Abstract

The rhizosphere is possibly the utmost multifaceted microbiological environment on the planet earth, encompassing a unified grid of plant roots, soil, and various microbiological consortiums. This thin zone of interaction existing amid the soil particles and plant roots establishes the primary plant-influenced habitat which is further stumbled upon by soil microbes. The rhizospheric environ is sturdily affected by the plant metabolism via the discharge of plant-fixed photosynthates as a collection of diverse root exudates. This rhizospheric portion is of utmost significance for the ecosystem amenities, for example, carbon and water cycling, crop production, nutrient trap**, and carbon uptake and storage. It is also helpful in mitigating various kinds of stresses like drought, salinity stress, temperature stress, heavy metal stress, etc. The various beneficial attributes of rhizospheric interactions can be selectively enhanced by the engineering of the rhizosphere. The different rhizospheric components can be engineered for plant health promotion and therefore can be used as tools for combatting various challenges confronted by the agro-ecosystems. The engineered rhizosphere, thus, can be used to advance the agricultural production under stressful conditions and can also prove to be a successful tool for an enhanced drawdown of atmospheric carbon dioxide to stabilized carbon pools in soil ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adl S (2016) Rhizosphere, food security, and climate change: a critical role for plant-soil research. Rhizosphere 1:1–3

    Article  Google Scholar 

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier, New York

    Google Scholar 

  • Ahemad M, Khan M (2012) Effects of pesticides on plant growth-promoting traits of Mesorhizobium stain MRC4. J Saudi Soc Agric Sci 11:63–71

    Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth-promoting rhizobacteria: current perspective. JKSUS 26:1–20

    Google Scholar 

  • Ahkami AH, White RA III, Handakumbura PP, Jansson C (2017) Rhizosphere engineering: enhancing sustainable plant ecosystem productivity. Rhizosphere 3:233–243

    Article  Google Scholar 

  • Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167

    Article  Google Scholar 

  • Ali MA, Abbas A, Azeem F, Javed N, Bohlmann H (2015) Plant-nematode interactions: from genomics to metabolomics. Int J Agric Biol 17:1071–1082

    Article  Google Scholar 

  • Ali MA, Naveed M, Mustafa A, Abbas A (2017) The good, the bad, and the ugly of rhizosphere microbiome. In: Kumar V, Kumar M, Parsad R, Choudhary DK (eds) Probiotics and plant health 7. Springer, Singapore, pp 253–290

    Chapter  Google Scholar 

  • Andrews SC, Robinson AK, & Rodríguez-Quiñones F (2003) Bacterial iron homeostasis. FEMS microbiology reviews, 27(2-3):215–237

    Google Scholar 

  • Antoniou A, Tsolakidou MD, Stringlis IA, Pantelides IS (2017) Rhizosphere microbiome recruited from a suppressive compost improves plant fitness and increases protection against vascular wilt pathogens of tomato. Front Plant Sci 8:2022

    Article  Google Scholar 

  • Ashraf MP, Harris PJ (2004) Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166(1):3–16

    Article  Google Scholar 

  • Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473

    Article  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  Google Scholar 

  • Badri DV, Quintana N, El Kassis EG, Kim HK, Choi YH, Sugiyama A, Verpoorte R, Martinoia E, Manter DK, Vivanco JM (2009) An ABC transporter mutation alters root exudation of phytochemicals that provoke an overhaul of natural soil microbiota. Plant Physiol 151(4):2006–2017

    Article  Google Scholar 

  • Baetz U, Martinoia E (2014) Root exudates: the hidden part of plant defense. Trends Plant Sci 19:90–98

    Article  Google Scholar 

  • Bais HP, Broeckling CD, Vivanco JM (2008) Root exudates modulate plant-microbe interactions in the rhizosphere. In: Karlovesky P (ed) Secondary metabolites in soil ecology. Springer, Berlin, pp 241–252

    Chapter  Google Scholar 

  • Bakker MG, Manter DK, Sheflin AM, Weir TL, Vivanco JM (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360:1–13

    Article  Google Scholar 

  • Bal HB, Nayak L, Das S, Adhya TK (2013) Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth-promoting activity under salt stress. Plant Soil 366(1–2):93–105

    Article  Google Scholar 

  • Baudin E, Benizri E, & Guckert A (2003) Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol Biochem, 35(9):1183–1192

    Google Scholar 

  • Baumgardner DJ, Temte JL, Gutowski E et al (2011) The differential diagnosis of pulmonary blastomycosis in Wisconsin: a Wisconsin network for Health Research (WiNHR) study. Wis Med J 110:68–73

    Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486

    Article  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    Article  Google Scholar 

  • Berg G, Eberl L, Hartmann A (2005) The rhizosphere as a reservoir for opportunistic human pathogenic bacteria. Environ Microbiol 7(11):1673–1685

    Article  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant-growth promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  Google Scholar 

  • Biate DL, Kumari A, Annapurna K, Kumar LV, Ramadoss D, Reddy KK, Naik S (2015) Legume root exudates: their role in symbiotic interactions. In: Arora NK (ed) Plant microbes symbiosis: applied facets. Springer, New Delhi, pp 259–271

    Chapter  Google Scholar 

  • Blackburn JK, McNyset KM, Curtis A, Hugh-Jones ME (2007) Modeling the geographic distribution of Bacillus anthracis, the causative agent of anthrax disease, for the contiguous United States using predictive ecologic niche modeling. Am J Trop Med Hyg 77:1103–1110

    Article  Google Scholar 

  • Buee M, De Boer W, Martin F, Van Overbeek L, Jurkevitch E (2009) The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant and Soil, 321(1):189–212

    Google Scholar 

  • Boehm MJ, Wu T, Stone AG, Kraakman B, Iannotti DA, Wilson GE, Madden LV, Hoitink H (1997) Cross-polarized magic-angle spinning (sup13) C nuclear magnetic resonance spectroscopic characterization of soil organic matter relative to culturable bacterial species composition and sustained biological control of pythium root rot. Appl Environ Microbiol 63(1):162–168

    Article  Google Scholar 

  • Bornø ML, Eduah JO, Müller-Stöver DS, Liu F (2018) Effect of different biochars on phosphorus (P) dynamics in the rhizosphere of Zea mays L. (maize). Plant Soil 431(1–2):257–272

    Article  Google Scholar 

  • Bowen GD, Rovira AD (1991) The rhizosphere, the hidden half of the hidden half. In: Waisel Y, Eshel A, Kafkafi U (eds) The plant roots, the hidden half. Marcel Dekker, New York, pp 641–669

    Google Scholar 

  • Breidenbach B, Pump J, Dumont MG (2016) Microbial community structure in the rhizosphere of rice plants. Front Microbiol 6:1537

    Article  Google Scholar 

  • Bron PA, Van Baarlen P, Kleerebezem M (2012) Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat Rev Microbiol 10(1):66–78

    Article  Google Scholar 

  • Burns RG (2010) Albert Rovira and a half-century of rhizosphere research. In: VVSR G, Ryder M, Radcliffe J (eds) The Rovira rhizosphere symposium. The ATSE Crawford Fund, Adelaide, pp 1–10

    Google Scholar 

  • Callaway RM, Aschehoug ET (2000) Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290(5491):521–523

    Article  Google Scholar 

  • Campbell RN (1996) Fungal transmission of plant viruses. Annu Rev Phytopathol 34:87–108

    Article  Google Scholar 

  • Carvalhais LC, Dennis PG, Fedoseyenko D, Hajirezaei MR, Borriss R, von Wirén N (2011) Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency. J Plant Nutr Soil Sci 174(1):3–11

    Article  Google Scholar 

  • Carvalhais LC, Dennis PG, Fan B, Fedoseyenko D, Kierul K, Becker A, von Wiren N, Borriss R (2013) Linking plant nutritional status to plant-microbe interactions. PLoS One 8(7)

    Google Scholar 

  • Chaparro JM, Badri DV, Vivanco JM (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8(4):790–803

    Article  Google Scholar 

  • Chapman SW (2005) Blastomyces dermatitidis. In: Mandell GL, Bennett JE, Dolin R (eds) Mandell, Douglas, and Bennett’s principles and practice of infectious diseases, 6th edn. Elsevier, Philadelphia, pp 3026–3040

    Google Scholar 

  • Chen S, Li X, Lavoie M, ** Y, Xu J, Fu Z, Qian H (2017) Diclofop-methyl affects microbial rhizosphere community and induces systemic acquired resistance in rice. J Environ Sci 51:352–360

    Article  Google Scholar 

  • Cheng J, Li Y, Gao W, Chen Y, Pan W, Lee X, Tang Y (2018a) Effects of biochar on Cd and Pb mobility and microbial community composition in a calcareous soil planted with tobacco. Biol Fertil Soils 54(3):373–383

    Article  Google Scholar 

  • Cheng N, Peng Y, Kong Y, Li J, Sun C (2018b) Combined effects of biochar addition and nitrogen fertilizer reduction on the rhizosphere metabolomics of maize (Zea mays L.) seedlings. Plant Soil 433(1–2):19–35

    Article  Google Scholar 

  • Cirou A, Diallo S, Kurt C, Latour X, Faure D (2007) Growth promotion of quorum-quenching bacteria in the rhizosphere of Solanum tuberosum. Environ Microbiol 9(6):1511–1522

    Article  Google Scholar 

  • Cirou A, Raffoux A, Diallo S, Latour X, Dessaux Y, Faure D (2011) Gamma-caprolactone stimulates growth of quorum-quenching Rhodococcus populations in a large-scale hydroponic system for culturing Solanum tuberosum. Res Microbiol 162(9):945–950

    Article  Google Scholar 

  • Cirou A, Mondy S, An S, Charrier A, Sarrazin A, Thoison O, DuBow M, Faure D (2012) Efficient biostimulation of native and introduced quorum-quenching Rhodococcus erythropolis populations is revealed by a combination of analytical chemistry, microbiology, and pyrosequencing. Appl Environ Microbiol 78(2):481–492

    Article  Google Scholar 

  • Cornforth DM, Popat R, McNally L, Gurney J, Scott-Phillips TC, Ivens A, Diggle SP, Brown SP (2014) Combinatorial quorum sensing allows bacteria to resolve their social and physical environment. Proc Natl Acad Sci 111(11):4280–4284

    Article  Google Scholar 

  • Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013) The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Chang Biol 19(4):988–995

    Article  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. In: Adu-Gyamfi JJ (ed) Food security in nutrient-stressed environments: exploiting plants’ genetic capabilities. Springer, Dordrecht, pp 201–213

    Chapter  Google Scholar 

  • van Dam NM, Bouwmeester HJ (2016) Metabolomics in the rhizosphere: tap** into belowground chemical communication. Trends Plant Sci 21(3):256–265

    Article  Google Scholar 

  • De Brito AM, Gagne S, Antoun H (1995) Effect of compost on rhizosphere microflora of the tomato and on the incidence of plant growth-promoting rhizobacteria. Appl Environ Microbiol 61(1):194–199

    Article  Google Scholar 

  • De Corato U (2020) Disease-suppressive compost enhances natural soil suppressiveness against soil-borne plant pathogens: a critical review. Rhizosphere 5:100192

    Article  Google Scholar 

  • Deng W, Luo K, Li Z, Yang Y, Hu N, Wu Y (2009) Overexpression of Citrus junos mitochondrial citrate synthase gene in Nicotiana benthamiana confers aluminum tolerance. Planta 230(2):355–365

    Article  Google Scholar 

  • Dessaux Y, Grandclément C, Faure D (2016) Engineering the rhizosphere. Trends Plant Sci 21(3):266–278

    Article  Google Scholar 

  • Dixon R, Kahn D (2004) Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2:621–631

    Article  Google Scholar 

  • Doornbos RF, van Loon LC, Bakker PA (2012) Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron Sustain Dev 32(1):227–243

    Article  Google Scholar 

  • Dreyer I, Gomez-Porras JL, Riaño-Pachón DM, Hedrich R, Geiger D (2012) Molecular evolution of slow and quick anion channels (SLACs and QUACs/ALMTs). Front Plant Sci 3:263

    Article  Google Scholar 

  • Dubey S, Sharma S (2019) Rhizospheric microbiome engineering as a sustainable tool in agriculture: approaches and challenges. In: Satyanarayana T, Das SK, Johri BN (eds) Microbial diversity in ecosystem sustainability and biotechnological applications. Springer, Singapore, pp 257–272

    Chapter  Google Scholar 

  • Dumbrell AJ, Nelson M, Helgason T, Dytham C, Fitter AH (2010) Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J 4(3):337–345

    Article  Google Scholar 

  • Dutta J, & Bora U (2019) Rhizosphere microbiome and plant probiotics. In New and Future Developments in Microbial Biotechnology and Bioengineering. Elsevier, 273–281

    Google Scholar 

  • Fahey JW (1988) Endophytic bacteria for the delivery of agrochemicals to plants. In: Cutler HO (ed) Biologically active natural products. American Chemical Society, Washington DC, pp 120–128

    Chapter  Google Scholar 

  • FAO (2019a) The State of Food and Agriculture. Moving forward on food loss and waste reduction. Rome, FAO. Licence: CC BY-NC-SA 3.0 IGO. http://www.fao.org/3/ca6030en/ca6030en.pdf

    Google Scholar 

  • FAO (2019b) World Food and Agriculture—statistical pocketbook 2019. Rome, FAO. http://www.fao.org/3/ca6463en/ca6463en.pdf

    Google Scholar 

  • Farrar K, Bryant D, Cope-Selby N (2014) Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J 12(9):1193–1206

    Article  Google Scholar 

  • Faure D, Dessaux Y (2007) Quorum sensing as a target for develo** control strategies for the plant pathogen Pectobacterium. Eur J Plant Pathol 119(3):353–365

    Article  Google Scholar 

  • Ferluga S, & Venturi V (2009) OryR is a LuxR-family protein involved in interkingdom signaling between pathogenic Xanthomonas oryzae pv. oryzae and rice. Journal of bacteriology, 191(3):890–897

    Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631

    Article  Google Scholar 

  • Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford MA, Knight R (2012) Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J 6(5):1007–1017

    Article  Google Scholar 

  • Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59

    Article  Google Scholar 

  • Frenk S, Hadar Y, Minz D (2014) Resilience of soil bacterial community to irrigation with water of different qualities under Mediterranean climate. Environ Microbiol 16(2):559–569

    Article  Google Scholar 

  • Furukawa J, Yamaji N, Wang H, Mitani N, Murata Y, Sato K, Katsuhara M, Takeda K, Ma JF (2007) An aluminum-activated citrate transporter in barley. Plant Cell Physiol 48:1081–1091

    Article  Google Scholar 

  • Geetha SJ, Joshi SJ (2013) Engineering rhizobial bioinoculants: a strategy to improve iron nutrition. Sci World J 2013:315890

    Article  Google Scholar 

  • Giordano W, Hirsch AM (2004) The expression of MaEXP1,a Melilotus alba expansin gene, is upregulated during the sweet clover-Sinorhizobium meliloti interaction. Mol Plant-Microbe Interact 17:613–622

    Article  Google Scholar 

  • Green SJ, Michel FC, Hadar Y, Minz D (2007) Contrasting patterns of seed and root colonization by bacteria from the genus Chryseobacterium and from the family Oxalobacteraceae. ISME J 1(4):291–299

    Article  Google Scholar 

  • Guang-Hua WA, Jian J, Mei-Na XU, **ang-Wen PA, Tang C (2007) Inoculation with phosphate-solubilizing fungi diversifies the bacterial community in rhizospheres of maize and soybean. Pedosphere 17(2):191–199

    Article  Google Scholar 

  • Gupta R, Singh A, Srivastava M, Shanker K, Pandey R (2019) Plant-microbe interactions endorse growth by uplifting microbial community structure of Bacopa monnieri rhizosphere under nematode stress. Microbiol Res 218:87–96

    Article  Google Scholar 

  • Guttman DS, McHardy AC, Schulze-Lefert P (2014) Microbial genome-enabled insights into plant–microorganism interactions. Nat Rev Genet 15(12):797–813

    Article  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3(4):307–319

    Article  Google Scholar 

  • Hadar Y, Papadopoulou KK (2012) Suppressive composts: microbial ecology links between abiotic environments and healthy plants. Annu Rev Phytopathol 50:133–153

    Article  Google Scholar 

  • Hardoim PR, Van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79(3):293–320

    Article  Google Scholar 

  • Hartmann A, Schmid M, Van Tuinen D, Berg G (2009) Plant-driven selection of microbes. Plant Soil 321(1–2):235–257

    Article  Google Scholar 

  • Hawes MC, Gunawardena U, Miyasaka S, Zhao X (2000) The role of root border cells in plant defense. Trends Plant Sci 5(3):128–133

    Article  Google Scholar 

  • Hawkes CV, DeAngelis KM, Firestone MK (2007) Root interactions with soil microbial communities and processes. In: Cardon Z, Whitbeck J (eds) The rhizosphere. Academic, New York, pp 1–29

    Google Scholar 

  • He Y, Wu Z, Wang W, Liu X, Ye BC (2019) Bacterial community and phosphorus species changes in pepper rhizosphere soils after Pseudomonas putida Rs-198 inoculation. Rhizosphere 11:100164

    Article  Google Scholar 

  • Hinsinger P, Plassard C, Tang CX, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59

    Article  Google Scholar 

  • Huang XF, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92(4):267–275

    Article  Google Scholar 

  • Huang J, Liu Z, Li S, Xu B, Gong Y, Yang Y, Sun H (2016) Isolation and engineering of plant growth promoting rhizobacteria Pseudomonas aeruginosa for enhanced cadmium bioremediation. J Gen Appl Microbiol 62(5):258–265

    Article  Google Scholar 

  • Jaafar NM (2014) Biochar as a habitat for arbuscular mycorrhizal fungi. In: Jaafar NM (ed) Mycorrhizal fungi: use in sustainable agriculture and land restoration. Springer, Berlin, pp 297–311

    Chapter  Google Scholar 

  • Jeranyama P, Shrestha A, Neupane N (2020) Sustainable food systems: diversity, scope and challenges. In: Rusinamhodzi L (ed) The role of ecosystem services in sustainable food systems. Academic, New York, pp 1–16

    Google Scholar 

  • Jishma P, Remakanthan A, Radhakrishnan EK (2019) Engineering rhizobacterial functions for the improvement of plant growth and disease resistance. In: Gupta VK, Prabha R (eds) Microbial interventions in agriculture and environment. Springer, Singapore

    Google Scholar 

  • Jones JT, Haegeman A, Danchin EG, Gaur HS, Helder J, Jones MG, Kikuchi T, Manzanilla-Lopez R, Palomares-Rius JE, Wesemael WM, Perry RN (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol. https://doi.org/10.1111/mpp.12057

  • Ju W, ** X, Liu L, Shen G, Zhao W, Duan C, Fang L (2020) Rhizobacteria inoculation benefits nutrient availability for phytostabilization in copper contaminated soil: drivers from bacterial community structures in rhizosphere. Appl Soil Ecol 150:103450

    Article  Google Scholar 

  • Kang J, Park J, Choi H, Burla B, Kretzschmar T, Lee Y, Martinoia E (2011) Plant ABC transporters. Arab B 9:e0153

    Article  Google Scholar 

  • Kapoor D, Sharma P, Sharma MM, Kumari A, Kumar R (2020) Microbes in pharmaceutical industry. In: Sharma SG, Sharma NR, Sharma M (eds) Microbial diversity, interventions and scope. Springer, Singapore, pp 259–299

    Chapter  Google Scholar 

  • Kavitha B, Reddy PV, Kim B, Lee SS, Pandey SK, Kim KH (2018) Benefits and limitations of biochar amendment in agricultural soils: a review. J Environ Manag 227:146–154

    Article  Google Scholar 

  • Khan N, Bano A (2019) Rhizobacteria and abiotic stress management. In: Sayyed RZ (ed) Plant growth promoting rhizobacteria for sustainable stress management. Springer, Singapore, pp 65–80

    Chapter  Google Scholar 

  • Kumar V, Baweja M, Singh PK, Shukla P (2016) Recent developments in systems biology and metabolic engineering of plant–microbe interactions. Front Plant Sci 7:1421

    Article  Google Scholar 

  • Kumar V, AlMomin S, Al-Aqeel H, Al-Salameen F, Nair S, Shajan A (2018) Metagenomic analysis of rhizosphere microflora of oil-contaminated soil planted with barley and alfalfa. PLoS One 13(8)

    Google Scholar 

  • Kuzyakov Y, Razavi BS (2019) Rhizosphere size and shape: temporal dynamics and spatial stationarity. Soil Biol Biochem 135:343–360

    Article  Google Scholar 

  • Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X (2009) Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol Biochem 41(2):210–219

    Article  Google Scholar 

  • Lambers H, Mougel C, Jaillard B, Hinsinger P (2009) Plant-microbe-soil interactions in the rhizosphere: an evolutionary perspective. Plant Soil 321(1–2):83–115

    Article  Google Scholar 

  • Lampel JS, Canter GL, Dimock MB, Kelly JL, Anderson JJ, Uratani BB, Foulke JS Jr, Turner JT (1994) Integrative cloning, expression, and stability of the cryIA gene from Bacillus thuringiensis subsp. kurstaki in a recombinant strain of Clavibacter xyli subsp. cynodontis. Appl Environ Microb 60:501–508

    Article  Google Scholar 

  • Lebeis SL (2015) Greater than the sum of their parts: characterizing plant microbiomes at the community-level. Curr Opin Plant Biol 24:82–86

    Article  Google Scholar 

  • Leff JW, Lynch RC, Kane NC, Fierer N (2016) Plant domestication and the assembly of bacterial and fungal communities associated with strains of the common sunflower, Helianthus annuus. New Phytol 214:412–423

    Article  Google Scholar 

  • Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528(7580):60–68

    Article  Google Scholar 

  • Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota—a review. Soil Biol Biochem 43(9):1812–1836

    Article  Google Scholar 

  • Lemanceau P, Bauer P, Kraemer S, & Briat JF (2009) Iron dynamics in the rhizosphere as a case study for analyzing interactions between soils, plants and microbes. Plant and Soil, 321(1):513–535

    Google Scholar 

  • Li H, Su JQ, Yang XR, Zhu YG (2019) Distinct rhizosphere effect on active and total bacterial communities in paddy soils. Sci Total Environ 649:422–430

    Article  Google Scholar 

  • Liang B, Lehmann J, Sohi SP, Thies JE, O’Neill B, Trujillo L, Gaunt J, Solomon D, Grossman J, Neves EG, Luizão FJ (2010) Black carbon affects the cycling of non-black carbon in soil. Org Geochem 41(2):206–213

    Article  Google Scholar 

  • Liu H, Coulthurst SJ, Pritchard L, Hedley PE, Ravensdale M, Humphris S, Burr T, Takle G, Brurberg MB, Birch PR, Salmond GP (2008) Quorum sensing coordinates brute force and stealth modes of infection in the plant pathogen Pectobacterium atrosepticum. PLoS Pathog 4(6):e1000093

    Article  Google Scholar 

  • Liu S, Lu Y, Yang C, Liu C, Ma L, Dang Z (2017) Effects of modified biochar on rhizosphere microecology of rice (Oryza sativa L.) grown in As-contaminated soil. Environ Sci Pollut Res 24(30):23815–23824

    Article  Google Scholar 

  • Liu J, Williams PC, Geisler-Lee J, Goodson BM, Fakharifar M, Peiravi M, Chen D, Lightfoot DA, Gemeinhardt ME (2018) Impact of wastewater effluent containing aged nanoparticles and other components on biological activities of the soil microbiome, Arabidopsis plants, and earthworms. Environ Res 164:197–203

    Article  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  Google Scholar 

  • Magalhaes JV, Liu J, Guimaraes CT, Lana UGP, Alves VMC, Wang YH, Schaffert RE, Hoekenga OA, Pineros MA, Shaff JE, Klein PE, Carneiro NP, Coelho CM, Trick HN, Kochian LV (2007) A gene in the multidrug and toxic compound extrusion (MATE) family confers aluminum tolerance in sorghum. Nat Genet 39:1156–1161

    Article  Google Scholar 

  • Man Y, Wang J, Tam NF, Wan X, Huang W, Zheng Y, Tang J, Tao R, Yang Y (2020) Responses of rhizosphere and bulk substrate microbiome to wastewater-borne sulfonamides in constructed wetlands with different plant species. Sci Total Environ 706:135955

    Article  Google Scholar 

  • Mansouri H, Petit A, Oger P, Dessaux Y (2002) Engineered rhizosphere: the trophic bias generated by opine-producing plants is independent of the opine type, the soil origin, and the plant species. Appl Environ Microbiol 68(5):2562–2566

    Article  Google Scholar 

  • Marschner P (2012) Rhizosphere biology. Marschner’s Miner Nutr Higher Plants 2:369–388

    Article  Google Scholar 

  • Marschner P, Crowley D, Rengel Z (2011) Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis–model and research methods. Soil Biol Biochem 43(5):883–894

    Article  Google Scholar 

  • Mazzola M, Hewavitharana SS, Strauss SL (2015) Brassica seed meal soil amendments transform the rhizosphere microbiome and improve apple production through resistance to pathogen reinfestation. Phytopathology 105(4):460–469

    Article  Google Scholar 

  • McCormack ML, Guo D, Iversen CM, Chen W, Eissenstat DM, Fernandez CW, Li L, Ma C, Ma Z, Poorter H, Reich PB (2017) Building a better foundation: improving root-trait measurements to understand and model plant and ecosystem processes. New Phytol 215(1):27–37

    Article  Google Scholar 

  • McNear DH Jr (2013) The rhizosphere-roots, soil and everything in between. Nat Educat Knowled 4(3):1

    Google Scholar 

  • Mendes R, Kruijt M, De Bruijn I, Dekkers E, van der Voort M, Schneider JH, Piceno YM, DeSantis TZ, Andersen GL, Bakker PA, Raaijmakers JM (2011) Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332(6033):1097–1100

    Article  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663

    Article  Google Scholar 

  • Mendes LW, Kuramae EE, Navarrete AA, Van Veen JA, Tsai SM (2014) Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J 8(8):1577–1587

    Article  Google Scholar 

  • Mia S, Van Groenigen JW, Van de Voorde TF, Oram NJ, Bezemer TM, Mommer L, Jeffery S (2014) Biochar application rate affects biological nitrogen fixation in red clover conditional on potassium availability. Agric Ecosyst Environ 191:83–91

    Article  Google Scholar 

  • Mickan BS, Abbott LK, Fan J, Hart MM, Siddique KH, Solaiman ZM, Jenkins SN (2018) Application of compost and clay under water-stressed conditions influences functional diversity of rhizosphere bacteria. Biol Fertil Soils 54(1):55–70

    Article  Google Scholar 

  • Mishra I, Arora NK (2019) Rhizoremediation: a sustainable approach to improve the quality and productivity of polluted soils. In: Arora NK, Kumar N (eds) Phyto and rhizo remediation. Springer, Singapore, pp 33–66

    Chapter  Google Scholar 

  • Mitter B, Pfaffenbichler N, Sessitsch A (2016) Plant–microbe partnerships in 2020. Microb Biotechnol 9(5):635–640

    Article  Google Scholar 

  • Moens M, Perry RN (2009) Migratory plant endoparasitic nematodes: a group rich in contrasts and divergence. Annu Rev Phytopathol 47:313–332

    Article  Google Scholar 

  • Mohanram S, Kumar P (2019) Rhizosphere microbiome: revisiting the synergy of plant-microbe interactions. Ann Microbiol 69(4):307–320

    Article  Google Scholar 

  • Nambiar PTC, Ma SW, Iyer VN (1990) Limiting and insect infestation of nitrogen-fixing root nodules of the Pigeon pea (Cajanus cajan) by engineering the expression of an entomocidal gene in its root nodules. Appl Environ Microbiol 56:2866–2869

    Article  Google Scholar 

  • Nester E, Gordon MP, Kerr A (2005) Agrobacterium tumefaciens: from plant pathology to biotechnology. APS, St. Paul, MN

    Google Scholar 

  • Nicolitch O, Colin Y, Turpault MP, Uroz S (2016) Soil type determines the distribution of nutrient mobilizing bacterial communities in the rhizosphere of beech trees. Soil Biol Biochem 103:429–445

    Article  Google Scholar 

  • Oburger E, Schmidt H (2016) New methods to unravel rhizosphere processes. Trends Plant Sci 21(3):243–255

    Article  Google Scholar 

  • Oburger E, Dell’mour M, Hann S, Wieshammer G, Puschenreiter M, Wenzel WW (2013) Evaluation of a novel tool for sampling root exudates from soil-grown plants compared to conventional techniques. Environ Exp Bot 87:235–247

    Article  Google Scholar 

  • Oger P, Mansouri H, Dessaux Y (2000) Effect of crop rotation and soil cover on alteration of the soil microflora generated by the culture of transgenic plants producing opines. Mol Ecol 9(7):881–890

    Article  Google Scholar 

  • Oger PM, Mansouri H, Nesme X, Dessaux Y (2004) Engineering root exudation of Lotus toward the production of two novel carbon compounds leads to the selection of distinct microbial populations in the rhizosphere. Microb Ecol 47(1):96–103

    Article  Google Scholar 

  • Okafor N (2016) Modern industrial microbiology and biotechnology. CRC Press, Boca Raton

    Book  Google Scholar 

  • Omote H, Hiasa M, Matsumoto T, Otsuka M, Moriyama Y (2006) The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharmacol Sci 27:587–593

    Article  Google Scholar 

  • Ortíz-Castro RANDY, Martínez-Trujillo MIGUEL, López-Bucio JOSE (2008) N-acyl-L-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana. Plant Cell Environ 31(10):1497–1509

    Article  Google Scholar 

  • Osman Y, Mowafy AM, Gebreil AS, Hamed SM (2018) Siderophore production by rhizosphere inhabiting bacteria and fungi. J Plant Product 9(9):717–721

    Article  Google Scholar 

  • Oved T, Shaviv A, Goldrath T, Mandelbaum RT, Minz D (2011) Influence of effluent irrigation on community composition and function of ammonia-oxidizing bacteria in soil. Appl Environ Microbiol 67(8):3426–3433

    Article  Google Scholar 

  • Pandey G (2018) Challenges and future prospects of agri-nanotechnology for sustainable agriculture in India. Environ Technol Innov 11:299–307. https://doi.org/10.1016/j.eti.2018.06.012

    Article  Google Scholar 

  • Parks SE, Cusano DA, Stimpert AK, Weinrich MT, Friedlaender AS, Wiley DN (2014) Evidence for acoustic communication among bottom foraging humpback whales. Sci Rep 4:7508

    Article  Google Scholar 

  • Pérez-Jaramillo JE, Mendes R, Raaijmakers JM (2016) Impact of plant domestication on rhizosphere microbiome assembly and functions. Plant Mol Biol 90(6):635–644

    Article  Google Scholar 

  • Petit A, Dessaux Y, Tempé J (1978) The biological significance of opines. I. A study of opine catabolism by Agrobacterium tumefaciens. In: Proceedings of the 4th international conference on plant pathogenic bacteria, vol. 1. Gilbert-Clarey, Angers, pp 143–151

    Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, Van Der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11(11):789–799

    Article  Google Scholar 

  • Pitzschke A (2016) Developmental peculiarities and seed-borne endophytes in quinoa: omnipresent, robust bacilli contribute to plant fitness. Front Microbiol 7:2

    Article  Google Scholar 

  • Preece C, Peñuelas J (2020) A return to the wild: root exudates and food security. Trends Plant Sci 25(1):14–21

    Article  Google Scholar 

  • Priyanka JP, Goral RT, Rupal KS, Saraf M (2019) Rhizospheric microflora: a natural alleviator of drought stress in agricultural crops. In: Sayyed RZ (ed) Plant growth promoting rhizobacteria for sustainable stress management. Springer, Singapore, pp 103–115

    Chapter  Google Scholar 

  • Prosser JI (2015) Dispersing misconceptions and identifying opportunities for the use of’omics’ in soil microbial ecology. Nat Rev Microbiol 13(7):439–446

    Article  Google Scholar 

  • Qi G, Zhang X, Zhao X (2013) Endophytic Bacillus subtilis WH2 containing Pinellia ternata agglutinin showed insecticidal activity against white-backed planthopper Sogatella furcifera. BioControl 58(2):233–246

    Article  Google Scholar 

  • Qian H, Wang R, Chen J, Ding H, Yong W, Songlin R, Fu Z (2012) Analysis of enantioselective biochemical, physiological, and transcriptional effects of the chiral herbicide diclofop methyl on rice seedlings. J Agric Food Chem 60(22):5515–5523

    Article  Google Scholar 

  • Qian H, Zhu Y, Chen S, ** Y, Lavoie M, Ke M, Fu Z (2018) Interacting effect of diclofop-methyl on the rice rhizosphere microbiome and denitrification. Pestic Biochem Physiol 146:90–96

    Article  Google Scholar 

  • Quiza L, St-Arnaud M, Yergeau E (2015) Harnessing phytomicrobiome signaling for rhizosphere microbiome engineering. Front Plant Sci 6:507

    Article  Google Scholar 

  • Raaijmakers JM, Sluis LV, Bakker PA, Schippers B, Koster M, Weisbeek PJ (1995) Utilization of heterologous siderophores and rhizosphere competence of fluorescent Pseudomonas spp. Can J Microbiol 41(2):126–135

    Article  Google Scholar 

  • Raaijmakers JM, Paulitz TC, Steinberg C, Alabouvette C, Moënne-Loccoz Y (2009) The rhizosphere: a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321(1–2):341–361

    Article  Google Scholar 

  • Ramirez KS, Lauber CL, Knight R, Bradford MA, Fierer N (2010) Consistent effects of nitrogen fertilization on soil bacterial communities in contrasting systems. Ecology 91(12):3463–3470

    Article  Google Scholar 

  • Rani K, Sharma P, Kumar S, Wati L, Kumar R, Gurjar DS, Kumar D (2019) Legumes for sustainable soil and crop management. In: Meena RS, Kumar S, Singh Bohra J, Jat ML (eds) Sustainable management of soil and environment. Springer, Singapore, pp 193–215

    Chapter  Google Scholar 

  • Rasmann S, Ali JG, Helder J, van der Putten WH (2012) Ecology and evolution of soil nematode chemotaxis. J Chem Ecol 38:615–628

    Article  Google Scholar 

  • Rengel Z (2002) Genetic control of root exudation. Plant Soil 245(1):59–70

    Article  Google Scholar 

  • Rensink WA, Buell CR (2004) Arabidopsis to rice. Applying knowledge from a weed to enhance our understanding of a crop species. Plant Physiol 135(2):622–629

    Article  Google Scholar 

  • Rodríguez-Caballero G, Caravaca F, Fernández-González AJ, Alguacil MM, Fernández-López M, Roldán A (2017) Arbuscular mycorrhizal fungi inoculation mediated changes in rhizosphere bacterial community structure while promoting revegetation in a semiarid ecosystem. Sci Total Environ 584:838–848

    Article  Google Scholar 

  • Rojas-Solís D, Zetter-Salmón E, Contreras-Pérez M, del Carmen R-GM, Macías-Rodríguez L, Santoyo G (2018) Pseudomonas stutzeri E25 and Stenotrophomonas maltophilia CR71 endophytes produce antifungal volatile organic compounds and exhibit additive plant growth-promoting effects. Biocatal Agric Biotechnol 13:46–52

    Article  Google Scholar 

  • Ryan PR, Dessaux Y, Thomashow LS, Weller DM (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321:363–383

    Article  Google Scholar 

  • Sánchez-Cañizares C, Jorrín B, Poole PS, Tkacz A (2017) Understanding the holobiont: the interdependence of plants and their microbiome. Curr Opin Microbiol 38:188–196

    Article  Google Scholar 

  • Santoyo G, Pacheco CH, Salmerón JH, León RH (2017) The role of abiotic factors modulating the plant-microbe-soil interactions: toward sustainable agriculture. A review. Span J Agric Res 15(1):13

    Article  Google Scholar 

  • Sasaki T, Yamamoto Y, Ezaki B, Katsuhara M, Ahn SJ, Ryan PR, Delhaize E, Matsumoto H (2004) A wheat gene encoding an aluminum-activated malate transporter. Plant J 37:645–653

    Article  Google Scholar 

  • Sasse J, Martinoia E, Northen T (2018) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23(1):25–41

    Article  Google Scholar 

  • Satyanarayana T, Johri BN, Das SK (2019) Microbial diversity in ecosystem sustainability and biotechnological applications: volume 1. Microbial diversity in normal and extreme environments. Springer, Singapore

    Book  Google Scholar 

  • Savka MA, Dessaux Y, Oger P, Rossbach S (2002) Engineering bacterial competitiveness and persistence in the phytosphere. Mol Plant-Microbe Interact 15(9):866–874

    Article  Google Scholar 

  • Schlegel R, Cakmak I, Torun B, Eker S, Köleli N (1997) The effect of rye genetic information on zinc, copper, manganese and iron concentration of wheat shoots in zinc deficient soil. Cereal Res Commun 1:177–184

    Article  Google Scholar 

  • Schmidt JE, Bowles TM, Gaudin A (2016) Using ancient traits to convert soil health into crop yield: impact of selection on maize root and rhizosphere function. Front Plant Sci 7:373

    Article  Google Scholar 

  • Sharma R, Chauhan A (2017) Rhizosphere microbiome and its role in plant growth promotion. In: Kalia V, Shouche P, Purohit H, Rahi P, Kalia VC (eds) Mining of microbial wealth and metagenomics. Springer, Singapore, pp 29–56

    Chapter  Google Scholar 

  • Sharma T, Dreyer I, Kochian L, Pineros MA (2016) The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security. Front Plant Sci 7:1488. https://doi.org/10.3389/fpls.2016.01488

    Article  Google Scholar 

  • Sharma P, Sangwan S, Kaur H (2019) Process parameters for biosurfactant production using yeast Meyerozyma guilliermondii YK32. Environ Monit Assess 191(9):531

    Article  Google Scholar 

  • Sharma P et al (2020) Role of microbes for attaining enhanced food crop production. In: Singh J, Vyas A, Wang S, Prasad R (eds) Microbial biotechnology: basic research and applications. Environmental and microbial biotechnology. Springer, Singapore

    Google Scholar 

  • Sheng MM, Jia HK, Zhang GY, Zeng LN, Zhang TT, Long YH, Lan J, Hu ZQ, Zeng Z, Wang B, Liu HM (2020) Siderophore production by Rhizosphere biological control bacteria Brevibacillus brevis GZDF3 of Pinellia ternata and its antifungal effects on Candida albicans. J Microbiol Biotechnol 30(5):689–699

    Article  Google Scholar 

  • Shi S, Richardson AE, O’Callaghan M, DeAngelis KM, Jones EE, Stewart A, Firestone MK, Condron LM (2011) Effects of selected root exudate components on soil bacterial communities. FEMS Microbiol Ecol 77(3):600–610

    Article  Google Scholar 

  • Singh A, Sharma P, Kumari A, Kumar R, Pathak DV (2019) Management of root-knot nematode in different crops using microorganisms. In: Varma A, Tripathi S, Prasad R (eds) Plant biotic interactions. Springer, Cham, pp 85–99

    Chapter  Google Scholar 

  • Solís-Domínguez FA, Valentín-Vargas A, Chorover J, Maier RM (2011) Effect of arbuscular mycorrhizal fungi on plant biomass and the rhizosphere microbial community structure of mesquite grown in acidic lead/zinc mine tailings. Sci Total Environ 409(6):1009–1016

    Article  Google Scholar 

  • Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30(4):205–240

    Article  Google Scholar 

  • Sriprang R, Hayashi M, Ono H, Takagi M, Hirata K, Murooka Y (2003) Enhanced accumulation of Cd2+ by a Mesorhizobium sp. transformed with a gene from Arabidopsis thaliana coding for phytochelatin synthase. Appl Environ Microbiol 69(3):1791–1796

    Article  Google Scholar 

  • Stefani FO, Bell TH, Marchand C, de la Providencia IE, El Yassimi A, St-Arnaud M, Hijri M (2015) Culture-dependent and-independent methods capture different microbial community fractions in hydrocarbon-contaminated soils. PLoS One 10(6)

    Google Scholar 

  • Stein RJ, Duarte GL, Spohr MG, Lopes SIG, & Fett JP (2009) Distinct physiological responses of two rice cultivars subjected to iron toxicity under field conditions. Annals Appl Biol, 154(2):269–277

    Google Scholar 

  • Sulieman S (2011) Does GABA increase the efficiency of symbiotic N2 fixation in legumes? Plant Signal Behav 6:32–36

    Article  Google Scholar 

  • Tarkka MT, Sarniguet A, & Frey-Klett P (2009) Inter-kingdom encounters: recent advances in molecular bacterium–fungus interactions. Current genetics, 55(3):233–243

    Google Scholar 

  • Tenuta M, Beauchamp EG (1996) Denitrification following herbicide application to a grass sward. Can J Soil Sci 76(1):15–22

    Article  Google Scholar 

  • Timm CM, Pelletier DA, Jawdy SS, Gunter LE, Henning JA, Engle N, Aufrecht J, Gee E, Nookaew I, Yang Z, Lu TY (2016) Two poplar-associated bacterial isolates induce additive favorable responses in a constructed plant-microbiome system. Front Plant Sci 7:497

    Article  Google Scholar 

  • Toal ME, Yeomans C, Killham K, Meharg AA (2000) A review of rhizosphere carbon flow modelling. Plant Soil 222:263–281

    Article  Google Scholar 

  • Tomasino SF, Leister RT, Dimock MB, Beach RM, Kelly JL (1995) Field performance of Clavibacter xyli subsp. cynodontis expressing the insecticidal protein gene cryIA of Bacillus thuringiensis against European corn borer in field corn. Biol Control 5:442–448

    Article  Google Scholar 

  • Tournas VH, Katsoudas E (2005) Mould and yeast flora in fresh berries, grapes and citrus fruits. Int J Food Microbiol 105(1):11–17

    Article  Google Scholar 

  • Treseder KK (2008) Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol Lett 11(10):1111–1120

    Article  Google Scholar 

  • Truyens S, Weyens N, Cuypers A, Vangronsveld J (2015) Bacterial seed endophytes: genera, vertical transmission and interaction with plants. Environ Microbiol Rep 7(1):40–50

    Article  Google Scholar 

  • Uroz S, D’Angelo-Picard C, Carlier A, Elasri M, Sicot C, Petit A, Oger P, Faure D, Dessaux Y (2003) Novel bacteria degrading N-acylhomoserine lactones and their use as quenchers of quorum-sensing-regulated functions of plant-pathogenic bacteria. Microbiology 149(8):1981–1989

    Article  Google Scholar 

  • Uroz S, Buée M, Murat C, Frey-Klett P, Martin F (2010) Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ Microbiol Rep 2(2):281–288

    Article  Google Scholar 

  • Uzoh IM, Babalola OO (2018) Rhizosphere biodiversity as a premise for application in bio-economy. Agric Ecosyst Environ 265:524–534

    Article  Google Scholar 

  • Valverde A, De Maayer P, Oberholster T, Henschel J, Louw MK, Cowan D (2016) Specific microbial communities associate with the rhizosphere of Welwitschia mirabilis, a living fossil. PLoS One 11(4):e0153353

    Article  Google Scholar 

  • Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206(4):1196–1206

    Article  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586

    Article  Google Scholar 

  • Vicré M, Santaella C, Blanchet S, Gateau A, Driouich A (2005) Root border-like cells of Arabidopsis. Microscopical characterization and role in the interaction with rhizobacteria. Plant Physiol 138(2):998–1008

    Article  Google Scholar 

  • Vives-Peris V, de Ollas C, Gómez-Cadenas A, Pérez-Clemente RM (2020) Root exudates: from plant to rhizosphere and beyond. Plant Cell Rep 25:1–5

    Google Scholar 

  • Walker V, Bertrand C, Bellvert F, Moënne-Loccoz Y, Bally R, Comte G (2011) Host plant secondary metabolite profiling shows a complex, strain-dependent response of maize to plant growth-promoting rhizobacteria of the genus Azospirillum. New Phytol 189(2):494–506

    Article  Google Scholar 

  • Wallenstein MD (2017) Managing and manipulating the rhizosphere microbiome for plant health: a systems approach. Rhizosphere 3:230–232

    Article  Google Scholar 

  • Wan T, Zhao H, Wang W (2017) Effect of biocontrol agent Bacillus amyloliquefaciens SN16-1 and plant pathogen Fusarium oxysporum on tomato rhizosphere bacterial community composition. Biol Control 112:1–9

    Article  Google Scholar 

  • Wang CX, Knill E, Glick BR, Defago G (2000) Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46:898–890

    Article  Google Scholar 

  • Wang S, Wu H, Zhan J, **a Y, Gao S, Wang W, Xue P, Gao X (2011) The role of synergistic action and molecular mechanism in the effect of genetically engineered strain Bacillus subtilis OKBHF in enhancing tomato growth and Cucumber mosaic virus resistance. BioControl 56(1):113–121

    Article  Google Scholar 

  • Wang D, Zhang N, Tang H, Adams JM, Sun B, Liang Y (2019) Straw biochar strengthens the life strategies and network of rhizosphere fungi in manure fertilized soils. Soil Ecol Lett 1(1–2):72–84

    Google Scholar 

  • Wardle DA, Nilsson MC, Zackrisson O (2008) Fire-derived charcoal causes loss of forest humus. Science 320(5876):629

    Article  Google Scholar 

  • Weinert N, Piceno Y, Ding GC, Meincke R, Heuer H, Berg G, ... & Smalla K (2011) PhyloChip hybridization uncovered an enormous bacterial diversity in the rhizosphere of different potato cultivars: many common and few cultivar-dependent taxa. FEMS microbiology ecology, 75(3):497–506

    Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40(1):309–348

    Article  Google Scholar 

  • Weng J, Wang Y, Li J, Shen Q, Zhang R (2013) Enhanced root colonization and biocontrol activity of Bacillus amyloliquefaciens SQR9 by abrB gene disruption. Appl Microbiol Biotechnol 97(19):8823–8830

    Article  Google Scholar 

  • West SA, Fisher RM, Gardner A, Kiers ET (2015) Major evolutionary transitions in individuality. Proc Natl Acad Sci 112(33):10112–10119

    Article  Google Scholar 

  • White RA III, Rivas-Ubach A, Borkum MI, Köberl M, Bilbao A, Colby SM, Hoyt DW, Bingol K, Kim YM, Wendler JP, Hixson KK (2017) The state of rhizospheric science in the era of multi-omics: a practical guide to omics technologies. Rhizosphere 3:212–221

    Article  Google Scholar 

  • Win KT, Okazaki K, Ohkama-Ohtsu N, Yokoyama T, Ohwaki Y (2020) Short-term effects of biochar and Bacillus pumilus TUAT-1 on the growth of forage rice and its associated soil microbial community and soil properties. Biol Fertil Soils 56:1–7

    Article  Google Scholar 

  • Wu CH, Wood TK, Mulchandani A, Chen W (2006) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72(2):1129–1134

    Article  Google Scholar 

  • Wu AL, Jiao XY, Fan FF, Wang JS, Guo J, Dong EW, Wang LG, Shen XM (2019) Effect of continuous sorghum crop** on the rhizosphere microbial community and the role of Bacillus amyloliquefaciens in altering the microbial composition. Plant Growth Regul 89(3):299–308

    Article  Google Scholar 

  • Yaish MW, Al-Harrasi I, Alansari AS, Al-Yahyai R, Glick BR (2017) The use of high throughput DNA sequence analysis to assess the endophytic microbiome of date palm roots grown under different levels of salt stress. Int Microbiol 19:143–155

    Google Scholar 

  • Yang H, Knapp J, Koirala P, Rajagopal D, Peer WA, Silbart LK, Murphy A, Gaxiola RA (2007) Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus-responsive type I H+-pyrophosphatase. Plant Biotechnol J 5(6):735–745

    Article  Google Scholar 

  • Yang Y, Zhang S, Li N, Chen H, Jia H, Song X, Liu G, Ni C, Wang Z, Shao H, Zhang S (2019) Metagenomic insights into effects of wheat straw compost fertiliser application on microbial community composition and function in tobacco rhizosphere soil. Sci Rep 9(1):1–1

    Google Scholar 

  • Yaryura P, Leon M, Correa O, Kerber N, Pucheu N, Garcia A (2008) Assessment of the role of chemotaxis and biofilm formation as requirements for colonization of roots and seeds of soybean plants by Bacillus amyloliquefaciens BNM339. Curr Microbiol 56:625–632

    Article  Google Scholar 

  • Yu H, Zou W, Chen J, Chen H, Yu Z, Huang J, Tang H, Wei X, Gao B (2019) Biochar amendment improves crop production in problem soils: a review. J Environ Manag 232:8–21

    Article  Google Scholar 

  • Yuan Z, Druzhinina IS, Labbé J, Redman R, Qin Y, Rodriguez R, Zhang C, Tuskan GA, Lin F (2016) Specialized microbiome of a halophyte and its role in hel** non-host plants to withstand salinity. Sci Rep 6(1):1–3

    Google Scholar 

  • Zahran HH (2001) Rhizobia from wild legumes: diversity, taxonomy. Ecology, nitrogen fixation and biotechnology. J Biotechnol 91:143–153

    Article  Google Scholar 

  • Zapalski MK (2011) Is absence of proof a proof of absence? Comments on commensalism. Palaeogeogr Palaeoclimatol Palaeoecol 302(3–4):484–488

    Article  Google Scholar 

  • Zgadzaj R, Garrido-Oter R, Jensen DB, Koprivova A, Schulze-Lefert P, Radutoiu S (2016) Root nodule symbiosis in Lotus japonicus drives the establishment of distinctive rhizosphere, root, and nodule bacterial communities. Proc Natl Acad Sci 113(49):E7996–E8005

    Article  Google Scholar 

  • Zhang X, Cao Y, Tian Y, Li J (2014) Short-term compost application increases rhizosphere soil carbon mineralization and stimulates root growth in long-term continuously cropped cucumber. Sci Hortic 175:269–277

    Article  Google Scholar 

  • Zhang N, Yang D, Wang D, Miao Y, Shao J, Zhou X, Xu Z, Li Q, Feng H, Li S, Shen Q (2015) Whole transcriptomic analysis of the plant-beneficial rhizobacterium Bacillus amyloliquefaciens SQR9 during enhanced biofilm formation regulated by maize root exudates. BMC Genomics 16(1):685

    Article  Google Scholar 

  • Zhu S, Vivanco JM, Manter DK (2016) Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize. Appl Soil Ecol 107:324–333

    Article  Google Scholar 

  • Ziegler M, Engel M, Welzl G, Schloter M (2013) Development of a simple root model to study the effects of single exudates on the development of bacterial community structure. J Microbiol Methods 94(1):30–36

    Article  Google Scholar 

  • Zolti A, Green SJ, Mordechay EB, Hadar Y, Minz D (2019) Root microbiome response to treated wastewater irrigation. Sci Total Environ 655:899–907

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, P. et al. (2021). Rhizosphere, Rhizosphere Biology, and Rhizospheric Engineering. In: Mohamed, H.I., El-Beltagi, H.ED.S., Abd-Elsalam, K.A. (eds) Plant Growth-Promoting Microbes for Sustainable Biotic and Abiotic Stress Management. Springer, Cham. https://doi.org/10.1007/978-3-030-66587-6_21

Download citation

Publish with us

Policies and ethics

Navigation