), Handbook of artificial intelligence for music: Foundations, advanced approaches, and developments for creativity. Springer Nature (2021)

    Google Scholar 

  18. Miranda, E. R.: Creative Quantum computing: Inverse FFT sound synthesis, adaptive sequencing and musical composition. In A. Adamatzky (Ed.), Alternative computing. World Scientific (2021).

    Google Scholar 

  19. Newman, F. (2004). MouthSounds: How to whistle. Pop: Boing, and Honk... for All Occasions and Then Some. Workman Publishing.

    Google Scholar 

  20. Palazzeschi, A. La fontana malata, from Poemi. Firenze, Cesare Blanc (1909). Retrieved from https://www.pensieriparole.it/poesie/poesie-d-autore/poesia-38384.

  21. Roads, C. (2001). Microsound. MIT Press.

    Google Scholar 

  22. Rocchesso, D., & Mannone, M. (2020). A quantum vocal theory of sound. Quantum Information Processing, 19, 292. https://doi.org/10.1007/s11128-020-02772-9

  23. Verma, T. S., Levine, S. N., & Meng, T. H. Transient modeling synthesis: A flexible analysis/synthesis tool for transient signals. In Proceedings of the International Computer Music Conference (pp. 48–51) (1997).

    Google Scholar 

  24. Weimer, H. Listen to quantum computer music. http://www.quantenblog.net/physics/quantum-computer-music. Accessed 02 Jan 2021 (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Mannone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mannone, M., Rocchesso, D. (2022). Sing and Measure: Sound as Voice as Quanta. In: Miranda, E.R. (eds) Quantum Computer Music. Springer, Cham. https://doi.org/10.1007/978-3-031-13909-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-13909-3_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-13908-6

  • Online ISBN: 978-3-031-13909-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation