Function-Oriented Model-Based Product Development

  • Chapter
  • First Online:
Design Methodology for Future Products

Abstract

The innovative strength and competitiveness of a company depends on mastering the growing complexity of digitally networked products in an efficient way. The complexity is driven by increasing interactions among the different domains, like mechanical, electrical or software engineering on all system levels. The interdependencies require modelling approaches, that allow to explicitly and transparently reveal those interdependencies on requirements, functional architectures and solution level over all phases of the development. The increasing interdependencies and the need for more efficiency forces a change from component oriented, document-based product development to a function-oriented, model-based product development with consistently linked models across all participating domains. We propose a system architecture that describes the system in a comprehensible way across domains. The domains are able to connect their models to the architecture and link them down to the parameter level over requirements, functional architecture to the solution layer. The resulting system model allows a transparent, cross-domain map** of functional interactions. Principle solution models close the gap between the functional and the solution layer, especially in mechanical engineering. The efficiency in development processes can be significantly increased by using model libraries to assign functions to solution models and by building ontologies to structure domain-specific models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 93.08
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 117.69
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Albers A, Zingel C (2011) Interdisciplinary systems modelling using the contact and channel-model for SYSML. In: Culley SJ (ed) ICED 11: impacting society through engineering design, København, the 18th international conference on engineering design. Design Society, Glasgow, pp 196–207

    Google Scholar 

  • Alur R (2015) Principles of cyber-physical systems. MIT-Press, Massachusetts

    Google Scholar 

  • Andary F, Berroth J, Jacobs G (2019) An energy-based load distribution approach for the application of gear mesh stiffness on elastic bodies. J Mech Des 141(9)

    Google Scholar 

  • Broy M (2010) Cyber-physical systems innovation Durch software-intensive Eingebettete Systeme. Springer, Berlin, Heidelberg

    Google Scholar 

  • Drave I, Hillemacher S, Greifenberg T et al (2019) SMArDT modelling for automotive software testing. Softw Pract Exp 49(2):301–328

    Article  Google Scholar 

  • Drave I, Rumpe B, Wortmann A et al (2020) Modelling mechanical functional architectures in SysML. In: Proceedings of the 23rd ACM/IEEE international conference on model driven engineering languages and systems. Association for Computing Machinery, New York, pp 79–89

    Chapter  Google Scholar 

  • Dykes K L, Zahle F, Merz K, et al (2017) IEA wind task 37: systems modelling framework and ontology for wind turbines and plants. National Renewable Energy lab. (NREL), golden

    Google Scholar 

  • Eigner M, Gilz T, Zafirov R (2012) Proposal for functional product de-scription as part of a PLM solution in interdisciplinary product development. In: Marjanović D, Storga M, Pavkovic N, Bojcetic N (eds) DESIGN 2012 proceedings of the 12th international design conference, Dubrovnik, May 2012, UNIZAG-FSB 2012, pp 1667–76

    Google Scholar 

  • Feldhusen J, Grote K-H (eds) (2013) Pahl/Beitz Konstruktionslehre Methoden und Anwendung erfolgreicher Produktentwicklung, vol 8. Springer, Berlin

    Google Scholar 

  • Gausemeier J, Dorociak R, Pook S, et al (2010) A computer-aided cross-domain modelling of mechatronic systems. In: Marjanović D, Storga M, Pavkovic N, Bojcetic N (eds) DESIGN 2010 proceedings of the 11th international design conference, Dubrovnik, May 2010, pp 723–32

    Google Scholar 

  • Göhlich D, Fay TA (2021) Arbeiten mit Anforderungen: Requirements Management. In: Bender B, Gericke K (eds) Pahl/Beitz Konstruktionslehre. Springer Vieweg, Berlin, Heidelberg

    Google Scholar 

  • Graessler I, Hentze J (2020) The new V-model of VDI 2206 and its validation. Automatisierungstechnik 68(5):312–324

    Article  Google Scholar 

  • Graessler I, Oleff C, Scholle P (2020) Method for systematic assessment of – requirement change risk in industrial practice. Appl Sci 10:8697–8725

    Article  Google Scholar 

  • Grundel M (2017) Ein Modell zur Überbrückung der derzeitigen Lücke in der modellbasierten Konzeption mechanischer Systeme. Institut für Konstruktions und Fertigungstechnik, vol 45

    Google Scholar 

  • Höpfner G, Jacobs G, Zerwas T, et al (2021) Model-based design workflows for cyber-physical systems applied to an electric-mechanical coolant pump. In: IOP Conference Series: Materials Science and Engineering 1097, 1

    Google Scholar 

  • Hubka V, Eder WE (1988) Theory of technical systems. A total concept theory for engineering design. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Koller R (1998) Konstruktionslehre für den Maschinenbau Grundlagen zur Neu- und Weiterentwicklung technischer Produkte mit Beispielen, vol 4. Springer, Berlin

    Google Scholar 

  • Koller R, Kastrup N (1994) Prinziplösungen zur Konstruktion technischer Produkte. Springer, Berlin

    Book  Google Scholar 

  • Konrad C, Riedel R, Rasor R et al (2019) Enabling complexity management through merging business process modelling with MBSE. In: Procedia CIRP. 29th CIRP design conference, vol 84. Elsevier, Amsterdam, pp 451–456

    Google Scholar 

  • Lamm JG, Weilkiens T (2010) Functional architectures in SysML. Proceedings of the TdSE

    Google Scholar 

  • Möser G, Kramer C, Grundel M et al (2016) Fortschrittsbericht zur modellbasierten Unterstützung der Konstrukteurstätigkeit durch FAS4M. In: Schulze S-O, Muggeo C (eds) Tag des systems engineering. Hanser, München, pp 69–78

    Google Scholar 

  • Pasch G, Jacobs G, Höpfner G et al (2019) Multi-domain simulation for the assessment of the NVH behaviour of a tractor with hydrostatic-mechanical power Split transmission. LandTechnik AgEng:19–27

    Google Scholar 

  • Patzak G (1982) Systemtechnik - Planung komplexer innovativer Systeme. Grundlagen, Methoden, Techniken. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Ponn J, Lindemann U (2011) Funktionen. In: Konzeptentwicklung und Gestaltung technischer Produkte. VDI-Buch. Springer, Berlin, Heidelberg

    Chapter  Google Scholar 

  • Ross DT, Schoman KE (1977) Structured analysis for requirements definition. IEEE Trans Softw Eng SE-3(1):6–15

    Article  Google Scholar 

  • Roth K (1994) Konstruieren mit Konstruktionskatalogen Band 1: Konstruktionslehre, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Rupp C (2014) Requirements-Engineering und –Management: Aus der Praxis von klassisch bis agil, 6th edn. Carl Hanser Verlag, München

    Google Scholar 

  • Srinivasan V, Chakrabarti A, Lindemann U (2012) A framework for describing functions in design. In: Marjanović D, Storga M, Pavkovic N, Bojcetic N (eds) DESIGN 2012 proceedings of the 12th international design conference, Dubrovnik, May 2012, UNIZAG-FSB 2012, pp 1111–1122

    Google Scholar 

  • Suh N (1998) Axiomatic design theory for systems. Res Eng Des 10:189–209

    Article  Google Scholar 

  • VDI 2221 Blatt 1:2019–11 Entwicklung technischer Produkte und Systeme - Modell der Produktentwicklung, 2019–11

    Google Scholar 

  • VDI 2221 Blatt 2:2019–11 Entwicklung technischer Produkte und Systeme - Gestaltung individueller Produktentwicklungsprozesse, 2019–11

    Google Scholar 

  • Weber C (2014) Modelling products and product development based on characteristics and properties. In: Chakrabarti A, Blessing LTM (eds) An anthology of theories and models of design. Springer, London, pp 327–352

    Chapter  Google Scholar 

  • Weilkiens T (2016) SYSMOD – the systems modelling toolbox. Pragmatic MBSE with SysML. MBSE4U

    Google Scholar 

  • Zerwas T, Jacobs G, Spütz K et al (2021) Mechanical concept development using principle solution models. In: IOP conference series: materials science and engineering 1097, 1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Jacobs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jacobs, G., Konrad, C., Berroth, J., Zerwas, T., Höpfner, G., Spütz, K. (2022). Function-Oriented Model-Based Product Development. In: Krause, D., Heyden, E. (eds) Design Methodology for Future Products. Springer, Cham. https://doi.org/10.1007/978-3-030-78368-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78368-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78367-9

  • Online ISBN: 978-3-030-78368-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation