PGPR in Biofilm Formation and Antibiotic Production

  • Chapter
  • First Online:
Antifungal Metabolites of Rhizobacteria for Sustainable Agriculture

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

The dynamic habitat existing around the plant root, the rhizosphere, is mainly inhabited by the bacteria and is collectively termed as plant growth-promoting rhizobacteria (PGPR). They play an important role in protecting the crops, improvement in the health of the soil, and promotion of plant growth. The dominant members of PGPR are the biofilm-producing bacteria, which synthesize a wide spectrum of multifunctional polysaccharides. Bacterial species like Pseudomonas, Bacillus, Azospirillum, Rhizobium, and Serratia assist in biofilm formation that contribute in sustained agricultural growth by acting as “biofilmed biofertilizers.” Some exopolysaccharide can bind with sodium ions to impart protection from salinity stress. PGPR biofilm is also beneficial for biocontrol of diseases and enhancing nutrient availability to plants. Antibiotics, synthesized by PGPR, are found effective against Gram-positive and Gram-negative bacteria and also against pathogenic fungi. Some noteworthy antibiotics include phenazine-1-carboxyclic acid, oomycin, zwittermicin A, 2,4-diacetylphloroglucinol, kanosamine, pyoluteorin, pyrrolnitrin, and pantocin. The syntheses of antibiotics by PGPR are regulated by cascade of endogenous signals such as N-acyl homoserine lactones and sigma factors and are upregulated by highly conserved sequences of genes. The antibiotics belonging to the group of polyketides, lipopeptides, and heterocyclic nitrogenous compounds have efficacy against wide range of plant pathogens that has inhibitory effect to the plant growth. This chapter will focus on biofilm formation and biosynthesis of antibiotics by PGPR and their effective applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Achkar J, **an M, Zhao H, Frost JW (2005) Biosynthesis of phloroglucinol. J Am Chem Soc Apr 20 127(15):5332–5333

    Article  CAS  Google Scholar 

  • Almario J, Bruto M, Vacheron J, Prigent-Combaret C, Moënne-Loccoz Y, Muller D (2017a) Distribution of 2,4-Diacetylphloroglucinol biosynthetic genes among the pseudomonas spp. Reveals Unexpected Polyphyletism Front Microbiol 8:1218

    PubMed  Google Scholar 

  • Almario J, Bruto M, Vacheron J, Prigent-Combaret C, Moënne-Loccoz Y, Muller D (2017b) Distribution of 2,4-Diacetylphloroglucinol biosynthetic genes among the pseudomonas spp. Reveals Unexpected Polyphyletism. Front Microbiol 8:1218

    PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  CAS  PubMed  Google Scholar 

  • Bandara WMMS, Seneviratne G, Kulasooriya SA (2006) Interactions among endophytic bacteria and fungi: effects and potentials. J Biosci 31:645–650

    Article  CAS  PubMed  Google Scholar 

  • Banks RM, Donald AC, Hannan PC, O’Hanlon PJ, Ragers NH (1998) Antimycoplasmal activities of the pseudomonic acids and structure-activity relationships of monic acid A derivatives. J Antibiot 41:609–613

    Article  Google Scholar 

  • Basu A, Prasad P, Das SN, Kalam S, Sayyed RZ, Reddy MS, El Enshasy HE (2021) Plant growth promoting Rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability 13:1140. https://doi.org/10.3390/su13031140

    Article  CAS  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LMP (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg G, Rybakova D, Grube M, Koberl M (2016) The plant microbiome explored: implications for experimental botany. J Exp Bot 67:995–1002. https://doi.org/10.1093/jxb/erv466

    Article  CAS  PubMed  Google Scholar 

  • Bottiglieri M, Keel C (2006) Characterization of PhlG, a hydrolase that specifically degrades the antifungal compound 2,4-diacetylphloroglucinol in the biocontrol agent Pseudomonas fluorescens CHA0. Appl Environ Microbiol 72(1):418–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Case RJ, Labbate M, Kjelleberg S (2008) AHL-driven quorum-sensing circuits: their frequency and function among the Proteobacteria. ISME J 2:345–349

    Article  CAS  PubMed  Google Scholar 

  • Chaparro JM, Sheflin AM, Manter DK, Vivanco JM (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499. https://doi.org/10.1007/s00374-012-0691-4

    Article  Google Scholar 

  • Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8:790. https://doi.org/10.1038/ismej.2013.196

    Article  CAS  PubMed  Google Scholar 

  • Chauhan PS, Nautiyal CS (2010) The purB gene controls rhizosphere colonization by Pantoea agglomerans. Lett Appl Microbiol 50:205–210

    Article  CAS  PubMed  Google Scholar 

  • Chauhan H, Bagyaraj D, Selvakumar G, Sundaram S (2015) Novel plant growth promoting rhizobacteria—prospects and potential. Appl. Soil Ecol 95:38–53. https://doi.org/10.1016/j.apsoil.2015.05.011

    Article  Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, van der Bij AJ, van der Drift KMGM, Schripsema J, Kroon B, Scheffer RJ, Keel C, Bakker PAHM, De Bruijn FJ, Thomas-Oates JE, Lugtenberg BJJ (1998) Biocontrol by phenazine-1-carboxamide producing pseudomonas chlororaphis PCL1391 of tomato root rot caused by fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant-Microbe Interact 11(11):1069–1077

    Article  CAS  Google Scholar 

  • Constantinescu F (2001) Extraction and identification of antifungal metabolites produced by some B. subtilis strains. Analele Institutului de Cercetari Pentru Cereale Protectia Plantelor 31:17–23

    Google Scholar 

  • Dang Y, Zhao F, Liu X (2019) Enhanced production of antifungal lipopeptide iturin A by bacillus amyloliquefaciens LL3 through metabolic engineering and culture conditions optimization. Microb Cell Factories 18:68

    Article  Google Scholar 

  • Danhorn T, Fuqua C (2007) Biofilm formation by plant-associated bacteria. Annu Rev Microbiol 61:401–422

    Article  CAS  PubMed  Google Scholar 

  • Davey ME, O’Toole AG (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Bruijn I, de Kock MJD, Yang M, de Waard P, van Beek TA, Raaijmakers JM (2007) Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics

    Google Scholar 

  • de Ruijter NCA, Bisseling T, Emons AMC (1999) Rhizobium nod factors induce an increase in sub-apical fine bundles of actin filaments in Vicia sativa root hairs within minutes. Mol Plant-Microbe Interact 12:829–832

    Article  Google Scholar 

  • de Souza J, Raaijmakers JM (2003) Polymorphisms within the prnD and pltC genes from pyrrolnitrin and pyoluteorin-producing pseudomonas and Burkholderia spp. FEMS Microbiol Ecol 43:21–34

    Article  PubMed  Google Scholar 

  • De Souza JT, Arnould C, Deulvot C, Lemanceau P, Gianinazzi-Pearson V (2003) Effect of 2, 4- diacetylphloroglucinol on Pythium: cellular responses and variation in sensitivity among propagules and species. Phytopathology 93:966–975

    Article  PubMed  Google Scholar 

  • Delaplace P, Delory BM, Baudson C, Mendaluk-Saunier De Cazenave M, Spaepen S (2015) Influence of rhizobacterial volatiles on the root system architecture and the production and allocation of biomass in the model grass Brachypodium distachyon (L.) P. Beauv. BMC Plant Biol 15(195):10.1186/ s12870-015-0585-3

    Google Scholar 

  • Fan B, Chen XH, Budiharjo A, Bleiss W, Vater J, Borriss R (2011) Efficient colonization of plant roots by the plant growth promoting bacterium bacillus amyloliquefaciens FZB42, engineered to express green florescent protein. J Biotechnol 151:303–311

    Article  CAS  PubMed  Google Scholar 

  • Fuller AT, Mellows G, Woolford M, Banks GT, Barrow KD, Chain EB (1971) Pseudomonic acid: an antibiotic produced by Pseudomonas fluorescens. Nature 234416:417

    Google Scholar 

  • Hamid B, Zaman M, Farooq S, Fatima S, Sayyed RZ, Baba ZA, Sheikh TA, Reddy MS, El Enshasy H, Gafur A, Suriani NL (2021) Bacterial plant biostimulants: A sustainable way towards improving growth, productivity, and health of crops. Sustainability 21(13):2856. https://doi.org/10.3390/su13052856

    Article  CAS  Google Scholar 

  • Hirsch PR, Mauchline TH (2012) Who’s who in the plant root microbiome? Nat Biotechnol 30:961–962. https://doi.org/10.1038/nbt.2387

    Article  CAS  PubMed  Google Scholar 

  • Homma Y, Sato Z, Hirayama F, Konno K, Shirahama H, Suzui T (1989) Production of antibiotics by pseudomonas cepacia as an agent for biological control of soilborne plant pathogens. Soil Biol Biochem 21:723–728

    Article  CAS  Google Scholar 

  • Howell CR, Stipanovic RD (1980) Suppression of Pythium ultimum-induced dam**-off of cotton seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology 70:712–715

    Article  CAS  Google Scholar 

  • Howell CR, Beier RC, Stipanovic RD (1988) Production of ammonia by Enterobacter cloacae and its possible role in the biological control of pythiumm pre-emergence dam** –off by the bacterium. Phatopathology 78:1075–1078

    Article  CAS  Google Scholar 

  • Hughes J, Mellows G (1980) Interaction of pseudomonic acid A with Escherichia coli B isoleucyl-tRNA synthetase. Biochem J 191:209–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilyas N, Mumtaz K, Akhtar N, Yasmin H, Sayyed RZ, Khan W, Enshasy HE, Dailin DJ, Elsayed AE, Ali Z (2020) Exopolysaccharides producing bacteria for the amelioration of drought stress in wheat. Sustainability 2020(12):8876. https://doi.org/10.3390/su12218876

    Article  CAS  Google Scholar 

  • Iniguez AL, Dong Y, Triplett EW (2004) Nitrogen fixation in wheat provided by Klebsiella pneumoniae 342. Mol Plant-Microbe Interact 17:1078–1085

    Article  CAS  PubMed  Google Scholar 

  • Islam MT, Hashidoko Y, Deora A, Ito T, Tahara S (2005) Suppression of dam**-off disease in host plants by the rhizoplane bacterium Lysobacter spp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne Peronosporomycetes. Appl Environ Microbiol Jul 71(7):3786–3796

    Article  CAS  Google Scholar 

  • Jabborova D, Wirth S, Kannepalli A, Narimanov A, Desouky S, Davranov K, Sayyed RZ, Enshasy HE, Malek RA, Syed A, Bahkali AH (2020) Co-inoculation of rhizobacteria and biochar application improves growth and nutrient in soybean and enriches soil nutrients and enzymes. Agronomy 10:1142. https://doi.org/10.3390/agronomy10081142

    Article  CAS  Google Scholar 

  • Janczarek M, Skorupska A (2011) Modulation of rosR expression and exopolysaccharide production in rhizobium leguminosarum bv. Trifolii by phosphate and clover root exudates. Int J Mol Sci 12:4132–4155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayasinghearachchi HS, Seneviratne G (2004) Can mushrooms fix atmospheric nitrogen? J Biosci 23:293–296

    Article  Google Scholar 

  • Juhas M, Eberl L, Tummler B (2005) Quorum sensing: the power of cooperation in the world of pseudomonas. Environ Microbiol 7:459–471

    Article  CAS  PubMed  Google Scholar 

  • Kalam S, Basu A, Ahmad I, Sayyed RZ, Enshasy HE, Dailin DJ, Suriani NL (2020) Recent understanding of soil Acidobacteria and their ecological significance: A critical review. Front Microbiol 11:580024. https://doi.org/10.3389/fmicb.2020.580024

    Article  PubMed  PubMed Central  Google Scholar 

  • Kannepalli A, Davranov K, Narimanov A, Enakiev Y, Syed A, Elgorban AM, Bahkali AH, Wirth S, Sayyed RZ (2021) Gafur A (2021) co-inoculation of rhizobacteria promotes growth, yield, and nutrient contents in soybean and improves soil enzymes and nutrients under drought conditions. Scientific Report 11:22081. https://doi.org/10.1038/s41598-021-01337-9

    Article  CAS  Google Scholar 

  • Keel C, Schiner U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Haas D, Defago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2,4- Diacetylphloroglucinol. Mol Plant-Microbe Interact 5:4–13

    Article  CAS  Google Scholar 

  • Keel US, Seematter A, Maurhofer M, Blumer C, Duffy B, Bonnefoy CG, Reimmann C, Notz R, Défago G, Haas D, Keel C (2000) Autoinduction of 2, 4- Diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. J Bacteriol 182:1215–1225

    Article  PubMed  PubMed Central  Google Scholar 

  • Kevany BM, Rasko DA, Thomas MG (2009) Characterization of the complete zwittermicin A biosynthesis gene cluster from Bacillus cereus. Appl Environ Microbiol 75(4):1144–1155. https://doi.org/10.1128/AEM.02518-08

    Article  CAS  PubMed  Google Scholar 

  • Khan I, Awan SA, Ikram R, Rizwan M, Akhtar N, Yasmin H, Sayyed RZ, Ali S, Ilyas N (2020) 24-Epibrassinolide regulated antioxidants and osmolyte defense and endogenous hormones in two wheat varieties under drought stress, Physiologia Plantarum. Oct 2020:1–11. https://doi.org/10.1111/ppl.13237

    Article  CAS  Google Scholar 

  • Khan N, Al S, Shahi MA, Mustafa A, Sayyed RZ, Curaá JA (2021) Insights into the interactions among roots, Rhizosphere and Rhizobacteria for improving plant growth and tolerance to abiotic stresses: a review. Cells 10(6):1551. https://doi.org/10.3390/cells10061551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kidarsa TA, Goebel NC, Zabriskie TM, Loper JE (2011) Phloroglucinol mediates cross-talk between the pyoluteorin and 2,4-diacetylphloroglucinol biosynthetic pathways in Pseudomonas fluorescens Pf-5. Mol Microbiol 81(2):395–414

    Article  CAS  PubMed  Google Scholar 

  • Kitten T, Kinscherf T, McEvoy G, Willis DK (1998) A newly identified regulator is required for virulence and toxin production in pseudomonas syringae. Mol Microbiol 28:917–929

    Article  CAS  PubMed  Google Scholar 

  • Koumoutsi A, Chen X-H, Henne A, Liesegang H, Hitzeroth G, Franke P (2004) Structural and functional characterization of gene clusters directing non ribosomal synthesis of bioactive cyclic lipopeptides in bacillus amyloliquefaciens strain FZB42. J Bacteriol 186:1084–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krysciak D, Schmeisser C, Preuss S, Riethausen J, Quitschau M, Grond S (2011) Involvement of multiple loci in quorum quenching of autoinducer I molecules in the nitrogen-fixing symbiont rhizobium (Sinorhizobium) spp. strain NGR234. Appl Environ Microbiol 77:5089–5099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kusale SP, Attar YC, Sayyed RZ, Malek RA, Ilyas N, Suriani NL, Khan N, Enshasy HE (2021) Production of plant beneficial and antioxidants metabolites by Klebsiella variicola under salinity stress. Molecules 26:1894. https://doi.org/10.3390/molecules26071894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JY, Moon SS, Hwang BK (2003) Isolation and antifungal and Antioomycete activities of Aerugine produced by Pseudomonas fluorescens strain MM-B16. Appl Environ Microbiol 69:2023–2021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loh J, Pierson EA, Pierson LS III, Stacey G, Chatterjee A (2002) Quorum sensing in plantassociated bacteria. Curr Opin Plant Biol 5:285–290

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  PubMed  Google Scholar 

  • Lugtenberg BJJ, Kravchenko LV, Simons M (1999) Tomato seed and root exudate sugars: composition, utilization by pseudomonas biocontrol strains and role in rhizosphere colonization. Environ Microbiol 1:439–446

    Article  CAS  PubMed  Google Scholar 

  • Lundberg DS, Lebeis SL, Paredes SH, Yourstone S, Gehring J, Malfatti S, Tremblay J, Engelbrektson A, Kunin V, Rio T, Edgar RC, Eickhors T, Ley RE, Hugenholtz PE, Tringe SG, Dangl JL (2012) Defining the core Arabidopsis thaliana root microbiome. Nature 488:86–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mazurier S, Corberand T, Lemanceau P, Raaijmakers JM (2009) Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to fusarium wilt. ISME J Aug 3(8):977–991

    Article  CAS  Google Scholar 

  • McSpadden Gardener BB, Schroeder KL, Kalloger SE, Raaijmakers JM, Thomashow LS, Weller DM (2000) Genotypic and phenotypic diversity of phlDcontaining pseudomonas strains isolated from the rhizosphere of wheat. Appl Environ Microbiol 66:1939–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milner JL, Silo-Suh L, Lee JC, He H, Clardy J, Handelsman J (1996) Production of kanosamine by Bacillus cereus UW85. Appl Environ Microbiol 62(8):3061–3065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moyne AL, Shalby R, Cleveland TE, Tuzun S (2001) Bacillomycin D: an iturin with antifungal activity against aspergillus flavus. J Appl Microbiol 90:622–629

    Article  CAS  PubMed  Google Scholar 

  • Neeraja C, Anil K, Purushotham P, Suma K, Sarma P, Moerschbacher BM, Podile AR (2010) Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants. Crit Rev Biotechnol 30:231–241

    Article  CAS  PubMed  Google Scholar 

  • Nelson MS, Sadowsky MJ (2015) Secretion systems and signal exchange between nitrogen-fixing rhizobia and legumes. Front Plant Sci 6:491. https://doi.org/10.3389/fpls.2015.00491

    Article  PubMed  PubMed Central  Google Scholar 

  • Notz R, Maurhofer M, Schnider-Keel U, Duffy B, Haas D, Défago G (2001) Biotic factors affecting expression of the 2,4-diacetylpholoroglucinol biosynthesis gene phlA in Pseudomonas fluorescens biocontrol strain CHA0 in the rhizosphere. Phytopathology 91:873–881

    Article  CAS  PubMed  Google Scholar 

  • Nowak-Thompson B, Chaney N, Wing JS, Gould SJ, Loper JE (1999) Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bacteriol 181:2166–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Connell PF (1992) Sustainable agriculture – a valid alternative. Outlook Agric 21:5–12

    Article  Google Scholar 

  • Ortiz-Castro R, Contreras-Cornejo HA, Macias-Rodriguez L, LopezBucio J (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4:701–712. https://doi.org/10.4161/psb.4.8.9047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pierson LS, Wood DW, Pierson EA, Chancey ST (1998a) N-acyl homoserine lactone-mediated gene regulation in biological control by fluorescent pseudomonads: current knowledge and future work. Eur J Plant Pathol 104:1–9

    Article  CAS  Google Scholar 

  • Pierson EA, Wood DW, Cannon JA, Blachere FM, Pierson LS III (1998b) Interpopulation signaling via N-acyl-Homoserine lactones among bacteria in the wheat rhizosphere. Mol Plant-Microbe Interact 11:1078–1108

    Article  CAS  Google Scholar 

  • Prasanna R, Pattnaik S, Sugitha TC, Nain L, Saxena AK (2011) Development of cyanobacterium-based biofilms and their in vitro evaluation for agriculturally useful traits. Folia Microbiol (Praha) 56:49–58

    Article  CAS  Google Scholar 

  • Raaijmakers J, Bonsall RF, Weller DM (1999) Effect pf population density of Pseudomonas fluorescens on production of 2, 4-Diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology 89:470–475

    Article  CAS  PubMed  Google Scholar 

  • Ramey BE, Matthysse AG, Fuqua C (2004) The FNR-type transcriptional regulator SinR controls maturation of agrobacterium tumefaciens biofilms. Mol Microbiol 52:1495–1511

    Article  CAS  PubMed  Google Scholar 

  • Reshma P, Naik MK, Aiyaz M, Niranjana SR, Chennappa G, Shaikh SS, Sayyed RZ (2018) Induced systemic resistance by 2,4diacetylphloroglucinol positive fluorescent pseudomonas strains against rice sheath blight. Indian J Exp Biology 56(3):207–212

    CAS  Google Scholar 

  • Rovira AD (1969) Plant root exudates. Bot Rev 35:35–57

    Article  CAS  Google Scholar 

  • Sagar A, Sayyed RZ, Ramteke PW, Sharma S, Marraiki N, Elgorban AM, Syed A (2020) ACC deaminase and antioxidant enzymes producing halophilic Enterobacter sp. PR14 promotes the growth of rice and millets under salinity stress. Physiol Mol Biology Plants 26:1847–1854

    Article  CAS  Google Scholar 

  • Sagar A, Rai S, Ilyas N, Sayyed RZ, Al-Turki AI, Enshasy HE, Simarmata T (2022) Halotolerant Rhizobacteria for salinity stress mitigation: diversity, mechanism and molecular approaches. Sustainability 14:490. https://doi.org/10.3390/su14010490

    Article  CAS  Google Scholar 

  • Saleh-Lakha S, Glick BR (2006) Plant growth-promoting bacteria. In: van Elsas JD, Jansson JK, Trevors JT (eds) Modern soil microbiology. CRC/Thomson Publishing, Boca Raton, FL/UK, pp 503–520

    Google Scholar 

  • Sayyed RZ, Patel PR, Shaikh SS (2015) Plant growth promotion and root colonization by EPS producing Enterobacter sp. RZS5 under heavy metal contaminated soil. Indian J Exp Biology 53:116–123

    CAS  Google Scholar 

  • Seneviratne G, Kecske’s ML, Kennedy IR (2008a) Biofilmed biofertilisers: novel inoculants for efficient nutrient use in plants. In: Kennedy IR, ATMA C, Kecske’s ML, Rose MT (eds) Efficient nutrient use in rice production in Vietnam achieved using inoculants biofertilisers. Proceedings of a project (SMCN/2002/073) workshop held in Hanoi, Vietnam, 12–13 October 2007. ACIAR Proceeding No. 130, ACIAR, Canberra, pp 126–130

    Google Scholar 

  • Seneviratne G, Zavahir JS, Bandara WMMS, Weerasekara MLMAW (2008b) Fungal–bacterial biofilms: their development for novel biotechnological applications. World J Microbiol Biotechnol 24:739–743

    Article  CAS  Google Scholar 

  • Shanahan P, O’Sullivan DJ, Simpson P, Glennon JD, O’Gara F (1992) Isolation of 2,4-diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 58:353–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma SB, Sayyed RZ, Trivedi MH, Gobi T (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2:587

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharma S, Sayyed R, Sonawane M, Trivedi M, Thivakaran G (2016) Neurospora sp SR8, a novel phosphate solubiliser from rhizosphere of soil of sorghum in Kachh, Gujarat. Indian J Exp Biol 54:644–649

    PubMed  Google Scholar 

  • Sharma S, Gupta A, Dalela M, Sharma S, Sayyed RZ, Enshasy HE, Elsayed AE (2020) Linking organic metabolites as produced by Purpureocillium lilacinum 6029 cultured on Karanja deoiled cake medium for the sustainable management of root-knot nematodes. Sustainability. 12(9):8276. https://doi.org/10.3390/su12198276

    Article  CAS  Google Scholar 

  • Shoji J, Hinoo H, Terui Y, Kikuchi J, Hattori T, Ishii K, Matsumoto K, Yoshida T (1989) Isolation of azomycin from Pseudomonas fluorescens. J Antibiot 42:1513–1514

    Article  CAS  Google Scholar 

  • Sivan A, Chet I (1992) Microbial control of plant diseases. In: Mitchell R (ed) Environmental microbiology. Wiley-Liss, New York, pp 335–354

    Google Scholar 

  • Smith KP, Havey MJ, Handelsman J (1993) Suppression of cottony leak of cucumber with Bacillus cereus strain UW85. Plant Dis 77:139–142

    Article  Google Scholar 

  • Stephens PM, Crowley JJ, O’Connell C (1993) Selection of pseudomonad strains inhibiting Pythium ultimum on sugarbeet seeds in soil. Soil Biol Biochem 25:1283–1288

    Article  Google Scholar 

  • Sukmawati D, Family N, Hidayat I, Sayyed RZ, Elsayed AE, Dailin DJ, Hanapi SZ, Wadaan MA, Enshasy HE (2021) Biocontrol Activity of Aureubasidium pullulans and Candida orthopsilosis isolated from Tectona grandis L Phylloplane against Aspergillus sp In Post-Harvested Citrus Fruit. Sustainability 13:7479. https://doi.org/10.3390/su13137479

    Article  CAS  Google Scholar 

  • Thomashow LS, Weller DM (1995) Current concepts in the use of introduced bacteria for biological disease control: mechanisms and antifungal metabolites. In: Stacey G, Keen NT (eds) Plant– microbe interactions, chapman and hall, New York, pp 187–235

    Google Scholar 

  • Timmusk S, Grantcharova N, Gerhart E, Wagner H (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 71:7292–7300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner JM, Messenger AJ (1986) Occurrence, biochemistry and physiology of phenazine pigment production. Adv Microbial Physiol 27:211–275

    Article  CAS  Google Scholar 

  • Turner TR, James EK, Poole PS (2013) The plant microbiome. Genome Biol 14:209. https://doi.org/10.1186/gb-2013-14-6-209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ude S, Arnold DL, Moon CD, Timms-Wilson T, Spiers AJ (2006) Biofilm formation and cellulose expression among diverse environmental pseudomonas isolates. Environ Microbiol 8:1997–2011

    Article  CAS  PubMed  Google Scholar 

  • van Elsas JD, Dijkstra AF, Govarert JM, van Veen JA (1986) Survival of Pseudomonas fluorescens and Bacillus subtilis introduced into soils of different texture in field microplots. FEMS Microbiol Ecol 38:150–160

    Article  Google Scholar 

  • Van Nieuwenhove C, Holm V, Kulasooriya SA, Vlassak K (2000) Establishment of Azorhizobium caulinodans in the rhizosphere of wetland rice (Oryza sativa L.). Biol Fertil Soils 31:143–149

    Article  Google Scholar 

  • Vanderlinde EM, Muszynski A, Harrison JJ, Koval SF, Foreman DL, Ceri H (2009) Rhizobium leguminosarum biovar viciae 3841, deficient in 27-hydroxyoctacosanoate- modified lipopolysaccharide, is impaired in desiccation tolerance, biofilm formation and motility. Microbiol 155:3055–3069

    Article  CAS  Google Scholar 

  • Vargas WA, Mukherjee PK, Laughlin D, Wiest A, Moran-Diez ME, Kenerley CM (2014) Role of gliotoxin in the symbiotic and pathogenic interactions of Trichoderma virens. Microbiology (Reading) 160(Pt 10):2319–2330

    Article  CAS  Google Scholar 

  • Vinay JU, Naik MK, Rangeshwaran R, Chennappa G, Shaikh SS, Sayyed RZ (2016) Detection of antimicrobial traits in fluorescent pseudomonads and molecular characterization of an antibiotic pyoluteorin, 3. Biotech 6(227):1–11

    Google Scholar 

  • Viveros OM, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319

    Google Scholar 

  • Volpon L, Besson F, Lancelin JM (1999) NMR structure of active and inactive forms of the sterol dependent antibiotic bacillomycin L. Eur J Bioche 264:200–210

    Article  CAS  Google Scholar 

  • Volpon H, Besson F, Lancelin JM (2000) NMR structure of antibiotics plipastations A and B from Bacillus subtilis inhibitors of phospholipase A2. FEBS 485:76–80

    Article  CAS  Google Scholar 

  • von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41:455–482

    Article  CAS  Google Scholar 

  • Walker TS, Bais HP, De’ziel E, Schweizer HP, Rahme LG, Fall R, Vivanco JM (2004) Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiol 134:320–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watnick PI, Kolter R (1999) Steps in the development of a vibrio cholerae El tor biofilm. Mol Microbiol 34:586–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams ST, Vickers JC (1986) The ecology of antibiotic production. Microbial Ecol 12:43–52

    Article  CAS  Google Scholar 

  • Wright SA, Zumoff CH, Schneider L, Beer SV (2001) Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Appl Environ Microbiol 67(1):284–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Shao J, Li B, Yan X, Shen Q, Zhang R (2013) Contribution of bacillomycin D in bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation. Appl Environ Microbiol 79(3):808–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaga F, Washio K, Morikawa M (2010) Sustainable biodegradation of phenol by Acinetobacter calcoaceticus P23 isolated from the rhizosphere of duckweed Lemna aoukikusa. Environ Sci Technol 44:6470–6474

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Kharbanda PD, Mirza M (2004) Evaluation of Paenibacillus polymyxa PKB1 for biocontrol of Pythium disease of cucumber in a hydroponic system. Acta Hortic (ISHS) 635:59–66

    Article  Google Scholar 

  • Zehnder GW, Murphy IF, Sikora EJ, Kloepper JW (2001) Application to rhizobacteria for induced resistance. Eur J Plant Pathol 107:39–50

    Article  Google Scholar 

  • Zhang R, Vivanco JM, Shen Q (2017) The unseen rhizosphere rootsoil-microbe interactions for crop production. Curr Opin Microbiol 37:8–14. https://doi.org/10.1016/j.mib.2017.03.008

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lahiri, D., Nag, M., Sayyed, R.Z., Gafur, A., Ansari, M.J., Ray, R.R. (2022). PGPR in Biofilm Formation and Antibiotic Production. In: Sayyed, R., Singh, A., Ilyas, N. (eds) Antifungal Metabolites of Rhizobacteria for Sustainable Agriculture. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-031-04805-0_4

Download citation

Publish with us

Policies and ethics

Navigation