Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems

  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming (CP 2020)

Abstract

An algorithm is said to be certifying if it outputs, together with a solution to the problem it solves, a proof that this solution is correct. We explain how state of the art maximum clique, maximum weighted clique, maximal clique enumeration and maximum common (connected) induced subgraph algorithms can be turned into certifying solvers by using pseudo-Boolean models and cutting planes proofs, and demonstrate that this approach can also handle reductions between problems. The generality of our results suggests that this method is ready for widespread adoption in solvers for combinatorial graph problems.

The first and fourth authors were funded by the Swedish Research Council (VR) grant 2016-00782. The fourth author was also supported by the Independent Research Fund Denmark (DFF) grant 9040-00389B. The third, fifth and sixth authors were supported by the Engineering and Physical Sciences Research Council [grant numbers EP/P026842/1 and EP/M508056/1]. Some code development used resources provided by the Swedish National Infrastructure for Computing (SNIC).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We are not aware of any obstacles for providing formal verification for this translation step. However, since this translation is so simple, in this paper we focus on the more challenging task of formally verifying the correctness of solvers’ reasoning.

  2. 2.

    In a PB setting, unit propagation is equivalent to achieving integer bounds consistency [9] on all constraints. This is identical to SAT unit propagation on clausal constraints, but is stronger in general.

  3. 3.

    In all of what follows, these variables are equivalent under the exchange of f and g, and so we may halve the number of variables needed by exchanging f and g if \(f > g\). We do this in practice, but omit this in the description for clarity.

References

  1. Atserias, A., Bonacina, I., de Rezende, S.F., Lauria, M., Nordström, J., Razborov, A.A.: Clique is hard on average for regular resolution. In: Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, 25–29 June 2018, pp. 866–877 (2018)

    Google Scholar 

  2. Babel, L.: A fast algorithm for the maximum weight clique problem. Computing 52(1), 31–38 (1994)

    MathSciNet  MATH  Google Scholar 

  3. Balas, E., Yu, C.S.: Finding a maximum clique in an arbitrary graph. SIAM J. Comput. 15(4), 1054–1068 (1986)

    MathSciNet  MATH  Google Scholar 

  4. Batsyn, M., Goldengorin, B., Maslov, E., Pardalos, P.M.: Improvements to MCS algorithm for the maximum clique problem. J. Comb. Optim. 27(2), 397–416 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Biere, A.: Tracecheck (2006). http://fmv.jku.at/tracecheck/

  6. Bron, C., Kerbosch, J.: Finding all cliques of an undirected graph (algorithm 457). Commun. ACM 16(9), 575–576 (1973)

    MATH  Google Scholar 

  7. Brummayer, R., Lonsing, F., Biere, A.: Automated testing and debugging of SAT and QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 44–57. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7_6

    MATH  Google Scholar 

  8. Cheng, B.M.W., Lee, J.H.M., Wu, J.C.K.: Speeding up constraint propagation by redundant modeling. In: Freuder, E.C. (ed.) CP 1996. LNCS, vol. 1118, pp. 91–103. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61551-2_68

    Google Scholar 

  9. Choi, C.W., Harvey, W., Lee, J.H.M., Stuckey, P.J.: Finite domain bounds consistency revisited. In: Sattar, A., Kang, B. (eds.) AI 2006. LNCS (LNAI), vol. 4304, pp. 49–58. Springer, Heidelberg (2006). https://doi.org/10.1007/11941439_9

    Google Scholar 

  10. Conte, D., Foggia, P., Vento, M.: Challenging complexity of maximum common subgraph detection algorithms: a performance analysis of three algorithms on a wide database of graphs. J. Graph Algorithms Appl. 11(1), 99–143 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Cook, W.J., Coullard, C.R., Turán, G.: On the complexity of cutting-plane proofs. Discret. Appl. Math. 18(1), 25–38 (1987)

    MathSciNet  MATH  Google Scholar 

  12. Cook, W.J., Koch, T., Steffy, D.E., Wolter, K.: A hybrid branch-and-bound approach for exact rational mixed-integer programming. Math. Program. Comput. 5(3), 305–344 (2013)

    MathSciNet  MATH  Google Scholar 

  13. Cruz-Filipe, L., Heule, M.J.H., Hunt, W.A., Kaufmann, M., Schneider-Kamp, P.: Efficient certified RAT verification. In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 220–236. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5_14

    Google Scholar 

  14. Cruz-Filipe, L., Marques-Silva, J., Schneider-Kamp, P.: Efficient certified resolution proof checking. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 118–135. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5_7

    Google Scholar 

  15. Dasari, N.S., Ranjan, D., Zubair, M.: pbitMCE: a bit-based approach for maximal clique enumeration on multicore processors. In: 20th IEEE International Conference on Parallel and Distributed Systems, ICPADS 2014, Hsinchu, Taiwan, 16–19 December 2014, pp. 478–485 (2014)

    Google Scholar 

  16. Depolli, M., Konc, J., Rozman, K., Trobec, R., Janezic, D.: Exact parallel maximum clique algorithm for general and protein graphs. J. Chem. Inf. Model. 53(9), 2217–2228 (2013)

    Google Scholar 

  17. Durand, P.J., Pasari, R., Baker, J.W., Tsai, C.C.: An efficient algorithm for similarity analysis of molecules. Internet J. Chem. 2(17), 1–16 (1999)

    Google Scholar 

  18. Ehrlich, H.C., Rarey, M.: Maximum common subgraph isomorphism algorithms and their applications in molecular science: a review. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 1(1), 68–79 (2011)

    Google Scholar 

  19. Elffers, J., Gocht, S., McCreesh, C., Nordström, J.: Justifying all differences using pseudo-boolean reasoning. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, 7–12 February 2020, pp. 1486–1494 (2020)

    Google Scholar 

  20. Eppstein, D., Löffler, M., Strash, D.: Listing all maximal cliques in large sparse real-world graphs. ACM J. Exp. Algorithmics 18 (2013)

    Google Scholar 

  21. Eppstein, D., Strash, D.: Listing all maximal cliques in large sparse real-world graphs. In: Pardalos, P.M., Rebennack, S. (eds.) SEA 2011. LNCS, vol. 6630, pp. 364–375. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20662-7_31

    Google Scholar 

  22. Gange, G., Stuckey, P.J.: Certifying optimality in constraint programming, February 2019. Presentation at KTH Royal Institute of Technology. Slides https://www.kth.se/polopoly_fs/1.879851.1550484700!/CertifiedCP.pdf

  23. Gay, S., Fages, F., Martinez, T., Soliman, S., Solnon, C.: On the subgraph epimorphism problem. Discret. Appl. Math. 162, 214–228 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Gelder, A.V.: Verifying RUP proofs of propositional unsatisfiability. In: International Symposium on Artificial Intelligence and Mathematics, ISAIM 2008, Fort Lauderdale, Florida, USA, 2–4 January 2008 (2008)

    Google Scholar 

  25. Gillard, X., Schaus, P., Deville, Y.: SolverCheck: declarative testing of constraints. In: Schiex, T., de Givry, S. (eds.) CP 2019. LNCS, vol. 11802, pp. 565–582. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30048-7_33

    Google Scholar 

  26. Gocht, S., McCreesh, C., Nordström, J.: Subgraph isomorphism meets cutting planes: solving with certified solutions. In: Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020 [scheduled for July 2020, Yokohama, Japan, postponed due to the Corona pandemic], pp. 1134–1140 (2020)

    Google Scholar 

  27. Goldberg, E.I., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formulas. In: 2003 Design, Automation and Test in Europe Conference and Exposition (DATE 2003), Munich, Germany, 3–7 March 2003, pp. 10886–10891. IEEE Computer Society (2003)

    Google Scholar 

  28. Hespe, D., Lamm, S., Schulz, C., Strash, D.: WeGotYouCovered: the winning solver from the PACE 2019 implementation challenge, vertex cover track. CoRR abs/1908.06795 (2019)

    Google Scholar 

  29. Heule, M., Hunt Jr., W.A., Wetzler, N.: Trimming while checking clausal proofs. In: Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA, 20–23 October 2013, pp. 181–188 (2013)

    Google Scholar 

  30. Heule, M.J.H., Hunt, W.A., Wetzler, N.: Verifying refutations with extended resolution. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 345–359. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38574-2_24

    Google Scholar 

  31. Hoffmann, R., McCreesh, C., Reilly, C.: Between subgraph isomorphism and maximum common subgraph. In: Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence, San Francisco, California, USA, 4–9 February 2017, pp. 3907–3914 (2017)

    Google Scholar 

  32. Johnson, D.S., Trick, M.A.: Introduction to the second DIMACS challenge: cliques, coloring, and satisfiability. In: Cliques, Coloring, and Satisfiability, Proceedings of a DIMACS Workshop, New Brunswick, New Jersey, USA, 11–13 October 1993, pp. 1–10 (1993)

    Google Scholar 

  33. Konc, J., Janežič, D.: An improved branch and bound algorithm for the maximum clique problem. MATCH Commun. Math. Comput. Chem. 58(3), 569–590 (2007)

    MathSciNet  MATH  Google Scholar 

  34. Levi, G.: A note on the derivation of maximal common subgraphs of two directed or undirected graphs. CALCOLO 9(4), 341–352 (1973). https://doi.org/10.1007/BF02575586

    MathSciNet  MATH  Google Scholar 

  35. Li, C., Jiang, H., Manyà, F.: On minimization of the number of branches in branch-and-bound algorithms for the maximum clique problem. Comput. Oper. Res. 84, 1–15 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Li, C.-M., Jiang, H., Xu, R.-C.: Incremental MaxSAT reasoning to reduce branches in a branch-and-bound algorithm for MaxClique. In: Dhaenens, C., Jourdan, L., Marmion, M.-E. (eds.) LION 2015. LNCS, vol. 8994, pp. 268–274. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19084-6_26

    Google Scholar 

  37. Li, C.M., Quan, Z.: An efficient branch-and-bound algorithm based on MaxSAT for the maximum clique problem. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, 11–15 July 2010 (2010)

    Google Scholar 

  38. Liu, Y., Li, C., Jiang, H., He, K.: A learning based branch and bound for maximum common subgraph related problems. In: The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, 7–12 February 2020, pp. 2392–2399 (2020)

    Google Scholar 

  39. Maslov, E., Batsyn, M., Pardalos, P.M.: Speeding up branch and bound algorithms for solving the maximum clique problem. J. Glob. Optim. 59(1), 1–21 (2014)

    MathSciNet  MATH  Google Scholar 

  40. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms. Comput. Sci. Rev. 5(2), 119–161 (2011)

    MATH  Google Scholar 

  41. McCreesh, C., Ndiaye, S.N., Prosser, P., Solnon, C.: Clique and constraint models for maximum common (connected) subgraph problems. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 350–368. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1_23

    Google Scholar 

  42. McCreesh, C., Pettersson, W., Prosser, P.: Understanding the empirical hardness of random optimisation problems. In: Schiex, T., de Givry, S. (eds.) CP 2019. LNCS, vol. 11802, pp. 333–349. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30048-7_20

    Google Scholar 

  43. McCreesh, C., Prosser, P.: Multi-threading a state-of-the-art maximum clique algorithm. Algorithms 6(4), 618–635 (2013)

    MathSciNet  MATH  Google Scholar 

  44. McCreesh, C., Prosser, P.: Reducing the branching in a branch and bound algorithm for the maximum clique problem. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 549–563. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10428-7_40

    Google Scholar 

  45. McCreesh, C., Prosser, P.: The shape of the search tree for the maximum clique problem and the implications for parallel branch and bound. ACM Trans. Parallel Comput. 2(1), 8:1–8:27 (2015)

    MATH  Google Scholar 

  46. McCreesh, C., Prosser, P., Simpson, K., Trimble, J.: On maximum weight clique algorithms, and how they are evaluated. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 206–225. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2_14

    Google Scholar 

  47. McCreesh, C., Prosser, P., Trimble, J.: A partitioning algorithm for maximum common subgraph problems. In: Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, 19–25 August 2017, pp. 712–719 (2017)

    Google Scholar 

  48. McCreesh, C., Prosser, P., Trimble, J.: The Glasgow subgraph solver: using constraint programming to tackle hard subgraph isomorphism problem variants. In: Gadducci, F., Kehrer, T. (eds.) ICGT 2020. LNCS, vol. 12150, pp. 316–324. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51372-6_19

    Google Scholar 

  49. Naudé, K.A.: Refined pivot selection for maximal clique enumeration in graphs. Theor. Comput. Sci. 613, 28–37 (2016)

    MathSciNet  MATH  Google Scholar 

  50. Ndiaye, S.N., Solnon, C.: CP models for maximum common subgraph problems. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 637–644. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23786-7_48

    Google Scholar 

  51. Nikolaev, A., Batsyn, M., Segundo, P.S.: Reusing the same coloring in the child nodes of the search tree for the maximum clique problem. In: Dhaenens, C., Jourdan, L., Marmion, M.-E. (eds.) LION 2015. LNCS, vol. 8994, pp. 275–280. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19084-6_27

    Google Scholar 

  52. Petit, T., Régin, J.-C., Bessière, C.: Specific filtering algorithms for over-constrained problems. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 451–463. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45578-7_31

    Google Scholar 

  53. Prosser, P.: Exact algorithms for maximum clique: a computational study. Algorithms 5(4), 545–587 (2012)

    MathSciNet  MATH  Google Scholar 

  54. Raymond, J.W., Willett, P.: Maximum common subgraph isomorphism algorithms for the matching of chemical structures. J. Comput. Aided Mol. Des. 16(7), 521–533 (2002)

    Google Scholar 

  55. Roussel, O., Manquinho, V.M.: Input/output format and solver requirements for the competitions of pseudo-Boolean solvers, January 2016. Revision 2324. http://www.cril.univ-artois.fr/PB16/format.pdf

  56. San Segundo, P., Furini, F., Artieda, J.: A new branch-and-bound algorithm for the maximum weighted clique problem. Comput. Oper. Res. 110, 18–33 (2019)

    MathSciNet  MATH  Google Scholar 

  57. San Segundo, P., Lopez, A., Batsyn, M.: Initial sorting of vertices in the maximum clique problem reviewed. In: Pardalos, P.M., Resende, M.G.C., Vogiatzis, C., Walteros, J.L. (eds.) LION 2014. LNCS, vol. 8426, pp. 111–120. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09584-4_12

    Google Scholar 

  58. San Segundo, P., Lopez, A., Batsyn, M., Nikolaev, A., Pardalos, P.M.: Improved initial vertex ordering for exact maximum clique search. Appl. Intell. 45(3), 868–880 (2016)

    MATH  Google Scholar 

  59. San Segundo, P., Matía, F., Rodríguez-Losada, D., Hernando, M.: An improved bit parallel exact maximum clique algorithm. Optim. Lett. 7(3), 467–479 (2013)

    MathSciNet  MATH  Google Scholar 

  60. San Segundo, P., Nikolaev, A., Batsyn, M., Pardalos, P.M.: Improved infra-chromatic bound for exact maximum clique search. Informatica Lith. Acad. Sci. 27(2), 463–487 (2016)

    Google Scholar 

  61. San Segundo, P., Rodríguez-Losada, D., Jiménez, A.: An exact bit-parallel algorithm for the maximum clique problem. Comput. Oper. Res. 38(2), 571–581 (2011)

    MathSciNet  MATH  Google Scholar 

  62. San Segundo, P., Tapia, C.: Relaxed approximate coloring in exact maximum clique search. Comput. Oper. Res. 44, 185–192 (2014)

    MathSciNet  MATH  Google Scholar 

  63. Santo, M.D., Foggia, P., Sansone, C., Vento, M.: A large database of graphs and its use for benchmarking graph isomorphism algorithms. Pattern Recogn. Lett. 24(8), 1067–1079 (2003)

    MATH  Google Scholar 

  64. Tavares, A.W.: Algoritmos exatos para problema da clique maxima ponderada. Ph.D. thesis, Universidade federal do Ceará (2016)

    Google Scholar 

  65. Tavares, W.A., Neto, M.B.C., Rodrigues, C.D., Michelon, P.: Um algoritmo de branch and bound para o problema da clique máxima ponderada. In: Proceedings of XLVII SBPO, vol. 1 (2015)

    Google Scholar 

  66. Tomita, E., Kameda, T.: An efficient branch-and-bound algorithm for finding a maximum clique with computational experiments. J. Glob. Optim. 37(1), 95–111 (2007)

    MathSciNet  MATH  Google Scholar 

  67. Tomita, E., Seki, T.: An efficient branch-and-bound algorithm for finding a maximum clique. In: Calude, C.S., Dinneen, M.J., Vajnovszki, V. (eds.) DMTCS 2003. LNCS, vol. 2731, pp. 278–289. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-45066-1_22

    MATH  Google Scholar 

  68. Tomita, E., Sutani, Y., Higashi, T., Takahashi, S., Wakatsuki, M.: A simple and faster branch-and-bound algorithm for finding a maximum clique. In: Rahman, M.S., Fujita, S. (eds.) WALCOM 2010. LNCS, vol. 5942, pp. 191–203. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11440-3_18

    MATH  Google Scholar 

  69. Tomita, E., Sutani, Y., Higashi, T., Wakatsuki, M.: A simple and faster branch-and-bound algorithm for finding a maximum clique with computational experiments. IEICE Trans. Inf. Syst. 96-D(6), 1286–1298 (2013)

    Google Scholar 

  70. Tomita, E., Tanaka, A., Takahashi, H.: The worst-case time complexity for generating all maximal cliques and computational experiments. Theor. Comput. Sci. 363(1), 28–42 (2006)

    MathSciNet  MATH  Google Scholar 

  71. Tomita, E., Yoshida, K., Hatta, T., Nagao, A., Ito, H., Wakatsuki, M.: A much faster branch-and-bound algorithm for finding a maximum clique. In: Zhu, D., Bereg, S. (eds.) FAW 2016. LNCS, vol. 9711, pp. 215–226. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39817-4_21

    Google Scholar 

  72. Veksler, M., Strichman, O.: A proof-producing CSP solver. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2010, Atlanta, Georgia, USA, 11–15 July 2010 (2010)

    Google Scholar 

  73. Vismara, P., Valery, B.: Finding maximum common connected subgraphs using clique detection or constraint satisfaction algorithms. In: Le Thi, H.A., Bouvry, P., Pham Dinh, T. (eds.) MCO 2008. CCIS, vol. 14, pp. 358–368. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87477-5_39

    Google Scholar 

  74. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: efficient checking and trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 422–429. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09284-3_31

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciaran McCreesh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gocht, S., McBride, R., McCreesh, C., Nordström, J., Prosser, P., Trimble, J. (2020). Certifying Solvers for Clique and Maximum Common (Connected) Subgraph Problems. In: Simonis, H. (eds) Principles and Practice of Constraint Programming. CP 2020. Lecture Notes in Computer Science(), vol 12333. Springer, Cham. https://doi.org/10.1007/978-3-030-58475-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58475-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58474-0

  • Online ISBN: 978-3-030-58475-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation