Microbial Production of Caffeic Acid

  • Living reference work entry
  • First Online:
Microbial Production of Food Bioactive Compounds

Abstract

Caffeic acid is a hydroxycinnamic acid mostly produced in plants although its microbial production has also been reported. This compound presents several biological activities and potential therapeutic properties. Additionally, it can be a precursor or intermediary of various relevant compounds. Current production methods include the inefficient, expensive, and not environmentally friendly extraction from plants that accumulate this compound in very low amounts. Therefore, highly efficient and environmentally friendly methods are needed. Microbial biosynthesis can potentially produce it in a purer, faster, and greener way. Since the establishment of caffeic acid heterologous production in Streptomyces fradiae, several studies have been published regarding its production in Escherichia coli and Saccharomyces cerevisiae. These studies include the production from supplemented tyrosine or p-coumaric acid but also glucose using tyrosine-overproducing strains. Presently, there are three different pathways to produce caffeic acid that have in common the first step that is catalyzed by a microbial tyrosine ammonia lyase that converts tyrosine to p-coumaric acid. The second step that synthesizes caffeic acid from p-coumaric acid was identified as the pathway bottleneck and can be performed by 4-coumarate 3-hydroxylase, hydroxyphenylacetate 3-hydroxylase (4HPA3H) complex or a cytochrome P450 CYP199A2 system. Although all these enzymes have been identified in bacteria, and caffeic acid has only recently been produced in S. cerevisiae, the productions in this host have almost reached the maximum productions reported for E. coli (569 mg/L vs. 767 mg/L, respectively). The maximum production was obtained from glucose using the 4HPA3H pathway. These developments on caffeic acid heterologous production are very promising.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Al-Khelaifi F, Diboun I, Donati F, Botrè F, Alsayrafi M, Georgakopoulos C, Yousri NA, Suhre K, Elrayess MA. Metabolomics profiling of xenobiotics in elite athletes: relevance to supplement consumption. J Int Soc Sports Nutr. 2018;15:1–10.

    Article  Google Scholar 

  • Alvarado IE, Navarro D, Record E, Asther M, Asther M, Lesage-Meessen L. Fungal biotransformation of p-coumaric acid into caffeic acid by Pycnoporus cinnabarinus: an alternative for producing a strong natural antioxidant. World J Microbiol Biotechnol. 2003;19:157–60.

    Article  Google Scholar 

  • Álvarez-Álvarez R, Botas A, Albillos SM, Rumbero A, Martín JF, Liras P. Molecular genetics of naringenin biosynthesis, a typical plant secondary metabolite produced by Streptomyces clavuligerus. Microb Cell Factories. 2015;14:1–12.

    Article  Google Scholar 

  • An DG, Cha MN, Nadarajan SP, Kim BG, Ahn J-H. Bacterial synthesis of four hydroxycinnamic acids. Appl Biol Chem. 2016;59:173–9.

    Article  CAS  Google Scholar 

  • Barros J, Escamilla-Trevino L, Song L, Rao X, Serrani-Yarce JC, Palacios MD, Engle N, Choudhury FK, Tschaplinski TJ, Venables BJ. 4-Coumarate 3-hydroxylase in the lignin biosynthesis pathway is a cytosolic ascorbate peroxidase. Nat Commun. 2019;10:1–11.

    Article  CAS  Google Scholar 

  • Bell SG, Hoskins N, Xu F, Caprotti D, Rao Z, Wong L-L. Cytochrome P450 enzymes from the metabolically diverse bacterium Rhodopseudomonas palustris. Biochem Biophys Res Commun. 2006;342:191–6.

    Article  CAS  PubMed  Google Scholar 

  • Berner M, Krug D, Bihlmaier C, Vente A, Müller R, Bechthold A. Genes and enzymes involved in caffeic acid biosynthesis in the actinomycete Saccharothrix espanaensis. J Bacteriol. 2006;188:2666–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borja GM, Rodriguez A, Campbell K, Borodina I, Chen Y, Nielsen J. Metabolic engineering and transcriptomic analysis of Saccharomyces cerevisiae producing p-coumaric acid from xylose. Microb Cell Factories. 2019;18:1–14.

    Article  CAS  Google Scholar 

  • Choi O, Wu C-Z, Kang SY, Ahn JS, Uhm T-B, Hong Y-S. Biosynthesis of plant-specific phenylpropanoids by construction of an artificial biosynthetic pathway in Escherichia coli. J Ind Microbiol Biotechnol. 2011;38:1657–65.

    Article  CAS  PubMed  Google Scholar 

  • Chugunova E, Boga C, Sazykin I, Cino S, Micheletti G, Mazzanti A, Sazykina M, Burilov A, Khmelevtsova L, Kostina N. Synthesis and antimicrobial activity of novel structural hybrids of benzofuroxan and benzothiazole derivatives. Eur J Med Chem. 2015;93:349–59.

    Article  CAS  PubMed  Google Scholar 

  • Couto MR, Rodrigues JL, Rodrigues LR. Optimization of fermentation conditions for the production of curcumin by engineered Escherichia coli. J R Soc Interface. 2017;14:20170470.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dionne I, Nookala RK, Jackson SP, Doherty AJ, Bell SD. A heterotrimeric PCNA in the hyperthermophilic archaeon Sulfolobus solfataricus. Mol Cell. 2003;11:275–82.

    Article  CAS  PubMed  Google Scholar 

  • Dos Santos JFS, Tintino SR, de Freitas TS, Campina FF, Irwin R d A, Siqueira-Júnior JP, Coutinho HDM, Cunha FAB. In vitro e in silico evaluation of the inhibition of Staphylococcus aureus efflux pumps by caffeic and gallic acid. Comp Immunol Microbiol Infect Dis. 2018;57:22–8.

    Article  PubMed  Google Scholar 

  • Ekeuku SO, Pang K-L, Chin K-Y. Effects of caffeic acid and its derivatives on bone: a systematic review. Drug Des Devel Ther. 2021;15:259–75.

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Seedi HR, El-Said AMA, Khalifa SAM, Goransson U, Bohlin L, Borg-Karlson A-K, Verpoorte R. Biosynthesis, natural sources, dietary intake, pharmacokinetic properties, and biological activities of hydroxycinnamic acids. J Agric Food Chem. 2012;60:10877–95.

    Article  CAS  PubMed  Google Scholar 

  • Furuya T, Kino K. Regioselective oxidation of indole-and quinolinecarboxylic acids by cytochrome P450 CYP199A2. Appl Microbiol Biotechnol. 2010;85:1861–8.

    Article  CAS  PubMed  Google Scholar 

  • Furuya T, Kino K. Catalytic activity of the two-component flavin-dependent monooxygenase from Pseudomonas aeruginosa toward cinnamic acid derivatives. Appl Microbiol Biotechnol. 2014;98:1145–54.

    Article  CAS  PubMed  Google Scholar 

  • Furuya T, Arai Y, Kino K. Biotechnological production of caffeic acid by bacterial cytochrome P450 CYP199A2. Appl Environ Microbiol. 2012;78:6087–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gudiña E, Amorim C, Braga A, Costa A, JL R, Silvério S, Rodrigues LR. Biotech green approaches to unravel the potential of residues into valuable products. In: Inamuddin, editor. Green chemistry for the sustainable development of chemical industry. Springer; 2020. p. 97–150.

    Google Scholar 

  • Ha CM, Escamilla-Trevino L, Yarce JCS, Kim H, Ralph J, Chen F, Dixon RA. An essential role of caffeoyl shikimate esterase in monolignol biosynthesis in Medicago truncatula. Plant J. 2016;86:363–75.

    Article  CAS  PubMed  Google Scholar 

  • Halaouli S, Asther M, Kruus K, Guo L, Hamdi M, Sigoillot J, Asther M, Lomascolo A. Characterization of a new tyrosinase from Pycnoporus species with high potential for food technological applications. J Appl Microbiol. 2005;98:332–43.

    Article  CAS  PubMed  Google Scholar 

  • Haslinger K, Prather KLJ. Heterologous caffeic acid biosynthesis in Escherichia coli is affected by choice of tyrosine ammonia lyase and redox partners for bacterial Cytochrome P450. Microb Cell Factories. 2020;19:1–12.

    Article  Google Scholar 

  • Heo KT, Lee B, Son S, Ahn JS, Jang J-H, Hong Y-S. Production of bioactive 3′-hydroxystilbene compounds using the flavin-dependent monooxygenase Sam5. J Microbiol Biotechnol. 2018;28:1105–11.

    Article  CAS  PubMed  Google Scholar 

  • Hirakawa H, Nagamune T. Molecular assembly of P450 with ferredoxin and ferredoxin reductase by fusion to PCNA. Chembiochem. 2010;11:1517–20.

    Article  CAS  PubMed  Google Scholar 

  • Huang Q, Lin Y, Yan Y. Caffeic acid production enhancement by engineering a phenylalanine over-producing Escherichia coli strain. Biotechnol Bioeng. 2013;110:3188–96.

    Article  CAS  PubMed  Google Scholar 

  • Jendresen CB, Stahlhut SG, Li M, Gaspar P, Siedler S, Förster J, Maury J, Borodina I, Nielsen AT. Highly active and specific tyrosine ammonia-lyases from diverse origins enable enhanced production of aromatic compounds in bacteria and Saccharomyces cerevisiae. Appl Environ Microbiol. 2015;81:4458–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang S-Y, Choi O, Lee JK, Hwang BY, Uhm T-B, Hong Y-S. Artificial biosynthesis of phenylpropanoic acids in a tyrosine overproducing Escherichia coli strain. Microb Cell Factories. 2012;11:1–9.

    Article  Google Scholar 

  • Kawaguchi H, Katsuyama Y, Danyao D, Kahar P, Nakamura-Tsuruta S, Teramura H, Wakai K, Yoshihara K, Minami H, Ogino C. Caffeic acid production by simultaneous saccharification and fermentation of kraft pulp using recombinant Escherichia coli. Appl Microbiol Biotechnol. 2017;101:5279–90.

    Article  CAS  PubMed  Google Scholar 

  • Kneusel RE, Matern U, Nicolay K. Formation of trans-caffeoyl-CoA from trans-4-coumaroyl-CoA by Zn2+-dependent enzymes in cultured plant cells and its activation by an elicitor-induced pH shift. Arch Biochem Biophys. 1989;269:455–62.

    Article  CAS  PubMed  Google Scholar 

  • Knobloch K-H, Hahlbrock K. 4-Coumarate: CoA ligase from cell suspension cultures of Petroselinum hortense Hoffm: partial purification, substrate specificity, and further properties. Arch Biochem Biophys. 1977;184:237–48.

    Article  CAS  PubMed  Google Scholar 

  • Kolgazi M, Cilingir S, Yilmaz O, Gemici M, Yazar H, Ozer S, Acikel-Elmas M, Arbak S, Suyen GG. Caffeic acid attenuates gastric mucosal damage induced by ethanol in rats via nitric oxide modulation. Chem Biol Interact. 2021;334:109351.

    Article  CAS  PubMed  Google Scholar 

  • Koopman F, Beekwilder J, Crimi B, van Houwelingen A, Hall RD, Bosch D, van Maris AJA, Pronk JT, Daran J-M. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microb Cell Factories. 2012;11:155.

    Article  CAS  Google Scholar 

  • Lee S, Nam D, Jung JY, Oh M-K, Sang B-I, Mitchell RJ. Identification of Escherichia coli biomarkers responsive to various lignin-hydrolysate compounds. Bioresour Technol. 2012;114:450–6.

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Kim B-G, Ahn J-H. Production of bioactive hydroxyflavones by using monooxygenase from Saccharothrix espanaensis. J Biotechnol. 2014;176:11–7.

    Article  CAS  PubMed  Google Scholar 

  • Li J, Fang J, Qin X, Gao L. Metabolomics profiling reveals the mechanism of caffeic acid in extending lifespan in Drosophila melanogaster. Food Funct. 2020a;11:8202–13.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Mao J, Liu Q, Song X, Wu Y, Cai M, Xu H, Qiao M. De novo biosynthesis of caffeic acid from glucose by engineered Saccharomyces cerevisiae. ACS Synth Biol. 2020b;9:756–65.

    Article  CAS  PubMed  Google Scholar 

  • Li S, Liang C, Liu G, ** J-M, Tao Y, Tang S-Y. De novo biosynthesis of chlorogenic acid using an artificial microbial community. J Agric Food Chem. 2021a;69:2816–25.

    Article  CAS  PubMed  Google Scholar 

  • Li H, Yu X, Li C, Ma L, Zhao Z, Guan S, Wang L. Caffeic acid protects against Aβ toxicity and prolongs lifespan in Caenorhabditis elegans models. Food Funct. 2021b;12:1219–31.

    Article  PubMed  Google Scholar 

  • Lin Y, Yan Y. Biosynthesis of caffeic acid in Escherichia coli using its endogenous hydroxylase complex. Microb Cell Factories. 2012;11:1–9.

    Article  Google Scholar 

  • Liu L, Liu H, Zhang W, Yao M, Li B, Liu D, Yuan Y. Engineering the biosynthesis of caffeic acid in Saccharomyces cerevisiae with heterologous enzyme combinations. Engineering. 2019;5:287–95.

    Article  CAS  Google Scholar 

  • Liu L, Mu H, Pang Y. Caffeic acid treatment augments the cell proliferation, differentiation, and calcium mineralization in the human osteoblast-like MG-63 cells. Pharmacogn Mag. 2021;17:38.

    Article  CAS  Google Scholar 

  • Lv H, Zhang Y, Shao J, Liu H, Wang Y. Ferulic acid production by metabolically engineered Escherichia coli. Bioresour Bioprocess. 2021;8:1–12.

    Article  Google Scholar 

  • Mao J, Liu Q, Song X, Wang H, Feng H, Xu H, Qiao M. Combinatorial analysis of enzymatic bottlenecks of L-tyrosine pathway by p-coumaric acid production in Saccharomyces cerevisiae. Biotechnol Lett. 2017;39:977–82.

    Article  CAS  PubMed  Google Scholar 

  • Mudgal J, Mallik SB, Nampoothiri M, Kinra M, Hall S, Grant GD, Anoopkumar-Dukie S, Davey AK, Rao CM, Arora D. Effect of coffee constituents, caffeine and caffeic acid on anxiety and lipopolysaccharide-induced sickness behavior in mice. J Funct Foods. 2020;64:103638.

    Article  CAS  Google Scholar 

  • Mukai N, Masaki K, Fujii T, Kawamukai M, Iefuji H. PAD1 and FDC1 are essential for the decarboxylation of phenylacrylic acids in Saccharomyces cerevisiae. J Biosci Bioeng. 2010;109:564–9.

    Article  CAS  PubMed  Google Scholar 

  • Nambudiri AMD, Bhat JV, Rao PVS. Conversion of p-coumarate into caffeate by Streptomyces nigrifaciens. Purification and properties of the hydroxylating enzyme. Biochem J. 1972;130:425–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogawa M, Shirasago Y, Ando S, Shimojima M, Saijo M, Fukasawa M. Caffeic acid, a coffee-related organic acid, inhibits infection by severe fever with thrombocytopenia syndrome virus in vitro. J Infect Chemother. 2018;24:597–601.

    Article  CAS  PubMed  Google Scholar 

  • Okada Y, Okada M. Quercetin, caffeic acid and resveratrol regulate circadian clock genes and aging-related genes in young and old human lung fibroblast cells. Mol Biol Rep. 2020;47:1021–32.

    Article  PubMed  Google Scholar 

  • Oliveira A, Rodrigues J, Ferreira E, Rodrigues L, Dias O. A kinetic model of the central carbon metabolism for acrylic acid production in Escherichia coli. PLoS Comput Biol. 2021;17:e1008704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park K-Y, Kim J. Synthesis and biological evaluation of the anti-melanogenesis effect of coumaric and caffeic acid-conjugated peptides in human melanocytes. Front Pharmacol. 2020;11:1–8.

    Article  Google Scholar 

  • Pereira R, Mohamed ET, Radi MS, Herrgård MJ, Feist AM, Nielsen J, Chen Y. Elucidating aromatic acid tolerance at low pH in Saccharomyces cerevisiae using adaptive laboratory evolution. Proc Natl Acad Sci. 2020;117:27954–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perumal S, Mahmud R, Ismail S. Mechanism of action of isolated caffeic acid and epicatechin 3-gallate from Euphorbia hirta against Pseudomonas aeruginosa. Pharmacogn Mag. 2017;13:S311.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peterson JA, Lorence MC, Amarneh B. Putidaredoxin reductase and putidaredoxin. Cloning, sequence determination, and heterologous expression of the proteins. J Biol Chem. 1990;265:6066–73.

    Article  CAS  PubMed  Google Scholar 

  • Prieto MA, Garcı́a JL. Identification of a novel positive regulator of the 4-hydroxyphenylacetate catabolic pathway of Escherichia coli. Biochem Biophys Res Commun. 1997;232:759–65.

    Article  CAS  PubMed  Google Scholar 

  • Prieto MA, Perez-Aranda A, Garcia JL. Characterization of an Escherichia coli aromatic hydroxylase with a broad substrate range. J Bacteriol. 1993;175:2162–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qin P, Wei Y, Hou M, Zhao C, Shen Z. A multicenter clinical trial of caffeic acid tablet in treatment of 103 primary immune thrombocytopenia patients. Zhonghua xue ye xue za zhi= Zhonghua Xueyexue Zazhi. 2015;36:103–6.

    PubMed  Google Scholar 

  • Rainha J, Gomes D, Rodrigues LR, Rodrigues JL. Synthetic biology approaches to engineer Saccharomyces cerevisiae towards the industrial production of valuable polyphenolic compounds. Life. 2020;10:life10050056.

    Article  Google Scholar 

  • Rainha J, Rodrigues JL, Rodrigues LR. CRISPR-Cas9: a powerful tool to efficiently engineer Saccharomyces cerevisiae. Life. 2021;11:life11010013.

    Google Scholar 

  • Rezaei-Seresht H, Cheshomi H, Falanji F, Movahedi-Motlagh F, Hashemian M, Mireskandari E. Cytotoxic activity of caffeic acid and gallic acid against MCF-7 human breast cancer cells: an in silico and in vitro study. Avicenna J Phytomed. 2019;9:574–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues JL, Rodrigues LR. Synthetic biology: perspectives in industrial biotechnology. In: Pandey A, Teixeira J, editors. Current developments in biotechnology and bioengineering: foundations of biotechnology and bioengineering. Elsevier; 2017. p. 239–69.

    Chapter  Google Scholar 

  • Rodrigues JL, Rodrigues LR. Potential applications of the Escherichia coli heat shock response in synthetic biology. Trends Biotechnol. 2018;36:186–98.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues JL, Rodrigues LR. Biosynthesis and heterologous production of furanocoumarins: perspectives and current challenges. Nat Prod Rep. 2021;38:869–79.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues JL, Sousa M, Prather KLJ, Kluskens LD, Rodrigues LR. Selection of Escherichia coli heat shock promoters toward their application as stress probes. J Biotechnol. 2014;188:61–71.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues JL, Araújo RG, Prather KLJ, Kluskens LD, Rodrigues LR. Production of curcuminoids from tyrosine by a metabolically engineered Escherichia coli using caffeic acid as an intermediate. Biotechnol J. 2015a;10:599–609.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues JL, Araújo RG, Prather KLJ, Kluskens LD, Rodrigues LR. Heterologous production of caffeic acid from tyrosine in Escherichia coli. Enzym Microb Technol. 2015b;71:36–44.

    Article  CAS  Google Scholar 

  • Rodrigues JL, Prather KLJ, Kluskens LD, Rodrigues LR. Heterologous production of curcuminoids. Microbiol Mol Biol Rev. 2015c;79:39–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues JL, Couto MR, Araújo RG, Prather KLJ, Kluskens L, Rodrigues LR. Hydroxycinnamic acids and curcumin production in engineered Escherichia coli using heat shock promoters. Biochem Eng J. 2017a;125:41–9.

    Article  CAS  Google Scholar 

  • Rodrigues JL, Ferreira D, Rodrigues LR. Synthetic biology strategies towards the development of new bioinspired technologies for medical applications. In: Mohapatra S, Ranjan S, Dasgupta N, Mishra R, Thomas S, editors. Bioinspired materials for medical applications. Elsevier; 2017b. p. 451–97.

    Chapter  Google Scholar 

  • Rodrigues JL, Gomes D, Rodrigues LR. A combinatorial approach to optimize the production of curcuminoids from tyrosine in Escherichia coli. Front Bioeng Biotechnol. 2020;8(2020):00059.

    Article  Google Scholar 

  • Rodriguez A, Kildegaard KR, Li M, Borodina I, Nielsen J. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metab Eng. 2015;31:181–8.

    Article  CAS  PubMed  Google Scholar 

  • Sachan A, Ghosh S, Sen SK, Mitra A. Co-production of caffeic acid and p-hydroxybenzoic acid from p-coumaric acid by Streptomyces caeruleus MTCC 6638. Appl Microbiol Biotechnol. 2006;71:720–7.

    Article  CAS  PubMed  Google Scholar 

  • Salar RK, Certik M, Brezova V, Brlejova M, Hanusova V, Breierová E. Stress influenced increase in phenolic content and radical scavenging capacity of Rhodotorula glutinis CCY 20-2-26. 3 Biotech. 2013;3:53–60.

    Article  PubMed  Google Scholar 

  • Salau VF, Erukainure OL, Bharuth V, Islam MS. Caffeic acid improves glucose utilization and maintains tissue ultrastructural morphology while modulating metabolic activities implicated in neurodegenerative disorders in isolated rat brains. J Biochem Mol Toxicol. 2021;35:e22610.

    Article  CAS  PubMed  Google Scholar 

  • Saleme M d LS, Cesarino I, Vargas L, Kim H, Vanholme R, Goeminne G, Van Acker R, de Assis Fonseca FC, Pallidis A, Voorend W. Silencing CAFFEOYL SHIKIMATE ESTERASE affects lignification and improves saccharification in poplar. Plant Physiol. 2017;175:1040–57.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sariaslani FS. Development of a combined biological and chemical process for production of industrial aromatics from renewable resources. Annu Rev Microbiol. 2007;61:51–69.

    Article  CAS  PubMed  Google Scholar 

  • Shen J, Wang G, Zuo J. Caffeic acid inhibits HCV replication via induction of IFNα antiviral response through p62-mediated Keap1/Nrf2 signaling pathway. Antivir Res. 2018;154:166–73.

    Article  CAS  PubMed  Google Scholar 

  • Shen Y-P, Niu F-X, Yan Z-B, Fong LS, Huang Y-B, Liu J-Z. Recent advances in metabolically engineered microorganisms for the production of aromatic chemicals derived from aromatic amino acids. Front Bioeng Biotechnol. 2020;8:407.

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva H, Lopes NMF. Cardiovascular effects of caffeic acid and its derivatives: a comprehensive review. Front Physiol. 2020;11:595516.

    Article  PubMed  PubMed Central  Google Scholar 

  • Song X, Liu Q, Mao J, Wu Y, Li Y, Gao K, Zhang X, Bai Y, Xu H, Qiao M. POT1-mediated δ-integration strategy for high-copy, stable expression of heterologous proteins in Saccharomyces cerevisiae. FEMS Yeast Res. 2017;17:fox064.

    Article  Google Scholar 

  • Torres y Torres JL, Rosazza JPN. Microbial transformations of p-coumaric acid by Bacillus megaterium and Curvularia lunata. J Nat Prod. 2001;64:1408–14.

    Article  PubMed  Google Scholar 

  • Transparency Market Research 2021. Caffeic acid market - global industry analysis, size, share, growth, trends, and forecast, 2020–2030. Available at https://www.transparencymarketresearch.com/caffeic-acid-market.html. Accessed 28 June 2021.

  • Van Dyk TK, Templeton LJ, Cantera KA, Sharpe PL, Sariaslani FS. Characterization of the Escherichia coli AaeAB efflux pump: a metabolic relief valve? J Bacteriol. 2004;186:7196–204.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vanholme R, Cesarino I, Rataj K, **ao Y, Sundin L, Goeminne G, Kim H, Cross J, Morreel K, Araujo P. Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in Arabidopsis. Science. 2013;341:1103–6.

    Article  CAS  PubMed  Google Scholar 

  • Vannelli T, Wei Qi W, Sweigard J, Gatenby AA, Sariaslani FS. Production of p-hydroxycinnamic acid from glucose in Saccharomyces cerevisiae and Escherichia coli by expression of heterologous genes from plants and fungi. Metab Eng. 2007;9:142–51.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Mahajani M, Jackson SL, Yang Y, Chen M, Ferreira EM, Lin Y, Yan Y. Engineering a bacterial platform for total biosynthesis of caffeic acid derived phenethyl esters and amides. Metab Eng. 2017a;44:89–99.

    Article  PubMed  Google Scholar 

  • Wang W, Sun W, ** L. Caffeic acid alleviates inflammatory response in rheumatoid arthritis fibroblast-like synoviocytes by inhibiting phosphorylation of IκB kinase α/β and IκBα. Int Immunopharmacol. 2017b;48:61–6.

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Du G, Zhou J, Chen J. Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy. Metab Eng. 2013;16:48–55.

    Article  PubMed  Google Scholar 

  • Xu F, Bell SG, Peng Y, Johnson EOD, Bartlam M, Rao Z, Wong L. Crystal structure of a ferredoxin reductase for the CYP199A2 system from Rhodopseudomonas palustris. Proteins: Struct, Funct, Bioinf. 2009;77:867–80.

    Article  CAS  Google Scholar 

  • Xue Z, McCluskey M, Cantera K, Ben-Bassat A, Sariaslani FS, Huang L. Improved production of p-hydroxycinnamic acid from tyrosine using a novel thermostable phenylalanine/tyrosine ammonia lyase enzyme. Enzym Microb Technol. 2007a;42:58–64.

    Article  CAS  Google Scholar 

  • Xue Z, McCluskey M, Cantera K, Sariaslani FS, Huang L. Identification, characterization and functional expression of a tyrosine ammonia-lyase and its mutants from the photosynthetic bacterium Rhodobacter sphaeroides. J Ind Microbiol Biotechnol. 2007b;34:599–604.

    Article  CAS  PubMed  Google Scholar 

  • Yuan X, Kong J, Ma Z, Li N, Jia R, Liu Y, Zhou F, Zhan Q, Liu G, Gao S. KDM4C, a H3K9me3 histone demethylase, is involved in the maintenance of human ESCC-initiating cells by epigenetically enhancing SOX2 expression. Neoplasia. 2016;18:594–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Stephanopoulos G. Engineering E. coli for caffeic acid biosynthesis from renewable sugars. Appl Microbiol Biotechnol. 2013;97:3333–41.

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Liu H, Li X, Liu D, Dong X, Li F, Wang E, Li B, Yuan Y. Production of naringenin from D-xylose with co-culture of E. coli and S. cerevisiae. Eng Life Sci. 2017;17:1021–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Liu P, Chen J, Du G, Li H, Zhou J. Characterization of mutants of a tyrosine ammonia-lyase from Rhodotorula glutinis. Appl Microbiol Biotechnol. 2016;100:10443–52.

    Article  CAS  PubMed  Google Scholar 

  • Zhou P, Yue C, Shen B, Du Y, Xu N, Ye L. Metabolic engineering of Saccharomyces cerevisiae for enhanced production of caffeic acid. Appl Microbiol Biotechnol. 2021;105:5809–19.

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Liao S, Ye J, Zhang H. Cloning and characterization of a novel tyrosine ammonia lyase-encoding gene involved in bagremycins biosynthesis in Streptomyces sp. Biotechnol Lett. 2012;34:269–74.

    Article  CAS  PubMed  Google Scholar 

  • Zielińska D, Zieliński H, Laparra-Llopis JM, Szawara-Nowak D, Honke J, Giménez-Bastida JA. Caffeic acid modulates processes associated with intestinal inflammation. Nutrients. 2021;13:554.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UIDB/BIO/04469/2020 unit, and by LABBELS – Associate Laboratory in Biotechnology, Bioengineering and Microelectromechnaical Systems, LA/P/0029/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joana L. Rodrigues .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rodrigues, J.L., Rodrigues, L.R. (2022). Microbial Production of Caffeic Acid. In: Jafari, S.M., Harzevili, F.D. (eds) Microbial Production of Food Bioactive Compounds. Springer, Cham. https://doi.org/10.1007/978-3-030-81403-8_9-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81403-8_9-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81403-8

  • Online ISBN: 978-3-030-81403-8

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation